A Valid Algorithm for Judging Liveness of Marked -
Graph'

HanYaojun, Jiang Changjun

Dept. of Computer Sci. and Eng., Tongji University, Shanghai, 200092
College of Inf. & Electrical Eng.,Shandong University of Sci. & Tech.. Jinan.256031

(Email " gjjiang@online.sh.cn)

Abstracts: An algorithm for judging liveness of marked graph is presented in this paper. A proof of correctness and a valuation of

complexity for the algorithm are also given. The result shows that the al gorithm is of polynomial complexity, hence it is a valid algorithm.

Keywords: Marked Graph, Liveness, circuit, Algorithm

1. Introduction

Liveness of Petri net is one of the earliest properties in net theory. The judgment of liveness for general Petri
net has not been resolved so far. But many researchers gave the sufficient and necessary conditions of
Jjudgment of liveness for some subclasses of Petri net such as marked graph (also called T-graph), S-graph, free
choice net and weighted T-graph[1][2]. Tadao Murata[1] gave the sufficient and necessary corditions : a
marked graph is live iff M, places at least one token on each directed circuit in G. However, it takes much
more time to find all circuits according to [1]. Can we only find a few circuits in G to Jjudge the liveness of
marked graph? Tadac Murata[1] didn’t give the algorithm to do it. This paper presents a valid algorithm. We
needn’t find all circuits in G to judge the liveness of marked graph with the algorithm. First, the input arcs and
output arcs of places that have at least one initial token are deleted from G. Then, we can determine that the
marked graph is not live as long as there exits one circuit in deleted G according to [1]. Otherwise, the marked

graph is live. The algorithm greatly reduces the time to find circuits in G.

2. Related Concepts and Conclusions

We assume the reader is familiar with basic concepts and properties of Petri net[1][3]. However, in this

section we provide some basic concepts and conclusions to be used.

Definition 1. Let N=(P.T;F) is a net. For xe PUT,

*x={yePUT|(y,x) €F}

x*={yePUT|(x,y) €F)

are called the pre-set and post-set of x respectively.

Definition 2. N=(P,T:F) is called marked graph iff every place p has exactly one input transition and

exactly one output transition. i.e.

VpeP'pHp=

I This research is supported by the National Natural Science Foundation of China

Studies in Informatics and Control, Voi.11, No.2, June 2002 199

A marked graph (N, M) can be drawn as a marked directed graph (G, M) for each place of marked
graph has exactly one incoming arc and exactly one outgoing arc with unit weight, where arcs correspond
to places , nodes to transitions, and tokens are placed on arcs.

Definition 3. Let N=(P,T;F) be a Petri net. The incidence matrix A of N is an mxn(m=|P|,n=|T|) matrix of
integers and its entry is given by
1 if pieti-"t;
0 otherwise

When a Petri net is pure, the Petri net corresponds to its incidence matrix. The net discussed in the paper is supposed
to be pure net. Every row of the incidence matrix corresponding to marked graph has exactly two nonzero elements

because every place ot marked graph has exactly one input transition and exactly one output transition.

Conclusion 1. For a marked graph (G, M), the token count in a directed circuit is invariant under any
firing, i.e., M(d)=M(d) for each directed circuit ¢ and for any M in R(M) . where M(dJ)

denotes the total number of tokenson 4 .

By conclusion 1, if there are no tokens on a directed circuit at the initial marking, then this directed circuit remains
token-free. Thus the nodes on this directed circuit will never be enabled. On the other hand, if a node is never enabled by
any firing sequence, then by back-tracking token-free arcs, one can find a token-free directed circuit. Therefore. we have:

Conclusion 2. A marked graph (G, M,) is live iff M, places at least on token on each directed circuit in G.

3. Algorithm for Judging The Liveness of Marked Graph

3.1 Data Structures Used in the Algorithm
(1) mx2(m=|P)) matrix: zran. The first column of rran stores the serial numbers of successor transitions of all

places. For example, if ¢, is a successor transition of place p,. then tran[i,1]=j. The second column of

tran is used during finding circuits. If place p, is visited, then tran[i,2]=1,otherwise tran[i,2]=0.
(2) n-linked list(shown in Fig. 1). First is an array of head of [ist. It is used to store the first node address
of every linked list, where the field place stores the serial numbers of successor places of transition

1, (sorted in ascending order). For example, if p, is a successor place of transition 7, then there is

a node that stores the serial number i of place p, in the linked list 7.

First place link

I
o S
Ep T

Figure 1

200 Studies in Informatics and Control, Vol.11, No.2, June 2002

(3) m-vector: mark. It is used to store initial tokens.

(4) stack: /1. It is used to store the serial numbers of transitions visited during finding circuits.

3.2 Fundamental Idea of the Algorithm

First, the algorithm deletes the input arcs and output arcs of places with at least one initial token from

marked graph. Namely, if M (p,)>0 and 1, Is the successor transition of place p, then let tran[i,1]=0

and delete node that stores the serial number i of place p; from the linked list t;.Then, for every place

p, that tran[i, 1] 0, the algorithm finds directed circuit by the way of breadth-first search in ascending
order of the serial numbers of places. The marked graph is not live as long as there exists one circuit in
deleted G. Because the input arcs and output arcs of all places with at least one initial token are deleted
from G, the marked graph is not live according to conclusion 2. The algorithm ends. If there is not any
directed circuit in deleted G, the marked graph is live.

The process of finding directed circuit is given as follows.

For 1<i<n, if tran[i,1]# 0 and tran[i,2]=0, then let tran[i,2]=1 ~ According to the value of tran|i,1](i.e. j--the

serial number of successor transition 7 , ofall place p,). locates the linked list t, . If the address of the first
node of the linked list is not empty, then push j of the serial number of transition ¢, into stack It. Then locate

the kth element of tran according to the value of field place of first node of linked list 1, (supposed k). Repeat

the above process. At last, there exist two cases: the first case is tran[k,2]=1, which shows that a circuit is
found, and the algorithm ends. The second case is that the address of first node of some linked list is empty,

which needs to go back to previous transition. Pop the serial number of transition {; out stack It, then locate

next node of the linked list ¢, , and repeat above process till stack It is empty. It is shown that place p, isnot
- on the circuit. Repeat the above process for the next element of tran till the algorithm ends either in the first

case(the marked graph G is not live) or when i>m(the marked graph G is live).

3.3 Description of Algorithm

Stepl. For 1<i<n, if mark[i]>0, then let J=tran[i.1]. tran[i.1]=0, and the node storing the serial number of

Place p, from linked list f.
Step 2,

(1) Leti=1:
) Ifi>m , then print “The marked graph is live” and the algorithm ends, else go to(3);

|(3) Iftran[i.1]=0 or tran[i,2]=1, then let i=i+1 and go to (2),else goto (4):
(4) Let k=i;

_(5) If tran[k,2]=1, then print “The marked graph is not live™ and the algorithm ends, else go to(6);
(6) Let tran[k.2]=1;

Wdies i Informatics and Control, Vol.11, No.2. June 2002 201

(7) Let j= tranfk,1];

(8) Let s=first[j];

(9) If s=NIL, then go to(10), else let k=s T .place , push j into stack It and go to(5);
(10)If stack It is empty , then let i=i+1 and go to(2), else go to (11);

(11)Pop the number out stack It into j. Let first[j]= first[j] T .link;

(12) Let s=first[j]. Go to (9).

4. Proof of Correctness and Analysis of Complexity of Algorithm

4.1 Proof of Correctness of Algorithm

Theorem 3. Let N<P,T:F, M ;) be marked graph. Then algorithm 3.3 for judging the liveness of marked graph is correct.

Proof. Step 2 of algorithm 3.3 is obviously correct according to conclusion 2. It is only necessary to
prove the correctness of step 1 of algorithm 3.3, i.e., after the input arcs and output arcs of places with at

least one initial token being deleted from G, conclusion 2 also holds.

The places with at least one initial token are in the two cases. First, they are on the directed circuits. Suppose
these directed circuits are found. The purpose in deleting the input arcs and output arcs of places with at least
one initial token is to avoid finding this directed circus again. So, to delete the input arcs and output arcs of
places on the directed circuits with at least one initial token does not destroy the condition of conclusion 2.
Second, they do not lie on any directed circuit. According to conclusion 1, if there are no tokens on a directed
circuit at the initial marking, then this directed circuit remains token-free. Thus, initial tokens of places that do
not lie on any directed circuit do not flow into the directed circuit with any initial tokens. Therefore, deleting
the input arcs and output arcs of places with at least one initial token that do not lie on any directed circuit does

not destroy the condition of conclusion 2.

4.2 Analysis of Complexity of Algorithm

Theorem 4. Let N=(P,T;F, M) be marked graph. Then time complexity of algorithm 3.3 is O(m*+n),

where m=|P|,n=[T|.

Proof. In step 1, the algorithm does m comparisons for the elements of array tran and at best m assignments. For
every place p, with at least one initial token, the algorithm does at best m-1 comparisons when deleting the

serial number of place p, from linked list 7, . So the time of step is O(m?).

In step 2, the algorithm does m +n comparisons when finding circuits, n-1 push operations and pop

operations. So the time of step is O(m+n). Therefore, the time complexity of algorithm 3.3 is O(m*+n).

5. Example

Example 1. A marked graph is given in Fig. 2 below, where m=8,n=4 and M =(1,1,0,0,0,1).

The initial states of array tran, linked list and stack /1 are given as follows.

202 Studies in Informatics and Control, Vol.11, No.2. June 2002

First place link
t =N EE

ts 7 . 81 .
ts 6 : """'

(RS R VS IR PRI S
CcCooooooo

L

array tran linked list stack /1

The process of resolving the example is given as follows according to algorithm 3.3.

Step 1. Since M (p,)= M, (p,)=M,(pg)=1>0, the input arcs and cutput arcs of places p,, p, and p,
are deleted from the Fig. 2, i.e. let tran[1,1}=0,tran[2,1}=0 and tran[6,1]=0, and delete two nodes from linked list ¢ p

and one node from linked list £, . The states of array tran, linked list and stack /¢ are given as follows after step 1.

0 O
0 0
2 0
30
30
00
4 0
2 0] —>
array tran linked list stack It

Step 2. Finding a directed circuit in deleted G.

(1) Leti=1. Since tran[1,1]=0, let i=i+1 and go to (2);

(2) Since tran[2,1]=0, let i=i+1 and go to (3);

(3) Since tran[3,11=2#0 and tran[3,2]=0+#1, go to (4);

(4) Let tran[3,2]=1 . Locate linked list ¢, . Go to (5);

(5) Since first[2]=NIL and stack It is empty, let i=i+1 and go to (6);

(6) Since tran{4,1]=3#0 and tran[4,2]=0#1, go to (7);

(7) Let tran[4,2]=1> Locate linked list ¢,. Take the value 7 from field place of first

node of linked list 7; and assign to k. Push the serial number 3 of transition ¢, .

into stack lt(the state of stack It is shown in Fig on the right.). Go to (8); -
(8) Since tran[7,1]=440 and tran[7,2]=0+#1, go to (9); The staie of It after (7)
(9) Let tran{7,2]=1. Locate linked list 7,. Go to (10);
(10)Since first{4]=NIL and stack It is not empty , pop 3 out stack It and go to (11);
(11)Move the pointer of linked list 75 into next node. Take the value § from field place of second node

of linked list 7; and assign to k. Push the serial number 3 of transition 7, into stack It. Go to (12);
(12)Since tran[8,1]=2#0 and tran[8,2]=0+#1, go to (13);
(13)Let tran[8,2]=1. Since first[2]=NIL and stack It is not empty , pop 3 out stack It (the states of tran,

linked list and It is shown in following Fig.) and go to (14);
(14)Move the pointer of linked list ¢, into next node. Since the node that pointer points is the last node

of linked list ¢5, the value of pointer is NIL. Since stack It is empty , let i=i+1 and go to (15);
(15)Since tran[5,1]=3#0 and tran[5,2j=0¢1, go to (16);

Studies in Informatics and Control, Vol.11. No.2, June 2002 203

NbhEODWWNO O
—— D D — OO

—

r

array tran linked list stack It

(16) Since first[3]=NIL and stack It is empty , let i=i+1 and go to (17
(17)Since tran[6,1]=0, let i:=i+1 and go to (18).

(18)Since tran[7,2]=1, let i=i+1 and go to (19):

(19) Since tran[8,2]=0, let i=i+1 and go to (20);

(20)Since i>8, the marked graph given in Fig. 2 is live and the algorithm ends.

REFERENCES

(1) T. MURATA, Petri Nets: Properties, Analysis And Application , Proceeding of IEEE, 1989.

(2) XU ANGUO & WU ZHEHUI, Analysis of Liveness for Weighted T-graph, J. Software, 1993 (12).

(3) J. L. PETERSON, Petri Net Theory and the Modeling of System, Englewood Cliffs, New Jersey,
Prentice Hall, Inc.,1981.

(4) WU ZHEHUI & JIANG CHANGJUN, The Algorithm for converting Reachable Graph to Net
Graph for Bounded Petri Net, J. Software, 1992(1).

(5) C.JJIANG, S.G.SHU & Y.P.ZHENG, Logical Properties Analysis and Stochastic Performances
Estimated of Petri Nets Under Restrictive Concurrent Machine, Acta. Auto, 4 (1996).

(6) C.JJIANG & Z.H.WU, Two Fast Algorithms for Matrix Multiplication and Vector Convolution,
[nt. J. of Comp. Math., 1(1997).

(7) C.LJIANG, et. al., Replacement Operation of Petri Net and Its Application in Systems
Hierarchical Modeling.[J. of Syst. Sci. & Syst. Eng.], 1(1998).

(8) C.JJIANG et. al, A Method to Detect the Abnormal Phenomenon in PVYM Program Based on
Petri Net, J. of Syst. Sci. & Syst. Eng., 1 (1999).

(9) H.Q.WANG, C.JJIANG & S.Y.LIAO, Behaviour Relations in Synthesis Process of Petri Net
Models, IEEE Trans. on RA, 4 (2000).

(10)C.J.JIANG, Testing of Functions of Complex Systems Based on Synchronous Composition Nets,
Studies in Information Control, 4 (2000).

(11 H.Q.WANG, C.J.JIANG & S.Y.LIAO. Concurrent Reasoning of Fuzzy Logical Petri Nets Based
on Multi-Task Schedule, [EEE Trans. on Fuzzy Syst., 3 (2001).

(12)C.J.JIANG, A Polynomial-time Algorithm for the Legal Firing Sequences Problem of A Type of
Synchronous Composition Petri Nets, Science in China (Series E), 2 (2001).

(13)Y. Y. DU, C. J. JIANG, Formal analysis of an online stock trading system by temporal Petri
nets, In: Proc. Int. Workshop on Computer Networks and Mobile Computing (published by IEEE
Computer Society Press). Oct. 2001, Beijing, China.

(14) Y. Y. DU, M. Q. ZHAO, C. 1. JIANG, Study on method of Petri nets for stock trading systems,
In: Proc. Int. Workshop on IFAC-CEFEES, Oct. 2001, Tianjin, China.
(15) C.JJIANG, PN Machine Theory of Discrete Event Dynamic Systems, Science Press of China. Beijing, 2000.

204 Studies in Informatics and Control, Vol.11, No.2. June 2002

