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Abstract: This article introduces a new formalism describing a class of systems with double time scale discrete functioning associated to
two input spaces. These systems have specific properties enabling design of new control architectures particularly well adapted to
tracking problems in discrete time.
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1. Introduction

Discrete control of continuous or sampled-data plants has been studied in various works dealing witn
different criteria defining: stability, precision, robustness etc. corresponding to control context [1, 2]. In
this area several researchers have contributed with original approaches. Among them, Kabamba [3] has
proposed to generalize the sample data hold function in order to control linear plants. The main idea
was to generate a control from a periodical matrix and the plant sampled output. Other robustness
properties of sampled-data systems with generalized hold function have been investigated by Kabamba.
Urikura and Nagata [4] have proposed a discrete control with reduction of intersample ripples.
Yamamoto [5] used a concept of piecewise defined function for which the state is observed at sampling
times and during the sampling periods. Krishan, Nagpal and Khargonekar [6] have studied Hx control
and filtering problems for sampled-data systems. They have taken a state-space approach to give
solutions to a number of Hx filtering and control problems. They have introduced the notion of a linear
system with finite discrete jumps and have also stated that both standard continuous-time system and
discrete-time system are special cases of linear system with jumps.

More recently. we have defined a class of systems with finite discrete jumps defined in the discrete space
S containing commutation moments , where S=/z,, k=0,1.2,...} called also "commutation space” [7, 8,
9]. Between two commutations, a plant is controlled from the input space /. At the moments of
commutation, a plant is controlled from the second input space V.

In our previous works, the control approach based on piecewise continuous systems [7, 8] admitted that
the system is continuous between two commutations. In this article we proposed the study of the case
where the system is defined as sample-data system between two commutations. In the first time a control
application based on our approach to piecewise functioning systems has been developed in order to
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realize the tracking of a state trajectory. In the second time, we have developed a ripple free control
tracking strategy based on the optimal control method between commutation moments. We have
considered in both cases that the plant state is available entirely and that a noise is not present.

The organization of the paper is as follows: in the next section, we will introduce some elementary
properties of bi sampled-data systems with jumps (piecewise functioning system). These may be
regarded as a general framework for dealing with hybrid systems using multiple sampled-data approach.
We will present results of tracking problems in Section 3. The intersample ripple reduction algorithm,
based on the optimal control theory, will be exposed in the Section 4 and finally the conclusion will be
given in the section 5. The organization of the paper should optimize the readability.

We end this introduction with some remarks on the notation most of which is standard: R denotes the set
of real numbers, R” denotes the » dimensional Euclidian space (identified with n x / vectors of real

numbers), and R™ denotes the set of all # x m real matrices. We will use A4’ to denote the transpose
matrix of A, Ker(4) the kernel of A, Im(4) the image of 4 and dim(A) the dimensions of 4.

2. Definitions and preliminary results

In this section, we will discuss the notion of linear bi sampled-data piecewise functioning system with
finite discrete jumps. It turns out that the solutions of the tracking problem treated in this paper have
this structure.

2.1 Two sampled-data time scale

Two sampled-data time scale used in our approach to tracking problem is illustrated in the Figure 1.
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Figure 1: Two sampled-data time scale

The discrete moments are noted #* where i indicates the time scale relating to commutations and k the
time scale relating to system evolution between two commutations. Therefore two successive

commutations t,o_, and [jo delimit the piece noted @,,.

Inside the piece @, ; the subscript does not change while the superscript increases from 0 (initial
moment) o g,.;.

Generally the time length of a piece is not constant nor the sampling period and the number of sampling
periods inside one piece. Finally, the last sampling moment of the piece @, is superposed with the first
sampling moment of the piece @,

i-1 (1]
(91 = ¢!

i

2.2 Piecewise functioning sampled-data system

A sampled-data system with piecewise functioning is a system whose properties are completely defined
over all pieces @, by the following state-space model:
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k+1 k ¢k
x; " = A,xf + B ay; k=0, =1 210

J =i a0l

x'= B 2

x-" = R denotes the state, y:" e R"™ thesystem outputat ;. Two inputs spaces are then
defined as

u' € R’ thatisa control inside a piece and

v [G e R 7 thatisacontrol defining the initial siate X‘U for considered piece.

4] |

Generally X', 3% X, [} implies the discontinuity at two pieces transiton. (Figure 2.).
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Figure 2: Discontinuity at commutation moments

The matrices A, B: and C; are commonly used state matrices with appropriate dimensions. The matrix

TR e 0 0
s the relation v, —» ¥ .

REMAREK. The previous system definition can be applied on standard sampled-data system without any
discontinuitics or limited jumps. In this case the following definitions are suificient in the relation [2.1¢} :

Bd - / ,‘J . =
i e and 1:’ ——“\.—J

These guaranty the continuity at commutation moments:

}f'“ _ x‘ft H

¢ -1
3. Tracking problem - bi-sampled controller

[ this section we will define the two time scales as follows:
The pieces of constant tin:e length are noted 7. .
Inside each piece, the system evolution is defined by a sampling period of constant length ¢, with 7, =

g1, and ¢ positive integer.

3.1 Controller definition

We will use previously defined piecewise functioning system in order to define a linear sampled-data
time-avariant piant controller.  The control objective is to track a predefined trajectory with one
sampling period 7, delay.
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All over the piece @, a plant is defined as follows:
= fxl +haf k=0,.., g-1,[3.14)
yE=C.x' [3:1b]
0
X, =X [3.1c]
In the same manner, during @, the controller is defined by expressions:
k+1 k -
At =g Af k=0,.,9-1[3.2a]
al = y.A7 [3.26]
d
L =8 v [32]

k

if and d ,.k are respectively the state vectors and the output vectors at the moment [, . The
. k ke . ;

controller output is used to control a plant, therefore: ¥, =4, , Vi,k . If we use the formalism

defined by [2.1] then we may take 4, =cx. B =0 , C, =yand B'=p8".

Dimensions have to be defined as follows:

dim(A) = dim(x) = » and dim(a) = dim(x) = r.
dim(a) = dim(f) = nxn , dim(h) = nxr and dim(y) = rxn.

It is important to note that a controller is free ( B’ =0). We will detail in the next sections how to

exploit all possibilities of this type of controller ( Bf 20).

Finally, if c(1) denotes the state trajectory to track, the tracking problem can be presented by the
expression: Xx((i + DT,)=c(T,), ¥V i.

It is equivalent to ‘x;oq = C:] or following [3.1¢]:
0
X} =¢; [33]

3.2 Solution

By combining the systems of equations [3.1] and [3.2] during the piece @; one obtains:

i ,v.au i
" J’ﬂl
xf:f‘f_x:’+[f‘f h f “h‘f h]_ ) ﬂ,?
.[3.4]
I
In the matrix form, if we note:
- &
y.a
; s }/.arE
Y A N A O o] | I N ER)
-
l7a |

188 Studies in Informatics and Control, Vol.11, No.2, 2002



q
x!'=f x'"+ M il [3.6]
In this case and regarding [3.2c], the solution of [3.3] implies:

,def =M '[c° qu.xfo]_

If M is non-singular matrix then M -1 exists, the following results are obtained:

d cx .
B =M that identifies completely the controlier and

0 0 1.0 . ;
v, =¢, — [ x, , that identifies the state feedback.

REMARK. The initial state /1? _ ﬂd-",ﬂ can now be computed. This initial state can also be obtained

as the resolution of linear system [3.6]. The proposed control scheme guarantees that the trajectory
tracking condition [3.3] is fulfilled, nevertheless the global closed-loop system stability is not
guaranteed.

3.3 Conditions of existence of non-singular M (existence of M)

It is possible to note M = K.QQ with:

-1 -2 0 T : B
K=" h b g R QT = (@Y T (@) (@) T
M is a n x n square matrix. It is invertible if and only if:

Ker(K.Q)={0} which is equivalent to:
Ker(()={0} and Ker(K) N Im(Q) = {0}.

REMARK. If ¢= n, the number of sampling periods between two commutations is equal to a plant order
n. then K and Q' are respectively a plant controlability matrix and a controller observability matrix.
Generally the matrix M ' does not exist if g<n.

3.4 Architecture

The Figure 3 shows the control architecture. The feedforward part of the control configuration is
sampled with #, sampling period. The feedback part is sampled with T, period in order to generate /1,0 .
The controller initialisation procedure at commutation time is marked with a point.
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Figure 3. Sampled-data plant tracking architecture
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3.5 Numerical example

3.5.1 Introduction
A plant is defined as follows:
x'=Ax+ Bu ,with:
0 | 0
A= .B = i
2 ~1 2
This plant is the same as one presented in [8]. The plant sampling with £, period leads to

f= el and p = rt"i“““”.B.dr .
. h

Moreover let define T,= 1s.

The piecewise continuous bi-sampled controller is then defined by:

_ g4 139 83 .005 10
_o4 863 58.156 "7 T |10

o =

The state trajectory to track is defined as follows:

[ 017 *2 +2.5%¢° =10 *1+ 10
C(!): 5
—0.51 1" +5*1-10

I'he matrices M ', fand /r are obtained by the symbolic math. calculus and by assigning then to couple
{t,:q} different values satisfying ¢.t.=T,=1s. The numerical couples that have been tested are: §2:0:5] «
14:0.25} and {20:0.05].

3.5.2 Performances

The numerical simulation results are given in Figures 5a, b and c. In order to simplify the presentation and the
comparison we have plotted on the same graph, the system response and the desired state trajectory T delayed.
wii)=c(i- T,). The values at commutation moments are plotted as inversed triangles. It is evident that the
tracking is realized at commutation moments. On the other side. between two successive commutations the
global control system is functioning in open loop configuration and its dynamics depends on «. 7 and ¢. The
consequence of this open-loop control is the intersample ripple between commutation moments. In our
numerical example the intersample ripple does not exist for g = 2. Nevertheless, for ¢ = 4 and 20, very
important intersample ripples are observed. As expected. the control signal shows jumps at commutation
moments and the magnitude of the control increases with the increase of g.

In the next section. we will introduce the control that enables the ripple reduction between
commutations. This control is based on the same principle as piecewise functioning systems and exploits
their properties.

4. Ripple reduction

In this section the previous tracking problem is completed with the additional constraint in order to
minimize the error state-desired state trajectory between com mutations. The optimal control based on
the principle of Pontryagin [10] is used to achieve the new objective. Therefore. the bi-sampled
controller using two control spaces defined in section 2. will be designed.
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4.1 Controller design

4.1.1 Cost criterion

The cost criterion including the additional constraint for the piece @, is defined as follows:

. =é—*§[(c,"l —xt )l - xkY +afT‘G-af][4.1]

k=0

In this expression the matrices £ and G are symmetric positive definite with appropriate dimensions.
The cost criterion r minimization assures the reduction of intersample ripple and the control magnitude
maoderation. Following the optimal control theory the corresponding Hamiltonian is denoted as [11]:

H=2S [t et stV ool Gt |5 A [t ]
k=0 k=0

in this expression A; is the nx I Lagrange multiplication vector. The principle of Pontryagin leads to:
T

. 1

47 = _1‘3.(0:“‘, =X ¥+ of A5 and
-1 7 :

a'=G h A 4
therefore:

k41 HESLPY; £ el k k
AT =) AL +(f ) Efcl,-xF) 3

4.1.2 Comprehension

The equations {4.3] and [4.2] can be interpreted respectively as the siate equation and the output

. . ; . . [ k p g
equation of bi-sampled system for the piece @,. Thc system input is (C,_l = X; ) that defines a unit gain
feedback.

- q
The value of 4 ? has to be determined in order to satisfy the first tracking objective (X; = C;
equation [3.3]).

4.2 Computation of 1 '

To compute /1? , the augmented system has to be designed using equations [3.1a], [4.2] and [4.3]:

k+l Tk
i+ A

=H| + K.cf‘_l .[4.4)
e+ k
A : A

i

X

With:

it B i e o5
H =1 -

| (~(f ) -E] -(f )
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W™ oF ) E
=

(f ) E

The resolution gives the following solution:

q 0 =
[xf } B H"{x' }* ik HTK SR S N T

A4 2

Finally let note:

.0
]
C) ® q I C}—l
L 21=-H and L }:[Hq—].K---Hq_z.K---HU.K] » s
9, Oy b Ui
Lol
These lead, for X,g . to following result:
q [\

0 0 2 —
xI =0 ,.x; + @, .4; + I, and we want to achieve X, =6,

Thus, the initial condition for bi sampled controller is:

ﬂ'? = ®|_21 lC? —@)“.x? —Ih][47]
4.3 Outline

If @,, non singular, the bi sampled controller is completely defined by:

i o T -l
a= (f7 ) 'and B =S ) E, following the equation 4.3,
=" T
y=G ‘h . following the equation 4.2 and
d
p = @l_zl , following 4.7.

: 0 0 0 T
Therefore, the expression V; = lcl -0,.x; - lh] contained in 4.7 expresses the feedback at

commutation moments.

4.4 Conditions of existence of non-singular (>

In the case if g tends toward infinite value and if the product ¢.1. remains finite equal to T, it is possible
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to express the geometrical condition of existence of the non-singular matrix ©®,, [6]. In the case when ¢

is finite value there is only numerical condition of non-singular @, existence i.e. det(®,,) = 0.

4.5 Tracking architecture with intersample ripple reduction

The architecture of the tracking system with intersample ripple is given in the Figure 4.

(7
0
ot ] 1 Y \.____
1z -__.
A (r,)
A p . G
* A, :! uf
" i P B el p kg b
| AT T B bl GT ] =S H
Flant
Conrrolfer '

K_ ok & ' .
U, =¢ | —X; 'F\f ¢ I;]

Figure 4: Tracking architecture with intersample ripple reduction

The block X(:) is defined following the equation 4.6. It is important to note that the controller has two
inputs /1? and u,k fitting with two time scales that are defined using 7, and . The procedure of

controller initialisation at commutation is marked by a point.

4.5 Numerical example

We have used a plant defined in previous numerical example with the same trajectory to be tracked and
the same couples {g, 7.} in order to compare performances of two different tracking strategies.

We have noticed that for the couple {2:0.5}. there is no difference between two tracking strategies (dead
beat control in two cases). On the other hand, for the couples {4;0.25} et {20 :0.05}, the tracking with
intersample ripple reduction reduces strongly the oscillations between the moments of commutation. In
addition the second tracking strategy makes it possible to obtain a control signal of lower magnitude
without strong discontinuities at commutation moments.
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Plant state

Za

L Traiectorv to track
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Figures 5-a, b, c. Discrete time tracking
5-a: q=2,t=0.5s., T=1s.
5-b: g=4, t=0.25 s., T=1s.
5-¢: g=20, t=0.05 s., T.=1s.
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For very large values of g satisfying

defined in [6] for both tracking (Figure 7.) and ripple free tracking (Figure 8.)
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Figure 7: Continuous time tracking (T=1 s. |8])
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Figure 8: Ripple free continuous time tracking (T=1 s. [6])
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Conclusion and future investigations

The study given in this article is the continuation of our works on the piecewise functioning systems presented
in [8]. Two time scale introduction for bi-sampled controllers, based on piecewise functioning systems, leads to
a specific formalism enabling the definition of ¢ parameter where g=T/i.. Thus, interesting perspective
appears concerning the possibility to control ¢ and commutation moments in the same time. This possibility of
g control can be interpreted as a new degree of freedom in the system control. For instance, we can plan to
control ¢ following exponential decreasing low (until ¢=1) in order o reduce the tracking time delay to 1,.
Another advantage: the bi-sampled formalism can be easily implemented in real time. Finally this tracking

strategy can be applied also to non linear plants.

On the other side a state observer design based on our piecewise functioning systems in the case when
only a part of the state vector can be measured is one of our future objectives including also a study of

the disturbed plant state case.
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