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1. Introduction

Recently, machine learning (ML) has changed 
the focus and application of its techniques.  More 
and more attention shifts from off-line mining of 
static data towards ubiquitous mining and real-
time applications dealing with data represented 
by streams. Data streams refer to a procedure in 
which examples occur continuously and possibly 
indefinitely through time (Kosina & Gama, 2013; 
Kok et al., 2019). Data stream mining is a chunk of 
machine learning that entails analyzing and 
building a prediction or classification algorithm 
on the basis of data flows that are continually 
growing as time series. In terms of objective, data 
stream mining is similar to traditional data mining 
but it is extremely different in terms of processing 
or executing the mining work (Fong et al., 2018; 
Krawczyk et al., 2017). The underlying challenges 
of infinite high-speed data streams are the cause of 
this difference. It renders traditional data mining 
algorithms and techniques incapable of properly 
processing data streams, needing the development 
of streaming data mining algorithms (Prasad & 
Agarwal, 2016). Various data stream mining 
tasks exist such as data stream classification, data 
stream clustering, and so on. This study will focus 
on multi-label data stream classification because 
it is the top highly used kind of data mining and a 
popular research area. 

Classification is a method of classifying unknown 
data that usually involves two steps: training 
a generic model with known attributes and 
associated labels from a training data set, and 
then using the taught model to expect the labels 
of new data instances. Several data stream mining 
researches have been published lately introducing 
the specifics of a variety of data stream algorithms. 
The Very Fast Decision Tree (VFDT) is one of the 
supervised learning algorithms that can be applied 
to both classification and regression problems 
(Ibrahim & Abdulaziz, 2020), being the most 
commonly used algorithm in DSM Classification 
that extends the Hoeffding tree algorithm. It works 
well with convection data, and it is much better 
than traditional classification methods in terms of 
speed and accuracy but it wastes a huge amount of 
energy on trivial calculations (Zheng et al., 2019). 

This work proposes a hyper model to reduce the 
overuse of algorithm’s energy. The parameters 
of the algorithm should be improved for the 
energy saving. When some parameters are fixed, 
the algorithm calculates unnecessary operations. 
Therefore, the algorithm wastes energy on making 
such operations. So, the paper proposes dynamic 
parameters instead of the fixed ones to enhance 
Hoeffding tree parameter adaption and reduce the 
overuse of energy. Energy (joules) is the product 
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of power (watts) and time (seconds) as shown in 
Equation 1 (García-Martín, 2017).

(1)Energy Power Time= ×        (1)

The paper is organized as follows. The 
VFDT  algorithm and relevant researches are 
discussed in Section 2. Section 3 presents the 
theoretical hyper model of enhanced VFDT 
(E-VFDT). Section 4 presents experiments and 
results. Finally, Section 5 provides the conclusions 
and prospects for a future work.  

2. Background and Related Work

2.1 VFDT

The algorithm under discussion is the VFDT. It is 
an online decision tree algorithm that can assess 
data from a flow, upgrade the model when fresh 
examples come, and read data only once (García-
Martín, 2017). The instances are read one by one 
by the algorithm which sorts the proper leaves and 
changes the statistics for those leaves. To keep 
the statistics updated, the algorithm keeps a table 
with the observed attribute of each node. Each leaf 
saves the examples that have been observed so far 
(García-Martín et al., 2018).

The algorithm is used to determine the 
information gain ( )G  for all the observed features 
after reading the minimum number of instances 
( min)n  at that leaf. Let ( )G X i  be the heuristic 
measure of attribute X i . 1X  is the attribute with 
the highest (.)G , and 2X  is the attribute with 
the second-highest (.)G . G∆  is the evaluation 
function which can be information gain, Gini 
index or gain ratio ( ) ( )1 2G G X G X∆ = −  
(Domingos & Hulten, 2000).

The difference in information gain between the 
best and the second-best feature is compared to 
the Hoeffding Bound ( )ε  after calculating it in 
Equation 2. If G ε∆ > , a node will replace that 
leaf, and the best feature will be split. That feature 
is abolished from the list of features which can 
be used to split that branch (García-Martín et al., 
2018). If G ε∆ < , it signifies that the highest and 
second-highest (.)G  are not significantly different, 
and the process is stopped in a tie condition. When

G∆  is very low, a tiebreak hyper parameter ( )τ  
is inserted to assist tree construction. This is 
accomplished by determining if G ε τ∆ < <  is 
true while neglecting the ε  condition G ε∆ >   
(da Costa et al., 2018). Because the two highest 

features have extremely comparable information 
gain values, the split can take place on either of 
them (Yang & Fong, 2011; Masrani et al., 2021).

12 (
(2)2

R In
n
δε =   (2)

where

n : number of independent observations of real-
valued random variable r.

r : random variable whose range is R.

1 δ− : Confidence level, where δ  is the defined user.

δ : is one minus the probability of selecting the 
correct attribute at each node.

When the parameters of the algorithm change, 
evaluation metrics like accuracy and energy 
change as well, as it will be explained in 
the practical part. The parameters that will 
be altered include, split criterion, and bad 
attributes elimination. The minn  parameter 
defines the minimum number of examples 
the algorithm must watch before computing 

, ,G G butε τ ε τ∆ < ∆ < >  if there are sufficient 
statistics for a good split; the default value is 
200. The parameter τ  identifies the parameter 
that will be utilized to break a tie in the event 
of a tie. When the difference between the two 
features is small enough, it suggests that both are 
equally good, therefore waiting a long time for 
more instances to make a split is pointless. The 
δ  parameter denotes one minus  the likelihood 
of selecting the correct feature to be split. The 
researchers’ default split criterion is information 
gain, and the Gini index was also tested. The 
last parameter to be changed is the removal of 
poor attributes (RPA). This parameter examines 
feature performance in order to identify features 
that perform badly and are unlikely to be picked 
for further splitting (García-Martín et al., 2017a).

2.2 Related Work

A lot of research work was done into improving 
the VFDT in various ways. A Moderated VFDT 
(M-VFDT) was proposed by Yang & Fong 
(2011), which uses an automated tie threshold to 
manage node splitting. The tree building approach 
is as quick as the native VFDT. The research 
presented two pre-pruning strategies for stream 
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mining, namely stringent and loose pruning, to 
deal with the exponential growth of tree size. 
Experiments are carried out to test the efficacy of 
their innovative methods. The M-VFDT with the 
pruning mechanism consistently outperforms the 
native VFDT.

Kourtellis et al. (2016) introduced the Vertical 
Hoeffding Tree (VHT) as the first streaming 
technique for learning decision trees that may be 
used to conduct classification tasks on such massive 
data streams reaching at high rates. VHT distributes 
decision trees in a unique way by utilizing vertical 
parallelism (Kourtellis et al., 2016).

García-Martín et al. (2017a) highlighted energy 
usage as a crucial component to consider when 
analyzing and testing data mining algorithms. This 
is backed up by an academic and practical analysis 
that shows how to construct efficient algorithms 
(García-Martín et al., 2017a). The same team 
looked at energy usage and tried to figure out 
why it was so high. They also conducted a fine-
grained examination of the functions that utilized 
the most energy, helping in the understanding of 
that usage (García-Martín et al., 2017b). They 
also offered automated parameter adaptation in a 
different study to trade-off energy savings versus 
accuracy over runtime, and they provided the 

minn  adaptation method to enhance parameter 
adaptation in Hoeffding trees. This approach saves 
energy by dynamically altering the number of 
examples required to make a split (García-Martín 
et al., 2018).

The Strict VFDT (SVFDT), a new approach 
that relies on the VFDT, was suggested in 
the research made by da Costa et al. (2018). 
By avoiding unnecessary tree construction, 
the SVFDT approach minimizes memory 
usage while retaining competitive prediction 
performance. SVFDT has also a faster processing 
time in comparison with VFDT since it builds 
considerably more shallow trees. 

Losing et al. (2018) improved the efficiency of 
the algorithm, which seeks to split every minn  
instances on a regular basis. They used local 
statistics to estimate the split-time, minimizing 
superfluous split-attempts which are frequently 
the most expensive part of the computation. In 
practice, the algorithm uses the class distributions 

of previous split attempts to estimate the minimum 
number of instances until the ε  is satisfied 
(Losing et al., 2018).

The research work of Jia (2020) presented a 
technique for reducing the impact of concept 
drift and network noise by integrating the VFDT 
categorization mining method with the sliding 
window technique. According to test results, the 
method can successfully improve the accuracy of 
flow data categorization mining.

3. Theoretical Hyper Model of 
Enhanced VFDT

The high energy consumption is one of the most 
important problems facing the conventional 
techniques of the original algorithm. On the basis 
of the previous specialized works (Garcia-Martin 
et al., 2018; Garcia-Martin et al., 2021) it was 
found that some scenarios consume the greatest 
amount of energy. Therefore, the model proposed 
in this paper aims to solve this problem by using 
dynamic parameters in these scenarios for the 
algorithm that increases the energy consumption. 
This study discusses a fresh upgraded copy of 
the VFDT that covers various scenarios and the 
optimal method minimizing the energy for each 
of them. The first scenario is that when G ε∆ >  
and the second scenario is that when G ε∆ <  and 
that contains two different cases. The first case 
implies that ,G but Gε τ∆ < ∆ >  and the second 
one implies that , ,G G butε τ ε τ∆ < ∆ < >  

minif n n
i

≤ .

3.1 E-VFDT with RPA Parameter 

In the first scenario, if G ε∆ > , the leaf is 
replaced with a node. In this case, RPA may be 
used to improve accuracy while lowering energy 
utilization, and so minimize some VFDT functions 
that require far more energy while maintaining 
the high accuracy by deleting only unnecessary 
computations (García-Martín et al., 2021).

RPA analyses feature performance in order to 
identify bad  features that are unlikely to be 
chosen for further split. Because the information 
gain from all the features is evaluated in each 
split, the attribute X i  is discarded if its value is 
lower than the information gain of the best feature 
by more than ε G(Xa) − G(Xi) ≥ ε. This strategy 
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should level up accuracy while limiting the amount 
of computations, by decreasing  the number of 
operations required to calculate the information 
gain for all attributes (García-Martín et al., 2017b).

3.2 E-VFDT with Adaptive  
Tie Threshold

The second scenario  is when G ε∆ < . In 
this situation, reducing energy usage without 
sacrificing accuracy involves resolving the source 
of greater energy expenditure in each case.

The first case in the second scenario  implies 
that G but Gε τ∆ < ∆ > . It indicates that 
estimating the operations connected to carelessly 
splitting the method leads to a leveling up in the 
energy usage of the algorithm. To maintain the 
tree growth under control, the standard VFDT 
requires a user-defined tie threshold where a 
split would just be forced to break. The tree 
size  extends  significantly when more data 
is flowed, and the accuracy of the classifier 
declines. Thus, the perfect constant tie threshold 
value cannot be found. As a result, for node 
splitting control, a dynamic tie threshold has to 
be utilized.

The study uses a dynamic tie threshold equal to 
the mean of ε  as seen in Equation 3, which is in 
charge of node splitting during the tree-building 
process. When fresh data is received, the ε  
mean is dynamically computed and updated. 
Because ε  must be estimated in any situation, as 
demonstrated in the following equation, it costs 
only a few more resources and τ  is changed in 
accordance with the ε  mean value.

1
1

( ) 11 (3)
1

K ii
kKk

K i ki
K

ε
τ τ

ε ε

∑ == ⇒ +

+∑ +==
+         

(3)

When ε is customized with the fresh data, the new 
τ is refreshed. With this new method, a dynamic 
τ whose value is no longer defined by a single 
default number adapts, instead, to the incoming 
examples and ε means. So, the energy is decreased 
without loss of accuracy as the experimental 
results will demonstrate. Algorithm 1 shows the 
pseudocode of the execution of the E-VFDT with 
the adaptive tie threshold.

Algorithm 1. The E-VFDT with adaptive tie threshold
Input: 
         S : the stream of instances
         ε : Hoeffding bound (HB)      
         δ : the error probability 
         HT : Tree with a single leaf (the root) 
         X (.)G : set of attributes 
         (.)G : split evaluation function 
         τ : the tiebreak parameter set by the user
         kτ : adaptive tie threshold
Output: 
          Enhanced Very Fast Decision Tree
Procedure:
1. Begin
2. While stream is not empty do 
3. Read instance I i  from S  
4. Sort I i  to corresponding leaf L  using HT
5. Update statistics at leaf L
6. Increment in instances seen at leaf L  
7.   	  minif n n

i
≤  then

8.   	   Compute ( )G X i for each attribute X i
9.   	   Calculate (.) ( ) ( )G G X G Xa b∆ ← −
10. 	   Compute ε
11. 	   Compute ( ) ( )sum I sum Iε ε ε← +
12. 	   Compute ( ) ( ) / ( )Mean I sum I Count Iε ε←

13.  	   ( )If G OR G Mean I thenε ε∆ > ∆ ≤
14.  	  	  Split on best attribute X a  and 
Replace L  with a node.  
15.  	  	 for each branch of the split do
16.  	   	 Update new leaves

 	 New leaf Lm  with initialized statistics
17. 	  	 End for
18.  	   Else If G but Gε τ∆ < ∆ >  then

19.  	  	  Calculate kτ  corresponding to the 
value of mean ε
20.                   End if 
21.  	   End if
22.  	 Else 
23. 	   Do not split	
24. 	   Do not update HT         
25.  	 End if         
26. End while
27. End procedure

3.3   E-VFDT with Adaptive nmin

The second case of the second scenario implies 
that ,G G butε τ ε τ∆ < ∆ < > . Despite the 
reality that DSM algorithms adjust the modeling 
approach based on the observed  examples, the 
parameters of these algorithms are fixed from 
the beginning. Fixed parameters can make an 
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algorithm to work improperly, thus  utilizing 
extra computational resources and contributing to 
rise energy usage. Dynamic parameter adaptation 
for data stream mining algorithms is described in 
upgraded E-VFDT to trade-off energy efficiency 
versus accuracy throughout runtime. As previously 
stated, the algorithm needs to observe the minn  
number of instances  before calculating ε  in 
order to determine if there are enough statics for 
a successful split. Because minn  instances are 
insufficient to create a reliable split in this situation, 
it is crucial to wait for further instances to decline 
ε and become lower than τ . In an opposite way, 
when minn  is too high, the split attempt duration 
is prolonged and it is more probably to miss the 
optimal splitting time, leading to a long split-delay 
that slows the growth of the tree and degrades 
accuracy (Sun et al., 2020).

Computing the procedures relevant to splitting 
in an improperly way leads to level up the level 
energy of the algorithm. In this situation, adaptive 

minn  is required to degrade energy usage as a 
fixed value of minn  indicating that VFDT is 
not changeable to the properties of the data. It 
implies  that minn  is the same  throughout the 
flow of data (García-Martín et al., 2018).

To clarify  the  established way, the minn  
adaptation method which is calculated in 
Equation 4 is utilized in order to  improve the 
adaptation of the parameter in Hoeffding trees.  
Hoeffding tree algorithms figure out if a node 
seems to have enough minn  instances to 
create a reliable split. Based on those minn  
instances, they estimate the information gain of 
the features and see whether there is a feature 
that obtains the most information gain. 

However, because the minn  is fixed, if such 
examples are inadequate to accomplish a split, 
the algorithm wastes a lot of energy on such 
processes. The idea behind minn  adaptation is 
to adjust the number of minn  depending on the 
observed data, guaranteeing that the algorithm 
computes the best features only if there is a split 
to degrade energy usage and run time by relying 
on the setting of minn  in this scenario. This 
reduces the processing required to calculate all 
of the information gain of the features, cutting 
energy usage (Garcia-Martin et al., 2018).

12 ( )
min (4)22

R In
Adaptive n δ

τ

 
 

=  
 
         

(4)

The number of examples required for a tie split 
is controlled by a parameter τ  which is defined 
through the ε . When ∆G < ε < τ, a tie-split is 
executed. In other words, after Adaptive minn  
instances, a tie-split is conducted. Specifically, 
the default parameter value is utilized to make 
sure  that the number of minn  watched by the 
algorithm is sufficient to generate a split with 
no  energy loss, as the empirical results will 
demonstrate (Losing et al., 2018). In Algorithm 
2 a pseudocode depicting the implementation of 
the E-VFDT with adaptive minn  is displayed.

Algorithm 2. The E-VFDT with a dynamic minn
Input:
         S : the stream of instances
         ε : Hoeffding bound
         δ : the error probability
         HT : tree with a single leaf (the root)
         X : set of attributes 
         (.)G : split evaluation function 
         τ : the tiebreak parameter set by the user
Output:
         Enhanced Very Fast Decision Tree
Procedure:
1. Begin
2. While stream is not empty do 
3. Read instance from S 
4. Sort I i  to corresponding leaf L  using HT
5. Update statistics at leaf L
6. Increment ni instances seen at leaf L
7. 	 minIf n ni≤  then
8. 	    Compute ( )G X i  for each attribute X i
9. 	    Calculate (.) ( ) ( )G G X G Xa b∆ ← −
10. 	    Compute ε
11.  	    If ( ) ( )G orε ε τ∆ > <  then
12. 	  	  Split on best attribute X a  and 
Replace L  with a node.
13. 	  	  for each branch of the split do
14. 	  	  Update new leaves,
 		   New leaf Lm  with initialized 
statistics
15.	  	  End for
16. 	  Else   If ,G G butε τ ε τ∆ < ∆ < >  then
17.	  	  Calculate adaptive minn
18.                    End if
19.	    End if
20. 	  Else
21. 		  Do not split
22. 		  Do not update HT
23. 	  End if
24. End while
25. End procedure
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4. Experiments and Results

4.1 Datasets

To conduct this experiment, six datasets were 
obtained, three synthetic datasets generated with 
Massive Online Analysis (MOA) (Domingos & 
Hulten, 2000) and three real-world benchmark 
datasets from UCI (UCI Machine Learning 
Repository, n.d.). The present paper aims to test 
the proposed algorithm by using datasets with 
different characteristic, because E-VFDT is 
sensitive to data changes.

First dataset is real-world dataset. This dataset has 
been selected since it is the same one that the VFDT 
researchers utilize in their tests, therefore it serves 
as a basis for usual performance of the algorithm. 
The dataset contains examples  attempting to 
forecast decent poker cards relied on a particular 
card. The other two datasets consist of real-world 
benchmarks, The first one is Forest Cover Type 
dataset and includes Predicting Forest Cover type 
from cartographic variables such as elevation, 
slope, and soil type. The second one is Spam 
dataset and determines whether an email is spam 
or not. The term “spam” refers to promotions for 
products and websites. 

The first synthetic dataset is the hyper plane 
dataset, it uses a function to generate data that 
follows a plane in several dimensions. This dataset 
is often used to test algorithms that can handle 
the “drift” concept. The random tree dataset is the 
second synthetic dataset that was created using 
MOA. The synthetic generator generated one 

million cases. The last synthetic dataset is the 
waveform dataset and involves the “drift” concept 
and noise.

The function generates a wave as a combination 
of two or three basic waves. The task is to 
differentiate between the three waves. Their main 
characteristics can be seen in Table 1.

4.2 Tool

For these experiments,  MOA (massive online 
analysis)  has been utilized  as a framework. It 
is also used to operate the VFDT with various 
parameter configurations, and it’s dependent on 
the WEKA libraries as well. The MOA framework 
runs in tandem with IPPET (Intel(R) Platform 
Power Estimation Tool), a tool that can estimate 
how many power multiple processes to use (Zheng 
et al., 2019; Joshi & Patel, 2018).

The environment for practical application in 
this research also includes a set of specifications 
for the device used in this experiment, which in 
turn affects energy-related calculations such as 
the operating system: Windows 7 professional 
64-bit (6.1, Build 7601), the processor: Intel(R) 
core (TM) i3-2350M CPU @ 2.30GHz (4 CPUs),  
2.3GHz, and memory: 4096MB RAM.

4.3 Parameter Choice

Table 2 depicts a summary of the parameter setting, 
the parameter configurations include index of the 
VFDT (IDX), minn , τ , δ , Split criterion (S.CRT) 
which contains information Gain (S1) and Gini 
index (S2), and Removing Poor Attributes (RPA). 
The parameters minn , S.CRT, and RPA were 
ranged from the default option to the maximum 

Table 1. Summary of the datasets used in the experiment

Datasets Name Type Instances Numeric features Binary features

1 poker Real world 1,025,010 5 6

2 Cover Type Real world 
benchmark 581,012 10 44

3 spam Real world 
benchmark 9,324 0 39,917

4 Hyper plane Synthetic 1,000,000 9 1

5 random tree Synthetic 1,000,000 5 5

6 waveform Synthetic 60000 21 0
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setting. Information Gain was evaluated by 
comparing it to the Gini index. Finally, the 
parameter for removing poor attributes was 
operated and eliminated to see how it performed.

Table 2. Parameter configuration index

IDX minn τ δ S.CRT RPA

A 200 0.05 710− S1 NO

B 700 0.05 710− S1 NO

C 1200 0.05 710− S1 NO

D 1700 0.05 710− S1 NO

E 200 0.01 710− S1 NO

F 200 0.09 710− S1 NO

G 200 0.13 710− S1 NO

H 200 0.05 110− S1 NO

I 200 0.05 410− S1 NO

J 200 0.05 1010− S1 NO

K 200 0.05 710− S2 NO

L 200 0.05 710− S1 YES

4.4 Empirical Study

Figure 1 and 2 provide the findings of the 
experiment for poker dataset and estimated energy 
and accuracy. The effect of minn  parameter 
across dataset can also be noticed. This parameter 
has no appreciable impact on the accuracy 
in experimental study. 

However, a significant decrease in watts can be 
detected. The drop in power as minn  rises is 
due to the fact that the value of G∆  is calculated 
fewer times, hence conserving power. When it 
comes to energy as minn  rises, energy falls. 
Lastly, as minn  levels up, time will be reduced 
in general and it is sensible because there are 
fewer data sets and, thus, the tree is constructed 
faster. The accuracy does not change as the value 
of  goes up. Because of the reductions in time and 
power, there is energy reduction. The likelihood 
of making a correct split rises as δ  decreases. 
In empirical study, accuracy does not vary and 
the energy increases in a limited way due to the 
limitation of the Time Change and Power Change. 

Whenever the split criterion is adjusted to the 
Gini index, the accuracy reduces significantly. 
According to  energy, the rise in power and 
time has resulted in a rise  in energy. When the 
parameter RPA is activated, better accuracy and 
decreased energy use can be predicted. Based on 
this experiment, it can be seen that accuracy is 
maintained throughout all datasets, while energy is 
reduced across dataset, owing primarily to a minor 
fall in power. It’s worth noting that energy levels 
clearly change in different configurations. As seen 
in Figures 1 and 2 energy and accuracy change 
for each parameter in the dataset, emphasizing the 
importance of measuring energy usage.

Figure 1. How accuracy varies for the different 
parameter configurations

Figure 2. How energy varies for the different 
parameter configurations

4.5 Experimental Design 

The model focuses on VFDT’s fundamental 
processes and determines which portions of the 
algorithm consume the most energy. When the 
RPA parameter is utilized in the first situation in 
the experimental findings, accuracy is maintained, 
while energy levels are reduced. 
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Figure 3 and 4 illustrate the findings of the 
experiment for each dataset, covering energy and 
accuracy. As it can be noticed, there is a significant 
variation after utilizing the RPA parameter, with 
the greatest performances of accuracy and energy 
for each dataset. This happens due to canceling the 
functions used to choose the appropriate attribute of 
splitting as these functions consume more energy.

Figure 3. How accuracy varies when using  
RPA parameter

Figure 4. How energy varies when using  
RPA parameter

In the second scenario implies that G ε∆ < , the 
first case if G but Gε τ∆ < ∆ > . Figures 5 and 6 
illustrate the findings of the experiment for each 
dataset where there is a significant variation after 
utilizing adaptive τ .

Figure 5. How accuracy varies when using adaptive τ

Figure 6. How energy varies when using adaptive τ

The findings demonstrate that the energy levels of 
the E-VFDT are lower than the energy levels of the 
original VFDT, while the means of the accuracy of 
the both algorithms are the same because the value 
of adaptive τ  varies according to the  sequence 
examples and to the mean of ε. Accordingly, there is 
no waste in the energy level if its value is kept fixed.

In the second scenario if G ε∆ < , the second 
case implies that ,G G butε τ ε τ∆ < ∆ < > . 
Compared with the previous algorithm, after using 
Adaptive minn  instead of fixed minn  algorithm 
the energy consumption can be reduced and the 
accuracy can be improved to a certain extent as 
shown in Figures 7 and 8.

Figure 7. How accuracy varies when using  
adaptive minn

Figure 8. How energy varies when using  
adaptive minn
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The results reveal that there is a statistical difference 
in energy levels and accuracy between the VFDT 
and the E-VFDT, while both of them are upgraded 
in the suggested method. minAdaptive n  is based 
on the data regardless of the beginning minn  so 
the algorithm will not calculate the gain for all the 
attributes unless there is a sufficient number of 
examples for the split to occur.

As far as is currently known, there are no previous 
works that have improved the performance of the 
VFDT algorithm in terms of energy consumption 
except the reference (García-Martín et al., 2018). 
in the ε  equation in order to ensure that G ε∆ ≥  
is satisfied during the next iterations, resulting in 
a split.

12 ( )
min (5)22

R In
n

G
δ

 
 
 
 
 

=
∆

   
(5)

The following is a comparative study of the 
practical experiment between the performance of 
the present new method and different scenarios 
between this previous work and 6 different 
datasets. This paper compares the VFDT standard 
algorithm with the P-VFDT modification in 
algorithm (Garcia-Martin et al., 2018), and with 
the E-VFDT enhanced algorithm.

The results of the experiments are divided in two 
sections. The first section presents the accuracy 
and energy consumption results of the real datasets 
setups, and the second one presents the results of 
the artificial dataset, respectively.

4.5.1 Evaluation of the Results of Real-
World Datasets

The results illustrated in Figures 9 and 10 show 
that the E-VDFT and P-VFDT (García-Martín et 
al., 2018) can consume less energy in comparison 
with the standard VFDT. The accuracy was also 
impacted but not greatly when compared to the 
amount of energy saved in the E-VDFT algorithm. 
There is a decrease of less than 1% in poker 
and spam datasets. It has been observed that the 
E-VDFT has consumed more energy than the 
P-VFDT (García-Martín et al., 2018) for poker and 
spam datasets but it consumed less energy for cover 
type dataset. Although, in all the three datasets, the 
E-VDFT is better than the P-VFDT (García-Martín 
et al., 2018) in the extent of its impact on accuracy 

and this effect on accuracy is considered one of the 
defects of this previous work.

Figure 9. Results of the energy for each algorithm

Figure 10. Results of the accuracy for  
each algorithm

4.5.2 Evaluation of the Results of 
Artificial Datasets

E-VFDT significantly obtains higher energy 
consumption while it is not giving improvements 
in accuracy, but it obtains a lower accuracy than 
other algorithms for the hyper plane dataset as 
shown in Figures 11 and 12. The reason behind 
this result is the amount of drift on this dataset. 
Since the proposed algorithm is not able to learn the 
data with drift, there is no possibility for a higher 
accuracy in these dataset types, which is considered 
an imperfection of the present algorithm. 

Figure 11. Results of the energy for each algorithm 
in hyper plane dataset
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Figure 12. Results of the accuracy for each algorithm 
in hyper plane dataset

In Figures 13 and 14 it can be observed that the 
E-VFDT obtains the lowest energy consumption 
in random tree dataset, despite it contains a 
large number of instances. The reason is that the 
proposed algorithm is able to adapt minn  based 
on the data regardless of the beginning minn , so 
the algorithm will not calculate the information 
gain for all attributes unless there are sufficient 
examples for the split to occur. Moreover, E-VFDT 
scales better than P-VFDT in terms of accuracy.

Figure 13. Results of the energy for each algorithm 
in random tree dataset

Figure 14. Results of the accuracy for each algorithm 
in random tree dataset

As it can be observed from Figures 15 and 16, 
the E-VFDT and P-VFDT obtain lower energy 
consumption in comparison with the VFDT in 
waveform dataset, but the E-VFDT consumes 
more energy than the P-VFDT. The reason behind 
this result is the amount of noise on this dataset. 
Since the proposed algorithm is not able to learn 
the data with noise, especially on a small number of 

dataset instances, because it depends on an adapted 
minn , there is no possibility for a higher accuracy 

in these dataset types. here is no possibility for a 
higher accuracy in these dataset types.

Figure 15. Results of the energy for each algorithm 
in waveform dataset

Figure 16. Results of the accuracy for each algorithm 
in waveform dataset

The obtained results show that the E-VFDT 
achieves a much better performance in comparison 
with the standard VFDT and P-VFDT (García-
Martín et al., 2018) in reducing the amount of 
unnecessary energy, by providing several solutions 
to the causes of its high value. The first solution 
is to use RPA parameter, because the information 
gain of all features is evaluated in each split, 
RPA analyses feature performance to identify 
poor features that are doubtful to be picked for 
further split, and thus eliminate the functions that 
consume more energy. The second solution is to 
use a dynamic τ  whose value changes depending 
on the incoming examples and mean ε  rather than 
being defined by a default value. Therefore, it is 
not possible to know in advance which value of 
constant tie threshold is the best one. As a result, 
energy is conserved while accuracy is preserved. 
The last solution is to use adaptive, the goal of 

minn  adaptation is to update the number of 
minn  based on the observed instances, ensuring 

that the algorithm computes only the best features 
if there is a split to save energy consumption.

It should be noted that the total computational 
complexity of the new algorithm did not exceed 
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its value in the original algorithm, since it was 
Big ( )O n  and still retains the same value  
after modification. 

Conclusions

The present work introduces a hyper method to 
enhance the VFDT, which enables for an energy-
efficient strategy to build Hoeffding trees without 
hurting their predictive effectiveness, resulting in 
lower energy usage and negligible accuracy loss. 
The accuracy and energy levels of the original 
algorithm and of the enhanced one are compared 
to those of the ordinary VFDT. According to the 
findings, E-VFDT requires less energy than VFDT 
for dataset types that contain a huge number 
of examples. On the contrary, E-VFDT is not 
giving improvements in energy for datasets with 
drift. thus, being unable to learn the data with 

drift. An investigation was done in particular to 
see how the conventional algorithms behaved 
in terms of energy usage and accuracy when 
certain parameters were changed. The findings 
of experiments made within this study show that 
it is possible to reduce the energy consumption 
of the algorithm without sacrificing accuracy by 
correctly altering the parameters of the algorithm.

Finally, the mentioned algorithms are compared 
in different datasets. The E-VFDT used less 
energy than the conventional VFDT and was more 
accurate than it.

Further methods are offered for future work in 
order to enable for an energy-efficient approach to 
designing Hoeffding trees without compromising 
their predictive effectiveness especially in datasets 
which have noise and drift.
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