Friday , June 22 2018

Design Trade-offs in Configurable FPGA Architectures for K-Means Clustering

Alexandru AMARICAI
1 University Politehnica Timisoara,
2 Vasile Parvan Blvd, Timisoara, Romania.
alexandru.amaricai@cs.upt.ro

ABSTRACT: K-Means clustering is a popular technique for data partitioning, frequently used in data mining. The simple control flow, and high degree of parallelism, makes it a good candidate for FPGA acceleration. We propose a highly configurable architecture, based on Euclidean distance computation. It can be tuned by the following parameters: number of dimensions, dimension width, dimension based parallelism degree, number of centroids and centroid based parallelism degree. We study their impact on different K-Means components, such as the distance computation, distance comparison, accumulation, division, or the memory modules within the accelerator. Furthermore, for the aforementioned parameters we investigate the performance/cost trade-offs of the proposed K-Means accelerator implementation.

KEYWORDS: K-Means clustering, FPGA, parallelization.

>>FULL TEXT: PDF

CITE THIS PAPER AS:
Alexandru AMARICAI
, Design Trade-offs in Configurable FPGA Architectures for K-Means Clustering, Studies in Informatics and Control, ISSN 1220-1766, vol. 26(1), pp. 43-48, 2017.

https://doi.org/10.24846/v26i1y201705