
17

ICI Bucharest © Copyright 2012-2024. All rights reserved

ISSN: 1220-1766  eISSN: 1841-429X	

1. Introduction

With the quick growth of intelligent transportation 
systems, vehicle driving behavior (DB) recognition 
and optimization strategies have become important 
research directions to ensure driving safety and 
improve traffic efficiency (Ali et al., 2023). Cloud 
computing platforms provide powerful computing 
power and scalable storage resources for data 
processing and model training, ensuring real-time 
and efficient research (Okita et al., 2022; Thieme 
et al., 2020). Traditional DB recognition methods 
are often limited by data processing capabilities and 
the efficiency of model optimization algorithms, 
making it difficult to achieve accurate recognition 
of complex DBs (Fan et al., 2021). The sparrow 
search algorithm (SSA) can realize global search 
in the search space and achieve global optimization 
through sparrow group search and position 
adjustment (Ou et al., 2023; Zhang et al., 2021). 
When the SSA is used alone, there is a problem 
of insufficient local search ability, and it is mainly 
suitable for continuous optimization, lacking 
universality (Wang, 2021). In this paper, the SSA 
was combined with the backpropagation (BP) 
algorithm (SSA-BP), and the SSA-BP is a method 

that combines heuristic search and neural networks. 
It has the advantages of global optimization and 
precise modeling, providing a new solution for 
DB recognition. Research uses cloud computing 
platforms and the SSA-BP algorithm to build a 
DB recognition model, accurately distinguishing 
different DBs from fuel consumption and driving 
safety evaluations.

The remainder of this paper is as follows. Section 
2 introduces the research context and summarizes 
the related research. Section 3 illustrates the 
specific methods and cloud platform construction 
of the BP DB evaluation model combined 
with SSA. Section 4 validates the SSA-BP DB 
evaluation model and experimentally validates 
the training results of the BP algorithm. Finally, 
Section 5 concludes this paper.

2. Literature Review

The SSA simulates the swarm intelligence 
behavior exhibited by sparrows when foraging and 
avoiding natural enemies, achieving efficient global 
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exploration of complex search spaces. It exhibits 
strong optimization performance when facing 
various complex problems, and has broad application 
prospects in multiple function optimization and 
parameter optimization related fields.

Fan et al. (2023) put forward an SSA-based Elman 
neural network to forecast the energy consumption 
changes and distribution trends. The findings 
showed that this study analysed the effects of energy 
efficiency management and peak shaving measures, 
proposed reasonable control requirements and 
assumptions, and studied the operability of 
enterprise energy saving measures. To improve the 
prediction accuracy for rubber fatigue life, Wang 
& Liu (2023) comprehensively considered the 
strain rate effect and proposed a prediction method 
based on the improved Sparrow Search Algorithm 
(SSA). The modified SSA algorithm was used to 
optimize various hyperparameters in the support 
vector machine model. The results showed that in 
comparison with other search methods or models, 
this research method featured a better stability 
and prediction accuracy. Zhu and Yousefi (2021) 
proposed a new optimization algorithm for the 
adaptive sparrow search algorithm (ASSA) to 
identify the optimal model parameters. The results 
indicated that the proposed ASSA was the most 
efficient compared to other algorithms. Based 
on SSA, Zhang and Ding (2021) introduced a 
stochastic configuration network based on chaotic 
sparrow search algorithm (CSSA-SCN). First, to 
improve SSA’s global optimization capabilities, 
an algorithm was developed that primarily 
used logical mapping, adaptive parameters, and 
mutational operators. Second, CSSA was applied 
to automatically provide better parameters for 
SCN, since the effects of SCN were related to the 
regularization parameter r and the ratio factor λ 
between weight and bias. In contrast with SCN 
and other comparable algorithms, the experimental 
results showed that CSSA-SCN was feasible and 
effective. Li et al. (2022) proposed a multi-scale 
knowledge sensing transformer and constructed a 
knowledge-guided multi-scale feature alignment 
framework. First, a knowledge-aware Transformer 
(KAT) was designed for the interaction between 
semantic knowledge and visual features. Second, 
in order to understand knowledge-guided sample 
differences, a knowledge-guided alignment 
loss was proposed to facilitate the separation of 
identity-related and identity-independent features. 
Experiments showed that the method captured 
knowledge-guided visual consistency features at 

different scales and was up to date on three widely 
used vehicle re-recognition benchmarks.

The emergence of in-vehicle network systems and 
the most advanced sensors and communication 
technologies have provided convenience for 
collecting a large amount of data about vehicles and 
drivers. Elassad et al. (2020) provided excellent 
solutions for DB analysis through machine 
learning techniques. Wu et al. (2021) conducted 
a qualitative analysis on the torque characteristics 
of wet clutches, lubricating oil flow rate, meshing 
force and its rate of change, lubricating oil 
temperature, and friction surface temperature. 
Sekiguchi et al. (2023) found two different slopes 
in the relationship among fatigue crack growth 
rate, strain energy release rate, and average load 
parameters, depending on loading conditions. 
Zhou et al. (2021) demonstrated the relationship 
between driving environment, systems, and 
psychological models, and determined the response 
to intervention requests based on knowledge-based 
learning. Guiding drivers in typical scenarios 
helped improve the success rate of vehicle control 
intervention, increasing it from 55% to 95%. Niu 
et al. (2021) built a classification framework for 
unsafe DB of truck drivers. The classification 
framework contains 6 primary input dimensions 
and 51 secondary input indicators. As an output, 9 
unsafe DBs were identified. The findings indicated 
that the model’s predictive effects varied with 
DBs, which was due to the different formation 
mechanisms of different DBs.

In summary, vehicle DB recognition and 
optimization strategies have received 
widespread attention in the field of intelligent 
transportation. The introduction of cloud 
computing technology provides strong 
support for large-scale data processing. As an 
optimization algorithm that combines SSA and 
BP neural networks, the innovation of SSA-
BP algorithm lies not only in traditional DB 
recognition, but also in the in-depth exploration 
of its application breadth, which comprises 
multiple aspects of intelligent transportation.

3. Research Methodology

This study uses the Normalized Cut (NCut) as 
the segmentation criterion for spectral clustering 
algorithms, providing a more accurate and reliable 
method for DB analysis. The SSA-BP algorithm 
is improved by utilizing the global optimization 
ability of SSA to build a DB recognition model.
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3.1 Analysis and Platform Deployment 
of Vehicle Driving Behavior based 
on Cloud Computing

This paper focused on the method of feature 
parameter extraction and selected DB as the 
training feature vector for clustering analysis. 
Clustering analysis can form clusters representing 
different DBs. After further processing of these 
clusters, labeled classification training samples 
and corresponding categories are obtained. 
Subsequently, a classifier is designed to evaluate 
the classifier online using new vehicle data samples 
to determine which category the DB belongs to. In 
the case of labeled training samples, a supervised 
learning classifier, that is, a neural network 
classifier, is used. In the case of unlabeled training 
samples, an unsupervised learning classifier, that 
is, a hierarchical clustering classifier, is used. The 
entire process of DB analysis is shown in Figure 1. 

The technical solution illustrated in Figure 1 
comprises three main core technologies, the 
first of which is the feature parameter extraction 
module, whose core task is to extract key feature 
parameters from preprocessed data as training 
samples. The DB clustering analysis module 

uses big data analysis algorithms to cluster DB 
data, adding label columns to the original data 
samples to identify the DB category to which 
each sample belongs. Finally, the classifier 
module is the core output part of the DB analysis 
technical solution. The Normalized Cut (NCut) 
criterion can not only effectively evaluate the 
similarity between samples within a cluster, but 
also accurately measure the degree of dissimilarity 
between samples in different clusters (Ismail et 
al., 2022; Wang et al., 2020). In comparison with 
the Minimum Cut criterion and the Ratio Cut 
criterion, NCut can overcome its shortcomings 
simultaneously. Therefore, in spectral clustering 
algorithms, the use of the NCut criterion as the 
segmentation criterion is studied to ensure the 
accuracy and stability of the spectral clustering 
algorithm.  The process related to the spectral 
clustering algorithm is shown in Figure 2.

In Figure 2, based on the spectral segmentation 
criterion, the clustering problem is transformed 
into an issue of finding the minimum value of the 
objective function, and the solution of the spectral 
clustering algorithm is obtained. A graph is 
constructed based on a given set of data samples, 
and the NCut algorithm is used for spectral 

Figure 1. Technical schematic diagram for driving behavior analysis

Figure 2. Genealogical algorithm framework diagram



https://www.sic.ici.ro

20 Xing Yang, Ke Xiang, Shan Yuan, Jilan Huang

segmentation. This process aims to optimize the 
objective function and divide the data samples into 
different categories or clusters, thereby achieving 
the purpose of clustering analysis. In terms of 
building a cloud computing platform, the first 
step is to build a IaaS infrastructure environment 
based on OpenStack, virtualize cloud hosts, install 
Ubuntu systems for each cloud host, and then build 
a Hadoop distributed cluster in the cloud host to 
provide Hadoop distributed file system (HDFS) 
file storage for Spark, and then build a Spark 
distributed cluster (Fu et al., 2023; Kim & Kim, 
2019). Finally, a software platform development 
environment for OpenStack-Hadoop-Spark is 
implemented. The deployment of the OpenStack 
cloud platform is shown in Figure 3. 

The OpenStack cloud platform deployment 
illustrated in Figure 3 mainly includes three nodes. 
The core components of the OpenStack Compute 
Node mainly include Nova Compute, Neutron 
Plugin ML2 and Neutron Openvswitch Agent 
(Ramamoorthi & Ramasamy, 2023; Wang & Fang, 
2023). The core components of an OpenStack 
Network Node include Neutron Plugin ML2, 
Neutron L3 Agent, Neutron DHCP Agent, and 
Neutron Openvswitch Agent, which are used to 
implement gateway and routing functionality. The 
core components of OpenStack Controller Node 
include Keystone, Glance, Nova Conductor, Nova 
Scheduler, Nova API, Neutron Server, Horizon, 
Cinder, and Swift.

3.2 DB and Evaluation Model based on 
SSA-BP Algorithm

BP is a common feedforward network that 
achieves the goal of training the BP network by 
BP of errors (Hu et al., 2022). As it is shown in 
Figure 3, it mainly consists of three parts: input, 
hidden, and output layers. The specific process 
of BP first initializes the weights and thresholds, 
and the output value 0

ia  of input layer node i is 
expressed in equation (1):

0
i ia X=                                                         (1)

In equation (1), xi represents the output value 
of input layer node i, and the input and output 
values of node j in the hidden layer are expressed 
in equation (2):
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In equation (2), wij denotes the connection weight 
between input layer node i and hidden layer node 
j, and θj is the threshold on node j. The input Ik and 
output 2

ia  of node k in the output layer are shown 
in equation (3):
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Figure 3. OpenStack cloud platform deployment diagram
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In equation (3), wjk indicates the connection weight 
between node j and node k, and θk is the threshold 
on node k. There are m outputs in each sample, 
and the training error for N samples is expressed 
in equation (4):

2

1 1 1

1 ( )
2

N m m
i ik iki i k

E E d y
= = =

= = −∑ ∑ ∑
      

(4)

In equation (4), Ei denotes the training error of the 
i-th sample. dik is the expected output of training 
sample output value. yik represents the neural 
network predicted value for training sample output 
value. By training neural networks, the amount of 
hidden layer nodes that can minimize prediction 
error is found. The determination of the number 
of nodes is expressed in equation (5):

p n m a= + +                                            (5)

In equation (5), p denotes the number of the nodes. 
n represents the number of input layer nodes.  
m represents the number of output layer nodes, and 
a is a constant up to 10. It is necessary to process 
the sample data using a normalization function 
and map it to the [-1,1] interval. The normalization 
function is expressed in equation (6):
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In equation (6), x represents the pre-normalization 
data. y represents the post-normalization data. 
ymax defaults to 1, and ymin defaults to -1. In this 
study, two error indicators were selected, namely 
the Root Mean Squared Error (RMSE) and Mean 
Absolute Error (MAE), to prove the predictive 
ability of the proposed model. RMSE reflects the 
degree of error between the predicted and the 
actual values. The lower the RMSE value, the 
higher the accuracy of the model. MAE is the 
average absolute error, and the lower the value 
of MAE, the better the predictive effectiveness of 
the employed model. The formula for calculating 
the average absolute error is expressed in 
equation (7):

1
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In equation (7), m refers to the number of samples. 
xi and yi denote the predicted and the actual values, 
respectively. The formula for calculating the root 
mean square error is expressed in equation (8):
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The SSA is proposed as it imitates the collective 
behavior of sparrows in foraging and anti-
predation. This algorithm has few parameters, 
a strong search ability, and a fast performance. 
The SSA process first sets the sparrow population 
matrix, as it is shown in equation (9):

11 12 1

21 22 2

1 2

, ,...,
, ,...,

...
, ,...,

d

d

n n nd

x x x
x x x

X

x x x

 
 
 =
 
 
                                    

(9)

In equation (9), n represents the population size. 
d represents the population dimension. The 
population dimension is expressed in equation (10):

d EF FG F G= + + +                               (10)

In equation (10), E, F, and G represent the amount 
of neurons in the input, hidden, and output layers. 
The sparrow population fitness value is expressed 
in equation (11):
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In equation (11), f denotes the fitness value. The 
discoverer’s position is updated. In order to obtain 
more food, sparrows will change their position 
based on individual energy changes. The position 
update is expressed in equation (12):
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In equation (12), 1t
ijX +  denotes the t-th 

dimensional position of the t-th generation. N 
refers to the maximum number of iterations. L 
refers to a 1xd matrix with all elements being 1. 
R2 is the warning value, in the interval [0,1]. ST 
represents the safe value, in the range [0.5,1]. 
R2 < ST denotes that the environment in which 
sparrows are searching for food is safe and not 
dangerous at the current time. R2 ≥ ST points out 
that some individuals in the sparrow population 
have already felt the threat of predators, and that 
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the environment in which sparrows are searching 
for food is dangerous. The position update is as 
shown in equation (13):
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In equation (13), t
worstX  denotes the global worst 

position at the t-th iteration. 1t
pX +  refers to the best 

position of the discoverer at the t+1-th iteration. 
A+ is the 1xd matrix, with each element being 1 
or -1. 

2
ni >  means that the i-th addition with low 

energy values did not obtain food, indicating poor 
fitness. This sparrow individual needs to go to 
areas with richer food resources to obtain food. In 
addition, participants can forage near the current 
optimal sparrow individual. The alert position 
update is expressed in equation (14):
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In equation (14), K indicates a random number in 
the interval [-1,1]. fi indicates the individual fitness 
value. t

bestX  denotes the global optimal position 
in the t-th iteration. β is the step size control 
coefficient and ε is a minimum constant to prevent 
the denominator from being set to 0. fi = fg indicates 
that the current sparrow individual is at the center 
of the sparrow population and will randomly 
follow other individuals to cut down the risk of 
being preyed upon. fi ≠ fg indicates that the current 
sparrow individual is located at the periphery 
of the sparrow population and is susceptible to 
predation. For verifying the performance of SSA-
BP neural network the correlation coefficient 
R2 is used, which is an important indicator for 
evaluating model accuracy. It represents the 
percentage of the dependent variable Y in the total 
variation that the constructed model can explain, 
and it is expressed in equation (15):

2 1 SSRR
SST

= −
                                           

(15)

In equation (15), SSR is the sum of squared 
residuals. SST is the total sum of squares. To 
evaluate the relationship between DB and fuel 

consumption, a three-layer BP neural network 
model was utilized in this study. Features 
related to fuel consumption from the original 
feature data were extracted using the Pearson 
correlation coefficient, and a column was added 
as the oil category label in the dataset. The newly 
constructed feature vector was used as the input 
layer training vector. The BP neural network 
structure and the DB and fuel consumption 
evaluation process are shown in Figure 4.

Figure 4 depicts a BP-based classifier in order to 
establish a fuel consumption assessment model. In 
this model, the hidden layer adopts the widely used 
sigmoid function as the activation function. Due 
to their nonlinear characteristics, neural networks 
have a strong function approximation ability. The 
BP neural network is trained using the MATLAB 
toolbox, and the remaining driving data samples 
are utilized as the test set to prove the accuracy 
and generalization ability of the proposed model. 
The construction principle of the DB safety 
assessment model is similar to that of the DB fuel 
consumption assessment model. Similarly, a three-
layer BP neural network is employed to cluster the 
DB data using spectral clustering algorithm, and 
the clustering results for the DB are obtained. The 
original sample data is used as training samples, 
and the corresponding mapping model is built. 
The BP neural network structure, and the DB and 
driving safety assessment process are shown in 
Figure 5.

Figure 5 depicts a BP-based classifier in order 
to assess the DB safety for drivers. The spectral 
clustering algorithm is first used to cluster and 
analyze the DB data, thereby obtaining the 
classification results for DB (Kannout et al., 
2023). Using these clustering results as training 
samples, the network learns the relationship 
between DB and safety through training. To prove 
the accuracy of the proposed model, the remaining 
driving data samples are applied as the test set to 
test the trained BP neural network.

4. Results and Discussion

Combining fuel consumption and safety 
assessment models, this study used MATLAB 
tools to analyze the influence of various DBs on 
fuel consumption and visualise the data samples, 
and proposed targeted optimization strategies.
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(a) SSA-BP neural network structure diagram

(b) Driving Behavior - Fuel Consumption Assessment Flowchart

Figure 4. BP neural network structure and the driving behavior and fuel consumption evaluation process

(a) SSA-BP neural network structure diagram

(b) Driving Behavior - Safety Assessment Process Diagram

Figure 5. BP neural network structure and driving behavior and safety assessment process
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4.1 Clustering Analysis for Driving 
Behavior Based on  
Safety Perspective

Based on the results obtained for the Spark 
distributed cluster parallel spectral clustering 
algorithm, the DB of drivers could be mainly 
divided into three categories. In this study 
MATLAB tools were employed to visualize 
sample data for each category. In the visualization 
process, a more intuitive display of the distribution 
of different DB categories is shown in Figure 6.

(a) Distribution map of clustering results for speed and 
acceleration in driving behavior

(b) Distribution map of clustering results for speed and 
speed variance in driving behavior

(c) Distribution map of clustering results for acceleration 
variance and speed variance in driving behavior

(d) Distribution map of clustering results for acceleration 
and acceleration variance in driving behavior

Figure 6. Cluster interval distribution for Spark 
cloud platform

In Figure 6, the clusters marked in red indicated 
a higher acceleration, which usually meant that 
when the speed exceeded 30 km/h, the driver’s 
acceleration was also higher, and this DB was 
considered aggressive. By contrast, clusters 
marked in green displayed moderate acceleration 
and velocity, with smaller acceleration and 
velocity variances in comparison with yellow 
clusters, indicating a stable DB and pointing to 
cautious driving. The speed and acceleration of 
the yellow clusters were also relatively moderate, 
but their variance was slightly larger than that 
of the green clusters, so they were classified 
as moderate DB. Sample size statistics for the 
output results were obtained, as it is shown in 
Figure 7.

Figure 7. Sample distribution of driving  
behavior clusters

As it can be seen in Figure 7, after cluster 
analysis, a total of 4270 samples belonged to 
prudent DB, accounting for 41% of the total. 
3001 samples belonged to radical DB, accounting 
for 29% of the total. There were 3111 samples 
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of general DB, accounting for 30% of the total. 
The analysed data provided a clear overview of 
the distribution of DB, which helped to further 
analyse and optimise DB. Cluster analysis was 
conducted on six parameters closely related to 
fuel consumption which were extracted through 
Pearson correlation coefficient using the Spark 
distributed cluster, to better understand the 
differences between different DBs and their 
relationship with fuel consumption. Sample 
data for each type of DB was visualised using 
MATLAB tools, as it is shown in Figure 8.

(a) Cluster distribution of driving behavior

(b) Cluster distribution of driving behavior

Figure 8. Fuel consumption trend chart for different 
driving behavior clusters

In Figure 8, the closer the color is to red, the 
greater the fuel consumption. After clustering 
analysis, DB was divided into three clusters, 
corresponding to high, medium, and low fuel 
consumption DBs. The cluster center and sample 
data exhibited obvious characteristics, which were 
related to high fuel consumption.

4.2 DB Analysis, Evaluation, and 
Optimization Strategies Based on 
SSA-BP Algorithm

A BP-based DB safety evaluation model 
was constructed, with new feature vectors 

as training samples and 2000 samples were 
retained as predictive samples for the validation 
and evaluation of the model’s accuracy. The 
convergence curves for the DB safety and DB 
fuel consumption assessment errors are shown in 
Figure 9.

(a) Driving safety evaluation convergence curve

(b) Fuel consumption evaluation convergence curve

Figure 9. Convergence curves for driving safety and 
fuel consumption evaluation errors

As it can be seen in Figure 9(a), the DB safety 
assessment model successfully converged after 
441 iterations, with a prior accuracy of 86.504%. 
During the validation process, the number of 
samples which were correctly predicted by 
the model reached 1730, while the number of 
incorrectly predicted samples was 270. These 
results fully demonstrated that the proposed BP 
neural network model could serve as an effective 
tool for DB safety assessment. As it can be 
seen in Figure 9(b), the DB fuel consumption 
evaluation model successfully converged after 
538 iterations, with a prior accuracy of up 
to 89.216%. During the validation process, 
the number of samples which were correctly 
predicted by the model reached 1784, while the 
number of incorrectly predicted samples was 
216. These results fully demonstrated that the 
proposed model could also serve as an effective 
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tool for evaluating DB fuel consumption. The 
SSA-BP regression fit is shown in Figure 10.
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Figure 10. SSA-BP regression fit

As it can be seen in Figure 10, the regression 
fit of the trained model reached around 98%, 
indicating a high regression accuracy. After 
calculation verification, the value of the fitting 
correlation coefficient R2 of the SSA-BP model 
on the training set was as high as 0.993, and it 
also reached the value of 0.991 on the test set. 
These results fully demonstrated that the model 
had excellent fitting and prediction capabilities, 
and its prediction accuracy was also very 
high. This provided a solid foundation for the 
subsequent use of the model for DB analysis 
and evaluation. The specific prediction results 
of SSA-BP for the belt torque and belt torque 
error are shown in Figure 11.

In Figure 11, the overall trend of the predicted 
values and numerical simulation values was 
highly consistent, and the results of numerical 
agreement were almost ideal. Specifically, the 
average error was controlled at 0.0785Nm, and 
the maximum error did not exceed 1.4Nm. This 
indicated that the predicted results for the model 
had a high degree of overlap with the numerical 
simulation results. In summary, the employed 
neural network model could accurately reflect the 
relationship between torque and wet brakes under 
different operating conditions, demonstrating 
good simulation and prediction capabilities. 
To prove the advantages of the SSA-BP neural 
network model, multiple prediction models were 
selected in order to compare their effectiveness 
and to comprehensively evaluate the advantages 
and applicability of the SSA-BP model. The 
training outcomes for the linear regression model 
are included in Table 1. 

As it can be seen in Table 1, the employed linear 
regression model showed significant errors in 
the prediction process, with a maximum value 
exceeding 25Nm, equivalent to an error rate of 
over 50%. Especially in the low-speed range, this 
error was particularly evident. However, as the 
speed increased, the error gradually decreased, 
and when the speed reached 5000rpm, the error 
was almost zero, indicating that linear regression 
models had certain limitations when dealing with 
such complex relationships.

Table 1. Analysis of training results for the employed linear regression model

Speed/rpm Numerical simulation/Nm Model prediction value/Nm Relative error
20 6.59862 19.79076 13.19214
200 35.81198 19.38032 16.43166
400 44.41275 19.05415 25.3586
600 42.39716 18.63537 23.76179
800 25.38251 18.24532 7.13719
1000 15.92605 17.85638 1.93033
1500 14.66761 17.00804 2.34044
2000 11.61611 15.93265 4.31654
2500 12.24546 14.99396 2.7485
3000 11.48592 14.14108 2.65517
3500 12.41518 13.09661 0.68143
4000 10.20604 12.17937 1.97334
4500 11.46941 11.0524 0.41702
5000 9.96277 10.26891 0.30614

Average relative error / / 7.375020714
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5. Conclusion

As the number of cars increases year by year, 
the analysis of DB has become increasingly 
important in the field of public transportation. 
Traditional vehicle brakes generate power loss 
during non-braking high-speed rotation, which 
has a negative impact on transmission efficiency. 
To address this issue, multiple data sources were 
collected and analysed during vehicle operation. 
This paper innovatively combines the SSA with 
the BP algorithm, utilizing the best global search 
ability of the SSA to optimize the BP algorithm. 
Through this approach, a DB recognition model 
was built that can distinguish different DBs 
and evaluate their impact on fuel consumption 
and safety. The experimental findings showed 
that the prior accuracy of the DB-based fuel 

consumption evaluation model based on the SSA-
BP algorithm was as high as 89.216%, and the 
regression fit of the model after training reached 
around 98%. However, this paper also features 
certain shortcomings, such as the failure to 
horizontally compare the SSA-BP algorithm with 
other algorithms and to explore the possibility of 
choosing more classification algorithms.
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Figure 11. Prediction of belt torque and torque error for the SSA-BP algorithm model

REFERENCES

Ali, A. M., Moulik, B. & Söffker, D. (2023) Intelligent 
Real-Time Power Management of Multi-Source 
HEVs Based on Driving State Recognition and Offline 
Optimization. IEEE Transactions on Intelligent 
Transportation Systems. 24(1), 247–257. doi: 10.1109/
TITS.2022.3215607.

Elassad, Z. E. A., Mousannif, H., Moatassime, 
H. A. & Karkouch, A. (2020) The application of 
machine learning techniques for driving behavior 
analysis: A conceptual framework and a systematic 
literature review. Engineering Applications of 
Artificial Intelligence. 87, 103312. doi: 10.1016/j.
engappai.2019.103312.

Fan, X., Wang, F., Song, D., Lu, Y. & Liu, J. (2021) 
GazMon: Eye Gazing Enabled Driving Behavior 
Monitoring and Prediction. IEEE Transactions on 

Mobile Computing. 20(4), 1420-1433. doi:      10.1109/
TMC.2019.2962764.

Fan, Y., Sui, T., Peng, K., Sang, Y. & Huang, F. 
(2023) Study on load monitoring and demand side 
management strategy based on Elman neural network 
optimized by sparrow search algorithm. Circuit World. 
49(1), 56-66. doi: 10.1108/CW-07-2021-0199.

Fu, Z., He, M., Tang, Z. & Zhang, Y. (2023) 
Optimizing data locality by executor allocation in 
spark computing environment. Computer Science and 
Information Systems. 20(1), 491-512. doi: 10.1108/
CW-07-2021-0199.

Hu, K., Wang, L., Li, W., Cao, S. & Shen, Y. (2022) 
Forecasting of solar radiation in photovoltaic power 
station based on ground-based cloud images and 



https://www.sic.ici.ro

28 Xing Yang, Ke Xiang, Shan Yuan, Jilan Huang

BP neural network. IET Generation, Transmission 
& Distribution. 16(2), 333-350. doi: 10.1049/
gtd2.12309.

Ismail, F. F., El-Aasser, M. A. & Gad, N. H. (2022) 
A Parasitic Hat for Microstrip Antenna Design Based 
on Defected Structures for Multiband Applications. 
Applied Computational Electromagnetics Society 
Journal. 37(5), 568-575. doi: 10.13052/2022.
ACES.J.370506.

Kannout, E., Grodzki, M. & Grzegorowski, M. 
(2023) Towards addressing item cold-start problem 
in collaborative filtering by embedding agglomerative 
clustering and FP-growth into the recommendation 
system. Computer Science and Information Systems. 
20(4), 1343-1366. doi: 10.2298/CSIS221116052K.

Kim, B. S. & Kim, T. G. (2019) Cooperation of 
Simulation and Data Model for Performance Analysis 
of Complex Systems. International Journal of 
Simulation Modelling. 18(4), 608-619. doi: 10.2507/
IJSIMM 18(4)491.

Li, H., Li, C., Zheng, A., Tang, J. & Luo, B. (2022) 
MsKAT: Multi-Scale Knowledge-Aware Transformer 
for Vehicle Re-Identification. IEEE Transactions on 
Intelligent Transportation Systems. 23(10), 19557-
19568. doi: 10.1109/TITS.2022.3166463.

Niu, Y., Li, Z. & Fan, Y. (2021) Analysis of truck 
drivers’ unsafe driving behaviors using four machine 
learning methods. International Journal of Industrial 
Ergonomics. 86(8), 103192. doi:  10.1016/j.
ergon.2021.103192.

Okita, N. T., Camargo, A. W., Ribeiro, J., Coimbra, 
T. A., Benedicto, C. & Faccipieri, J. H. (2022). 
High-performance computing strategies for seismic-
imaging software on the cluster and cloud-computing 
environments. Geophysical Prospecting. 70(1), 57-78. 
doi: 10.1111/1365-2478.13158.

Ou, Y., Yu, L. & Yan, A. (2023) An Improved Sparrow 
Search Algorithm for Location Optimization of 
Logistics Distribution Centers. Journal of Circuits, 
Systems and Computers. 32(9). doi: 10.1142/
S0218126623501505.

Ramamoorthi, R. & Ramasamy, A. (2023) Block 
Chain Technology Assisted Privacy Preserving 
Resource Allocation Scheme for Internet of Things 
Based Cloud Computing. [Technical Gazette]. 30(6), 
1943-1950. doi:  10.17559/TV-20230404000503.

Sekiguchi, Y., Houjou, K., Shimamoto, K. & Sato, 
C. (2023) Two‐parameter analysis of fatigue crack 
growth behavior in structural acrylic adhesive joints. 
Fatigue & Fracture of Engineering Materials and 
Structures. 46(3), 909-923. doi: 10.1111/ffe.13908.

Thieme, A., Yadav, S., Oddo, P. C., Fitz, J. M. & 
Hively, W. D. (2020) Using NASA Earth observations 
and Google Earth Engine to map winter cover crop 
conservation performance in the Chesapeake Bay 
watershed. Remote Sensing of Environment. 248(1), 
111943-111955. doi: 10.1016/j.rse.2020.111943.

Wang, F., Zhao, C., Liu, J. & Huang, H. (2020) A 
Variational Image Segmentation Model based on 
Normalized Cut with Adaptive Similarity and Spatial 
Regularization. SIAM Journal on Imaging Sciences, 
13(2), 651-684. doi: 10.1137/18M1192366.

Wang, M. (2021) Manufacturing capacity evaluation of 
smart job-shop based on neural network. International 
Journal of Simulation Modelling. 20(4), 778-789. doi: 
10.2507/IJSIMM20-4-C019.

Wang, Y. & Fang, R. (2023) An Approach for Fast Fault 
Detection in Virtual Network. [Technical Gazette]. 
30(4), 1146-1151. doi: 10.17559/TV-20230207000330.

Wang, X. & Liu, J. (2023) Intelligent prediction of 
fatigue life of natural rubber considering strain ratio 
effect. Fatigue & Fracture of Engineering Materials 
and Structures. 46(5), 1687-1703. doi: 10.1111/
ffe.13952.

Wu, B., Qin, D., Hu, J., Wang, X., Wang, Y. & Lv, H. 
(2021) Analysis of influencing factors and changing 
laws on friction behavior of wet clutch. Tribology 
International. 162(1), 107125–107135. doi: 10.1016/j.
triboint.2021.107125.

Zhang, C. & Ding, S. (2021) A stochastic configuration 
network based on chaotic sparrow search algorithm. 
Knowledge-Based Systems. 220(10), 106924-106943. 
doi: 10.1016/j.knosys.2021.106924.

Zhang, J., Xia, K., He, Z., Yin, Z. & Wang, S. 
(2021) Semi-Supervised Ensemble Classifier 
with Improved Sparrow Search Algorithm and 
Its Application in Pulmonary Nodule Detection. 
Mathematical Problems in Engineering. 2021, 1-18. 
doi: 10.1155/2021/6622935.

Zhou, H., Itoh, M. & Kitazaki, S. (2021) How Does 
Explanation-Based Knowledge Influence Driver 
Take-Over in Conditional Driving Automation? IEEE 
Transactions on Human-Machine Systems. 51(3), 
188-197. doi: 10.1109/THMS.2021.3051342.

Zhu, Y. & Yousefi, N. (2021) Optimal parameter 
identification of PEMFC stacks using Adaptive 
Sparrow Search Algorithm. International Journal of 
Hydrogen Energy. 46(14), 9541-9552. doi: 10.1016/j.
ijhydene.2020.12.107.



This is an open access article distributed under the terms and conditions of the  
Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

