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1. Introduction

Quadcopter UAVs are widely used in many 
different areas today. Agricultural spraying, 
reconnaissance, anti-terrorism, firefighting, 
mining, first aid, transportation and aerial 
photography are some important areas where they 
are used (Sonugur, 2023; Karahan et al., 2023).

Quadcopter UAVs’ ability to VTOL, to remain 
hovered in the air, to rotate around their own axis, 
and to take off and land without the need for a 
runway make them more advantageous than other 
UAVs (Saeed et al., 2018; Frigioescu et al., 2023).

Quadcopter UAVs must be fast and able to 
perform aggressive maneuvers, while performing 
different missions. For this reason, it becomes 
important to design a robust controller that can 
control the altitude and attitude of the quadcopter, 
while performing harsh maneuvers. 

Many researchers have designed robust 
controllers to enable quadcopters to follow 
different trajectories. Kidambi et al. (2021) used 
a Lyapunov-based controller to track different 
references under uncertainties, while they 
neglected drag and aerodynamic effects. Mehmood 
et al. (2021) used a super twisting sliding mode 
controller design for multiple quadcopter UAVs 
and tracked sinusoidal and circular references 
under parameter uncertainties and disturbances. 
AbdulSamed et al. (2020) used a PID controller to 
track different references for a quadcopter UAV. In 
some of their simulations, the quadcopter followed 
the unit step reference, and, in other simulations, it 

reached the target by passing through some points. 
Additionally, they neglected aerodynamic effects 
in their studies.

Pan et al. (2023) proposed an adaptive sliding mode 
controller for the attitude control of a quadcopter 
and compared the results of the simulations with 
those of the experimental platform. Elhesasy 
et al. (2023) developed a model predictive 
controller (MPC) for a quadcopter and tested 
it under model uncertainties and disturbances. 
They observed that MPC controller showed 
better performance than PID controller. Liu et 
al. (2023) focused on developing a fuzzy attitude 
control structure for a quadcopter. They realized 
comparative simulations and experiments. Nekoo 
et al. (2022) developed a sliding mode control 
for a quadcopter and compared the performance 
of this controller with that of the PD controller. 
They performed the cobra maneuver by rotating 
the quadcopter vertically at an angle of θ=π/2. In 
their simulations, they observed that the sliding 
mode control performed better. 

Sun et al. (2021) developed a cascaded PID 
controller to control a quadcopter. They 
performed a simulation that required a smooth 
maneuver, following the 3rd order Bezier curve, 
and a simulation that required a hard maneuver, 
following the 3rd order polynomial. Wang et 
al. (2022) proposed an adaptive sliding mode 
controller for a smooth geometric trajectory 
tracking of a quadcopter UAV. Zhao et al. (2020) 
developed a sliding mode control for a quadcopter 
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and tested it through numerical simulations. They 
tested the controller in following a helix trajectory 
and determined the error rate of the quadcopter, 
while following the trajectory.

In this research, firstly, modelling of the 
quadcopter was carried out. The drag coefficient 
or aerodynamic effects were not neglected, 
and no linearization was made. Then, PID, 
Lyapunov-based and backstepping controller 
designs were realized, respectively. Aggressive 
maneuver tracking simulations were carried out 
by giving triangular, sinusoidal and sawtooth 
references to the system. During aggressive 
maneuver tracking, 10% parameter uncertainty 
was also applied to m, Ix, Iy and Iz values. A 
comparative robustness analysis was performed, 
by obtaining time response of controllers. Thus, 
the superiority of the backstepping control has 
been numerically demonstrated. 

The present study is structured as follows. 
Section 2 presents the nonlinear quadcopter 
model. The control structures are described in 
section 3. Then, section 4 treats the simulations 
and their results, and, finally, section 5 offers the 
conclusion of this study.

2. Nonlinear Quadcopter Model

Quadcopter is a UAV which could move in 
6 degrees of freedom. While translational 
movements are indicated by movements in the x, 
y, z axes, rotational movements are indicated by 
roll, pitch, yaw. The (1,3) and (2,4) propeller pairs 
of the quadcopter rotate oppositely. A schematic 
presentation of the quadcopter used in this study 
is shown in Figure 1. 

Figure 1. Schematic of the quadcopter (Karahan & 
Kasnakoglu, 2021)

Rotation matrix transforms the body frame axis 
into the Earth frame axis. The extraction of the 
rotation matrix used in this transformation is 
shown step by step in equations (1) ‒ (5). In 
the equations, s represents the sine angle and c 
represents the cosine angle.
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Conversion from body angular rates to Earth angle 
rates is represented in equations (6) and (7), where 
T is the transformation matrix, p, q, r symbolize 
the angular rates in the body frame and ϕ , θ , and 
ψ  represent the angular rates in Earth frame. 
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In (7), 
2
πθ ≠  because of derivatives. When φ 

and θ angles are near to zero, this indicates that 
quadcopter is hovering, and T becomes the unit 
matrix. In this case, the connection with angles 
and angular rates could be taken linear as in 
equation (8): 
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Equation (9) explains torque, equation (10) 
represents force and equation (11) gives relative 
rotor speed. In below equations, i subscript indicates 
rotor number (1, 2, 3, 4), b represents thrust 
coefficient and d symbolizes drag coefficients.
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Equation (12) shows conversion from system 
inputs to angular rates. U1, U2, U3, U4 present 
control inputs and l gives arm length of the 
quadcopter. U1 explains lift force and U2, U3, U4 
indicate relevant torque values.
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Equation (13) shows the conversion between 
angular rates and control inputs.
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The inertial moments of the quadcopter are 
shown in equations (14) – (16), where Msphere 
is the spherical dense center mass, r is the radius 
and Mrotor symbolizes the rotor mass (Krishna 
et al., 2022).

2 22 2
5x sphere rotorI M r l M= +

                             
(14)

2 22 2
5y sphere rotorI M r l M= +

                             
(15)

2 22 4
5z sphere rotorI M r l M= +

                             
(16)

Figure 2 represents the spherical mass and rotor 
masses of quadcopter.

Figure 2. Presentation of quadcopter masses 
(Karahan & Kasnakoglu, 2021)

The equations showing the movements of the 
quadcopter in 6 degrees of freedom are shown in 
equations (17) ‒ (22).
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Physical specifications of the OS4 quadcopter 
employed in the study are given in Table 1. 

Table 1. Quadcopter Specifications

Unit Value
Quadcopter mass (m) 0.65 kg 

Gravitational acceleration (g) 9.81 m/s2

Arm length (l) 0.23 m
Maximum rotor velocity (wmax) 1000 rad/sec

Maximum torque (tmax) 0.15 Nm
Thrust coefficient (b) 3.13x10-5 Ns2

Drag coefficient (d) 7.5x10-7 Ns2

Rotor moment of inertia (JR) 6.5x10-5 kg.m2

Moment of inertia on x axis (Ix) 7.5x10-3 kg.m2

Moment of inertia on y axis (Iy) 7.5x10-3 kg.m2

Moment of inertia on z axis (Iz) 1.3x10-2 kg.m2

3. Control Structures

The classical PID control approach, Lyapunov-
based control approach and backstepping control 
method, respectively, are presented in the 
following subsections.

3.1 Classical PID Control Approach

PID control method is explained in this part. 
It has three coefficients, namely Kp, Ki and Kd 
(Dobrea et al., 2023). The PID controller block 
was created in Simulink. Kp, Ki and Kd coefficients 
were determined by manually adjusting the PID 
Tuner feature in Simulink. While determining the 
coefficients, it was aimed to obtain low overshoot 
and a short settling time. Since the PID Tuner 
interface displays the system response graphically, 
it makes it easier to understand the effect of the 
change in controller coefficients on the system 
response. In this way, optimum coefficients were 
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determined by using the graphical interface. This 
control approach efforts to reduce error term e(t) 
by utilizing u(t) control term. The overall function 
of this controller is given in equation (23):

0

( )( ) ( ) ( )
i

t

p d
de tu t K e t K e d K

dt
τ τ= + +∫

              
(23)

PID control inputs are given in equations (24) – 
(27). U1 control input controls the altitude. U2, U3 
and U4 control inputs control roll angle, pitch angle 
and yaw angle, respectively.
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In equation (24), 𝜃 and 𝜑 angles indicate rotation 
around y and x axes, respectively. Because the 
quadcopter could not rotate around the x and 
y axes while flight vertically, denominator of 
equation (24) will never be zero. PID control 
parameters are presented in Table 2.

Table 2. PID parameters

Parameter Roll Pitch Yaw Altitude
Kp 0.11 0.13 0.03 0.83
Ki 0.04 0.06 0.02 0.10
Kd 0.05 0.07 0.06 1.66

3.2 Lyapunov-based Control Approach

Lyapunov-based control depends on Lyapunov 
stability theorem (Lavaei & Bridgeman, 2023). 
It uses a Lyapunov function to directly control 
a nonlinear system. In this study, the Lyapunov-
based control method targets direct control of the 
quadcopter’s position. In this method, x = 0 is 
selected as the equilibrium point. D is described as 
a strict neighborhood of f(0) in Rn. The continuous 
Lyapunov function V: D → R+, which meets the 
necessities expressed in equations (28) and (29), 
is determined.

V(0) = 0, V(x )> 0 in D, x ≠ 0                            (28)
V̇ (x ) ≤ 0 in D                                                     (29)
Equilibrium point becomes asymptotically steady 
in D under given V̇ (x ) ≤ 0 in D, x ≠ 0 conditions. 

Then, a section which includes stabilization angles 
and derivates, is described as desired attitude at the 
equilibrium point. At this point, x = (φd, 0, θd, 0, 
ψd, 0), where φd, θd and ψd angles are described as 
the desired roll, pitch and yaw angles, respectively. 
Because the angular velocity components are 0 
at the stabilization point, their time derivatives 
are also 0. Positive defined Lyapunov function at 
desired attitude is presented in (30):
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Derivative of V(x) is shown in (31):
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Equations of motions given in (17 ‒ 22) can be 
reduced under perfect cross condition (Ix=Iy), 
when the quadcopter is near to the equilibrium 
point (wr = 0, ψ = 0, θ = 0, ϕ = 0) and equation 
(32) is acquired: 
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(32)

The control inputs for the stability criteria are 
described by the following equations:

2 1( )x
d

I
U k

l
ϕ ϕ ϕ= − − − 

                                   
(33)

3 2( )y
d

I
U k

l
θ θ θ= − − − 

                                       
(34)

4 3( )z dU I kψ ψ ψ= − − −                                     (35)

By substituting the above inputs in (32), this 
equation could be revised as below:

2 2 2
1 2 3( )

x y z

l l lV x k k k
I I I

ϕ θ ψ= − − −

 

              
(36)

where k1, k2 and k3 are the positive constants 
described in equations (33) – (36) that are negative 
semidefinite. The stability for equilibrium point 
is guaranteed as a result of the Lyapunov theory. 
Stability is ensured by employing the invariance 
criteria, since the controlled maximum invariant 
set of subsystems in S = {X ∈ R6 : V̇ | x = 0} is 
limited by the equilibrium point (Zhou et al., 
2023). For altitude control, Lyapunov function 
and its derivative are given in (37) and (38):
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2 21( ) [( ) ]
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1( ) ( ) ( (cos cos ) )d
UV x z z z z g
m

θ ϕ= − + −

 

          
(38)

U1 control input is described in (39) for  
stability criteria.

1 ( )
cos cos d z

mU z z g k z
θ ϕ

= − − − − 

                 
(39)

When U1 is substituted in (38), (40) is acquired. 
kz is a positive constant presented by (39) which 
is negative semidefinite.

2( ) (cos cos )zkV x z
m

θ ϕ= −



                             
(40)

Coefficients of Lyapunov-based control are 
presented in Table 3. k1, k2 and k3 are parameters 
of the roll, pitch, yaw controllers, respectively.  
kz represents the parameter of the altitude 
control. The Lyapunov-based controller was 
modeled using the Simulink program. Lyapunov 
controller parameters were determined manually 
by trial and error. While determining the controller 
coefficients, it was aimed to obtain the least 
overshoot and the fastest settling time.

Table 3. Parameters of the Lyapunov-based control

Parameter Value
k1 0.167
k2 0.168
k3 0.104
kz 2.15

3.3 Backstepping Control Approach

Backstepping control method is an adaptive 
control approach (Zhang et al., 2021). It relies 
on a recursive method which connects the 
choosing of Lyapunov function with feedback 
control mechanism and allows strict-feedback 
for reaching stability. Lyapunov’s direct method 
is used with basics of adaptive control. Firstly,  
z1 error is described as in (41):

1 dz ϕ ϕ= −                                                 (41)
Lyapunov equation and its derivative for z1 are 
given in (42) and (43):

2
1 1

1( )
2

V z z=
                                                

(42)

1 1( ) ( )dV z z ϕ ϕ= −

                                         (43)

Because the derivative of Lyapunov equation 
should be negative semidefinite, a new virtual 
control input ϕ  is defined to stabilize z1 as in (44):

1 1d a zϕ ϕ= +                                                (44)

a1 coefficient should be positive to obtain negative 
semidefiniteness. When the virtual control term is 
put in (43), equation (45) is obtained. 

2
1 1 1( )V z a z= −                                               (45)

Another variable change is given in equation (46):

2 1 1dz a zϕ φ= − −                                          (46)

Afterwards the replacements, augmented 
Lyapunov equation can be given in (47): 

2 2
1 2 1 2

1 1( , )
2 2

V z z z z= +
                                  

(47)

Lyapunov equation’s derivative could be described 
in (48):

2
1 2 1 1 1 2 2 2 1 2

1 1

( , ) ( (
))

dV z z a z z z z z a z
a z

ϕ ϕ= − − + − − +

 

   
(48)

In accordance with equation (20), ϕ  variable 
could be written as in equation (49): 

1 2 2r
x

la a w U
I

ϕ ψθ θ= + + 

 

                             
(49)

U2 input is described as (50) under 0,ϕ =  0,ϕ =  
0dθ =  and V̇ (z1, z2) < 0 conditions.

2 1 1 2 1 2 1 1 2 2( ( ) )x
r

I
U z a a w a z a z a z

l
θψ θ= − − − + − 



  
(50)

The a2z2 expression with a2 > 0 is added to 
stabilize z1. With the same methods, U3 and U4 
inputs are described as in (51) and (52):

3 3 3 4 3 4 3 3 4 4( ( ) )y
r

I
U z a a w a z a z a z

l
ϕψ ϕ= − − − + −  

  
(51)

4 5 5 5 6 5 5 6 6( ( ) )zU I z a a z a z a zϕθ= − − + −

           (52)

Equations (53) – (56) describe variables utilized 
in U3 and U4.

3 dz θ θ= −                                                 (53)
4 3 3dz a zθ θ= − −                                           (54)
5 dz ψ ψ= −                                                 (55)
6 5 5dz a zψ ψ= − −                                           (56)

The tracking error of altitude control is shown 
as z7.

z7 = z − zd                                                    (57)
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The Lyapunov function for z7 and its derivative 
are given in (58) and (59):

2
7 7

1( )
2

V z z=
                                              

(58)

7 7( ) ( )dV z z z z= −

                                         (59)

The x8 virtual control input, given in (60), is used 
to stabilize z7 variable.

8 7 7dx z a z= +                                               (60)

Another variable change is presented in (61):

8 8 7 7dz x z a z= − −                                          (61)

After the variable replacements are completed, 
new Lyapunov equation is defined in (62):

2 2
7 8 7 8

1 1( , )
2 2

V z z z z= +
                                  

(62)

The above Lyapunov equation’s derivative can be 
given as in (63):

2
7 8 7 7 7 8 8 8 8 7 8

7 7

( , ) ( (
))

dV z z a z z z z x z z a z
a z

= − − + − − +



  
(63)

The derivative of x8 virtual control term is defined 
as in (64):

1
8 cos cos Ux g

m
θ ϕ= −

                                  
(64)

The U1 control term that controls altitude is 
presented in (65):

1 7 7 8 7 7 8 8( ( ) )
cos cos

mU z g a z a z a z
θ ϕ

= + − + −
   

(65)

Table 4 illustrates parameters of backstepping 
control. The backstepping controller is modeled 
using Simulink program. The coefficients of 
the controller were found by trial and error. 
While determining the coefficients, it was aimed 
to obtain the least overshoot and the shortest 
settling time.

Table 4. Parameters of backstepping control

Variable Roll Pitch Yaw Altitude

(a1,…,a8) (8.68, 6.99) (8.2, 3.95) (8.45, 4.05) (1.45, 5.95) 

4. Simulations

Aggressive maneuver simulations were realized 
using the MATLAB program. The ability of 
controllers designed for quadcopter to follow 
sinusoidal, triangle and sawtooth references 
was examined. Time response data of PID, 

Lyapunov-based and backstepping controllers 
were found and compared. In the simulations, 
rise time was determined as the time required 
for the controller to reach from 10% to 90% of 
the final value of the given reference. Overshoot 
refers to an output exceeding its final, steady-
state value in terms of percent. Settling time 
is taken as the time when the system response 
reaches the final value within the 5% tolerance 
band and settles. In the simulations, roll, pitch, 
and yaw references were determined in radians, 
height in meters, and time in seconds. Rise 
time, overshoot and settling time data of PID, 
Lyapunov-based and backstepping controllers 
were obtained and compared with each other for 
different reference types. Thus, a comparative 
analysis was realized and robustness of 
the developed backstepping controller was 
demonstrated numerically. Figure 3 displays 
the block diagram of quadcopter system created 
in Simulink.

Figure 3. Block diagram of the employed system 
(Karahan et al., 2023)

4.1 Triangular Wave Simulations

In this subsection, reference tracking simulations 
were made using a triangular wave with 
amplitude 2 and period 2. Figures (4) to (7) 
show triangular reference tracking simulations 
of the controllers. 
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Figure 4. Roll tracking for triangular reference
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Figure 5. Pitch tracking for triangular reference
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Figure 6. Yaw tracking for triangular reference
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Figure 7. Altitude tracking for triangular reference

Table 5 contains the controllers’ time response 
data for triangular reference tracking.

According to Table 5, the PID controller shows 
the highest overshoot value and the longest 
settling time value. The Lyapunov-based control 
shows the least rise time and does not show 
overshoot, except for the altitude reference. 
However, since the given references cannot settle 
within the ± 5% range, there is no settling time 
in any of the references. Since the backstepping 
controller follows the triangle reference 
almost without error from the beginning of 
the simulation, the settling time is 0 seconds, 
except for the pitch and altitude references. The 
backstepping control is the best control because 
it does not show overshoot and shows the fastest 
settling time.

4.2 Sinusoidal Wave Simulations

The following reference was performed under a 
sinusoidal wave of 3 rad/s. Sinusoidal reference 
tracking simulations are given in Figures (8) to (11).
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Figure 8. Roll tracking for sinusoidal reference

Table 5. Time response for triangular reference

Controller Rise time (s) Overshoot (%) Settling time (s)
Roll PID 3.99 22 6.19

Roll Lyapunov-based 3.89 0 -
Roll Backstepping 3.98 0 0

Pitch PID 4.01 0 7.05
Pitch Lyapunov-based 3.85 0 -

Pitch Backstepping 3.97 0 6.04
Yaw PID 3.81 0 7.12

Yaw Lyapunov-based 3.25 0 -
Yaw Backstepping 3.97 0 0

Altitude PID 3.72 0.9 9.28
Altitude Lyapunov-based 3.07 3.8 -

Altitude Backstepping 3.89 0 6.44
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Figure 9. Pitch tracking for sinusoidal reference
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Figure 10. Yaw tracking for sinusoidal reference
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Figure 11. Altitude tracking for sinusoidal reference

Table 6 shows the time response data of the 
controllers for tracking a 3 rad/s sinusoidal wave.

The PID controller has the fastest rise time in all 
references. However, the PID controller also shows 
the highest overshoot. Additionally, it does not 
have a settling time, as it cannot settle within the 
± 5% of the reference. Since the Lyapunov-based 
controller cannot rise to 90% of the reference value, 
there is no rise time. Since it does not reach the 
maximum point of the given reference values, it 
does not show any overshoot. Moreover, since it 
cannot follow the reference stably, it has no settling 
time. The backstepping control design has a rise 
time very close to PID controller, except for the 
altitude reference. It is the control design that shows 
the least overshoot and it is also the only controller 
that has a settling time in all references. It has the 
fastest settling time. Therefore, it is the most robust 
control design.

4.3 Sawtooth Wave Simulations

In this subsection, reference tracking was 
performed under a sawtooth wave with amplitude 
3 and frequency 1 rad/s. Sawtooth wave tracking 
simulations are shown in Figures (12) to (15).  
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Figure 12. Roll tracking for sawtooth reference

Table 6. Time response for sinusoidal reference
Controller Rise time (s) Overshoot (%) Settling time (s)
Roll PID 0.32 23.7 -

Roll Lyapunov-based - 0 -
Roll Backstepping 0.31 3.2 0

Pitch PID 0.31 37.1 -
Pitch Lyapunov-based - 0 -

Pitch Backstepping 0.29 4.6 0.69
Yaw PID 0.27 19.2 -

Yaw Lyapunov-based - 0 -
Yaw Backstepping 0.30 2.72 0

Altitude PID 0.55 0 -
Altitude Lyapunov-based - 0 -

Altitude Backstepping 0.37 9.62 2.48
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Figure 13. Pitch tracking for sawtooth reference
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Figure 14. Yaw tracking for sawtooth reference
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Figure 15. Altitude tracking for sawtooth reference

Table 7 shows the time response data of the 
controllers for tracking a sawtooth wave.

When the data in Table 7 is analyzed, it is observed 
that PID controller has the fastest rise time. 
However, since it cannot be within the ± 5% of 
the reference value, there is no settling time data 
and it shows a high overshoot. There is no settling 
time data for the Lyapunov-based controller, 
because it cannot be placed within the 5% range 
of the references. It shows the highest overshoot 
in all reference tracking, except the pitch angle 
reference. The backstepping controller is the only 
controller that shows no overshoot, except for the 
pitch reference. It is also the only controller that 
has settling time in all references. Therefore, it 
turns out that the backstepping controller is more 
successful in sawtooth wave reference tracking.

5. Conclusion

In this research, nonlinear modelling of a 
quadcopter was carried out. Then, a backstepping 
controller design that could perform aggressive 
maneuvers was developed. Simulations have 
been made for triangular, sinusoidal and 
sawtooth wave references. Within the scope of 
the study, the proposed backstepping controller 
was compared with PID and Lyapunov-based 
control structures. Robustness analysis was 
realized by comparing the time response of the 
controllers. As a result of this analysis, it was 
observed that the backstepping controller showed 
the least overshoot in all simulations and was 
the only controller with a settling time in all 
reference tracking. Thus, the superiority of the 
backstepping controller has been proven.

Table 7. Time response for sawtooth reference
Controller Rise time (s) Overshoot (%) Settling time (s)
Roll PID - 11.7 -

Roll Lyapunov-based 0.88 33.3 -
Roll Backstepping - 0 0.89

Pitch PID 0.067 131.2 -
Pitch Lyapunov-based 0.834 45.4 -

Pitch Backstepping 6.22 41.6 13.5
Yaw PID - 0 -

Yaw Lyapunov-based 8.7 12.2 -
Yaw Backstepping - 0 13.5

Altitude PID 0.723 0 -
Altitude Lyapunov-based 1.836 56.8 -

Altitude Backstepping - 0 13.39
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