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1. Introduction

Currently, the in-factory material transfer 
work tends to intelligent development in the 
manufacturing industry’s traditional factory, thus 
transforming one of the crucial smart-factory 
components (Saber, Behiry & Amin, 2022). 
Material transfer robots are a novel category of 
industrial machinery and equipment and exhibit the 
following advantages: they enhance the efficiency 
of material handling operations and can somewhat 
realize the advantages of cost reduction and 
efficiency in the manufacturing industry (Chai & 
Xia, 2023). In the shop-floor environment, robots 
work in a wide variety of environments, and, 
simultaneously, there are requirements for robot 
efficiency (Šegota* et al., 2022). It is, therefore, 
necessary to select the appropriate industrial robot 
according to the type of work in the shop-floor 
(Ibrahim et al., 2022). For example, the material 
transfer robots analysed herein are mobile. In the 
automotive industry, it is necessary to consider 
the handling of materials in the final assembly, 
stamping, welding, and painting shop floors. How 
to make material transfer robots safely avoid 
obstacles while improving the material transfer 
efficiency is an urgent problem (Mani et al., 2023). 

Moreover, the shop-floor environment 
encompasses a variety of materials, including 
standardized, non-standardized, and externally 
processed materials. When employing traditional 
path planning methods for transporting these 
diverse materials, transport robots face challenges 
such as extended transportation routes, heightened 
energy consumption, and potential collisions with 
obstacles (Wang et al., 2022a). Hence, this paper’s 

primary objective is to enhance the efficiency 
of shop-floor transfer robots during material 
transportation within the shop-floor setting.

The structure of the paper is as follows: Section 
2 presents a review of the relevant literature, 
Section 3 describes the research methodology 
for path planning, Section 4 discusses the 
simulation experiments, and Section 5 presents 
the conclusions.

2. Literature Review

Currently genetic algorithms (GA) (Wen et al., 
2021), A* algorithms (Zhong et al., 2020) and ant 
colony optimization (ACO) (Gu et al., 2020) are 
often utilized to solve transfer robots path planning 
problems. When solving the robot path planning 
problem, the advantages of the algorithms are 
rationally analysed, and the combination of 
multiple algorithms can be utilized collaboratively 
to achieve ideal results (Haider et al., 2022). 

One study addressed the problem of path planning 
methods for handling robots being prone to local 
optima and lacking universal adaptability to 
the environment. The authors incorporated the 
species evolution concept of genetic algorithms 
and redefined simulated annealing coefficients and 
grid coefficients. The improved algorithm shortens 
the length of path planning of handling robots 
(Tao et al., 2018). Researchers aimed to enhance 
the efficiency and stability of automated guided 
vehicle (AGV) material transportation within 
workshops, by employing a fusion algorithm that 
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combines genetic and particle swarm algorithms 
for path planning. They utilized the Warshall-
Floyd algorithm to determine optimal paths 
between any two points and proposed a particle 
iteration mechanism based on time priority to 
expedite algorithm convergence (Du et al., 2019). 
To address the suboptimal path optimization 
efficiency of sorting and handling robots, they 
integrated the A* algorithm with the ant colony 
algorithm. They utilized the A* algorithm to 
identify an optimal route distribution pheromone 
and, based on varying parameters, selected 
path nodes for planning to minimize material 
transportation duration (Cai et al., 2018).

A research subject emphasized the shortest 
material transportation path for automatic guided 
vehicles, reducing redundant nodes and corners 
through secondary path planning on the initial path 
outlined by the A* algorithm (Zhang et al., 2019). 

One study applied the simulated annealing method 
to address the local minimum issue encountered 
with the artificial potential field algorithm, 
consequently reducing the operational path of 
transport robots (Zhu et al., 2020).

Certain studies employed an enhanced particle 
swarm optimization algorithm to devise 
the shortest path for enhancing the material 
transportation efficiency of robots. Cross operation 
was utilized to update particle positions, while a 
mutation mechanism was integrated to prevent the 
algorithm from converging to local optima (Tao 
et al., 2021). To reduce the length of the robot’s 
driving path in the shop-floor, they employed Tent 
chaotic mapping to refine Wolf initialization. They 
further refined the Wolf evolution method based 
on genetic principles, enhancing the algorithm’s 
convergence capability (Zhou, 2020).

Other research studies allocated transportation 
task sequences between shelves and processing 
equipment to corresponding AGVs, formulated 
the initial path for each AGV, and devised 
collision-free global routes for multiple AGVs 
within the workshop, aiming to minimize overall 
transportation time (Wang et al., 2022b).

Some other studies addressed the following 
problem: the efficiency of the A* algorithm can be 
significantly degraded in a large logistics factory 
environment. The length of the movement path 
and the number of turns are reduced by changing 
the total cost formula, and the five-point cubic 
smoothing method is introduced to increase the 

smoothness of the movement path. Thus, the 
handling robot’s energy consumption is reduced 
(Zhang & Wu, 2023). Researchers focused on 
enhancing the transportation efficiency of carrying 
robots in loom workshops. They employed 
Bessel curve smoothing paths to optimize robot 
transportation efficiency and improved the 
algorithm’s heuristic function, through a multi-
segment dynamic weighting method, to expedite 
path search. Through simulated large loom 
workshop environments, the refined algorithm 
accelerated path planning (Gong et al., 2023).

A recent study integrated diagonal distance and 
turning weight into the heuristic function of the 
A* algorithm to address excessive corners and 
extended transportation times encountered by 
workshop guided vehicles (Liu et al., 2024).

A research subject addressed the optimization of 
path selection and safe operation for cleaning robots 
in wood processing workshops, by employing 
multiple sensors in conjunction with a genetic 
algorithm for path planning (Zhou et al., 2014). 
Aiming at improving the safety and efficiency of 
warehouse robot path planning, they integrated 
the influence of unknown factors, simulated by a 
Poisson distribution, to refine and smoothen the 
path charted by the ant colony algorithm, thereby 
crafting an optimal route (Chen et al., 2023).

The aforementioned approaches address various 
challenges in the path planning of transportation 
robots for material conveyance, such as shortening 
path lengths, reducing energy consumption 
through path smoothing, and ensuring collision-
free operation for enhanced safety. However, these 
methods do not tailor path planning schemes to 
the specific characteristics of the transported 
materials. In a static environment, a uniform 
route planning approach fails to differentiate 
the size and weight of materials transported on 
each occasion. Implementing a sub-strategy 
transportation method could bolster efficiency.

3. Research Methodology

This paper supports the idea that transfer robots 
employ distinct static path planning methods 
tailored to the characteristics of shop-floor materials, 
thereby enhancing transportation efficiency. For 
standard materials, as depicted in Figure 1(a), 
an improved particle swarm algorithm and the 
ant colony algorithm are proposed for robot path 
planning. To address the shortcomings of traditional 
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algorithms, population diversity was increased, 
using clustering of elite particles. To optimize 
algorithm convergence, the study improved learning 
factors and dynamically adjusted inertia weights. 
The bidirectional search strategy is applied to 
enhance ant utilization and optimize algorithm 
speed. Meanwhile, the solution of the particle swarm 
algorithm is utilized as the basis for adjusting the 
initial path pheromone of the ant colony algorithm, 
which is applied to solve the global optimal path. 
For longer size materials, as depicted in Figure 1(b), 
a marking grid is set to enhance the safety of the 
robot operation. For heavier materials, as depicted 
in Figure 1(c), this study utilized cubic B-splines 
to smooth the path and reduce the robot’s energy 
consumption. Thus, this study provides a basis for 
further research on the application of robot path-
planning algorithms to the problem of material 
transfer in a shop-floor environment.

     (a) Standard       (b) Longer size      (c) Heavier
Figure 1. Diverse materials

3.1 Environmental Modelling

The application of this algorithm is verified in 
the shop-floor environment, and the grid method 
is used to establish a simulation map. Herein, 
the grid method is utilized to build the operating 
environment of the shop-floor material transfer 
robot, because the method is intuitive in expression 
and easy to store (Liu et al., 2023). When modelling 
the environment, the material transfer robot is 
considered as a mass (Hao, 2022). The shop-floor 
environment is mapped to a certain scale on the 
grid map. Static obstacles in the shop floor, such as 
pallets, sheet metal, and tooling are represented by 
a black grid. The unobstructed environment in the 
shop floor is represented by a white grid. The grid 
modelling method that is utilized to construct the 
shop-floor environment is illustrated in Figure 2.

To minimize the total path length, the objective 
function is formulated as:
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where x=(x1,x2,…,xn) represents the sequence of 
nodes in the path, d(xi, xi+1) is the distance between 

the nodes xi and xi+1, and n is the number of nodes 
in the path.

Figure 2. Environmental modeling

Because the shop materials are planned by the 
industrial engineering department staff, the shape 
and placement of the material footprint are more 
organized, as depicted in Figure 3.

Figure 3. Static obstacles

3.2 Improved Particle Swarm Grouping

Particle swarm optimization (PSO) are bionic 
algorithms that simulate the foraging of a flock 
of birds (Chen et al., 2022). In particle swarm 
optimization, each particle represents a candidate 
solution. The optimal solution is obtained by 
constantly updating their information (Tao et al., 
2023). In the N-dimensional environment, the 
particle population is m. The position of particle 
i is expressed as xi={xi1,xi2,…,xiN}. The particle 
iteratively updates the position x to search for 
the optimal position. The velocity of particle i is 
expressed as vi={vi1,vi2,…,viN}. The equations for 
the change of velocity and position of particle i 
in the D-dimensional component (1≤d≤N) of the 
search space are as follows:

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21id id id id gd idv t v t c r p t x t c r p t x tω+ = + − + −   (2)

( ) ( ) ( )1 1id id idx t v t x t+ = + +                             (3)
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where t denotes the number of iterations, pid(t) 
denotes the D-dimensional component of the 
particle searching for the optimal position at 
the t iteration, pgd(t) denotes the D-dimensional 
component of the global optimal position 
searched by the t iteration of the particle swarm, 
ω denotes the inertial weight, c1 and c2 denote the 
accelerators, and r1 and r2 denote random numbers 
between [0,1]. 

The particle swarm grouping algorithm yields 
more optimal results compared to the single-
population particle swarming algorithm. This 
paper proposes an improved particle grouping 
method incorporating subgroups. The particles 
are sorted by their individual fitness values, 
in descending order, then are divided into 
M subgroups. The particles are specifically 
allocated from the sorted list to each subgroup, 
sequentially, starting from the first subgroup, until 
the Mth subgroup. After completing one cycle of 
allocation, the remaining particles from the first 
subgroup continue to be allocated again, until all 
particles are allocated. For each subgroup, the 
particle with the highest fitness value is identified 
as the best particle in that subgroup. Moreover, 
an elite subpopulation is established, and the 
optimal particles are placed into that population. 
The elite subgroup is responsible for global search 
optimization, and the remaining subgroups are 
responsible for local search optimization.

3.3 Dynamic Parameter Adjustment

The regular particle velocity and position formulas 
are first updated, and if the particle fitness values 
cannot be improved after use, the following 
formulas are utilized:
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Herein, a kind of acceleration factor ca1 and 
ca2, which becomes nonlinear with the number 
of iterations and dynamic adjustment of inertia 
weight, is utilized to obtain ωr.
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where c1max, c1min denote the maximum and 
minimum values of c1; c2max, c2min denote the 
maximum and minimum values of c2; n1 denotes 
the number of current iterations; and n2 denotes 
the total number of iterations. Moreover, d denotes 
the Euclidean distance between the current particle 
and the optimal particle within the subpopulation, 
and dmax denotes the maximum distance between 
the current particle and the optimal particle of 
all subpopulations at the time of iteration. ωmax 
denotes the maximum weight coefficient, ωmin 
denotes the minimum weight coefficient. The 
parameters for the simulation experiments in this 
study are set as follows: ωmax=0.9, ωmin=0.4.

3.4 Bidirectional Search Strategy

Ant colony algorithms are derived from bionic 
evolutionary algorithms that simulate the behaviour 
of ant colonies (Wu et al., 2023).  Each ant leaves a 
certain amount of pheromone concentration on the 
path it travels, and the algorithm can be optimized 
by changing the value of this concentration (Gao 
et al., 2020). The ants update the local pheromone 
concentration as they move from grid i to the next 
grid j. When the ant colony completes an iteration, 
the global pheromone concentration is updated (Pu 
et al., 2023). The transfer probability for the ants 
is as follows:
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where Pij
k denotes the probability that the kth 

ant moves from node i to node j; τij denotes the 
pheromone level on the path from node i to node j;  
ηij denotes the heuristic factor of the path from 
node i to node j; α denotes the pheromone factor; β 
denotes the expected heuristic factor; and C is the 
set of paths that the kth ant is allowed to choose from 
at this stage. dij denotes the linear distance between 
the current node i and the next optional node j.

To more optimally utilize the search ability of 
individual ants, an iterative approach with foldback 
is proposed. However, this approach leads to 
interference of the forward pheromone with the 
reverse pheromone. Herein, an improved strategy 
is utilized. When an individual ant reaches the 
target point from the starting point, the pheromone 
is updated. After completing a path search, the 
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ant returns to the starting point and updates the 
pheromone levels to complete one iteration. This 
iterative process not only reduces the waiting time 
during searches, but also increases the efficiency 
of ant reuse, thereby improving the overall search 
efficiency. When choosing a path based on the 
transfer probability formula, the relationship with 
the goal point, the starting point, is not involved, 
since only the relationship between the current 
node and the neighbouring nodes is considered. 
Thus, the algorithm is prone to problems, such 
as inaccurate search or slow convergence when 
searching for paths.

Therefore, an improved heuristic function is 
introduced: the study introduces the current 
optional straight-line distance of the next node 
from the end point into the mix. Moreover, the 
straight-line distance of the current node from 
the start point is introduced, which leads to better 
guiding of the search direction, narrowing of 
the search area, and enhanced search efficiency. 
Different heuristic functions are utilized in the 
forward search and reverse re-entry processes.

The heuristic function from the starting point to 
the goal point can be expressed as: 

1
e

ij jed d
η =

+                                                
(11)

where dje denotes the straight-line distance 
between the current node j and the target point e.

The heuristic function from the target point to the 
starting point can be expressed as:

1
s

ij jsd d
η =

+                                               
(12)

where djs denotes the straight-line distance 
between the current node j and the start point s.

3.5 Fusion Algorithm

The fusion algorithm steps are as follows:

Step 1: Initialize the algorithm parameters;

Step 2: Calculate the fitness value of each particle, 
group the particles into clusters based on the 
fitness value, and place the optimal particles into 
the elite subclusters;

Step 3: Update the particles’ individual and global 
optimal solutions;

Step 4: During the algorithm search process, the 
particle velocity and position are updated as per 

formulas (2) and (3). If the particle fitness value is 
not improved, the particle velocity and position are 
updated according to formulas (4) and (5). If the 
subgroup optimal solution is more optimal than 
the global optimal solution, the worst solution in 
the elite subgroup is replaced with the subgroup 
optimal solution; 

Step 5: Determine whether the set maximum 
number of iterations has been attained. If so, the 
pheromone on the path of the ACO algorithm 
is adjusted with the obtained optimal solution; 
otherwise, return to Step 3;

Step 6: Adjust the pheromone on the path 
according to the optimal solution obtained by the 
improved particle swarm algorithm;

Step 7: Set M ants to conduct path searches, 
according to the bidirectional search strategy; 

Step 8: When all ants have finished searching the 
target space, they are updated according to the 
global pheromone update formula;

Step 9: Output the optimal path at this point.

The flowchart of the fusion algorithm is depicted 
in Figure 4.

Figure 4. Flowchart of the fusion algorithm
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According to the working environment of the robot, 
the fusion algorithm is further optimized. The robot 
can choose the optimal path, the safest path, and 
the path with the lowest energy consumption, 
according to the algorithm selection, based on the 
characteristics of the material to be transported.

3.6 Security-Marking Grid

This aspect needs to be taken into account, 
because the materials transported by shop-
floor material transfer robots exhibit a specific 
mechanical dimensionality. For example, the size 
of some materials is long, and there is a scenario of 
brushing against obstacles when passing through 
them. Even if the path does not cross the boundary 
of an obstacle in the simulation environment, a 
certain safety distance should be ensured for 
materials with long dimensions. Therefore, a safe 
obstacle-avoidance strategy is utilized to ensure 
the safety of a shop-floor material transfer robot 
during shop-floor operations.

This strategy identifies the grids, and the algorithm 
solves the path to avoid the path contacting with 
the obstacle grids; thus, enhanced path security is 
achieved. A schematic diagram of the path coming 
into contact with the obstacle grid is illustrated in 
Figure 5(a). The path after the introduction of the 
marker grid is depicted in Figure 5(b). The path is 
further optimized by using the simplified operator. 
Figure 5(c) indicates the optimized path after the 
simplified operator processing.

     (a) Contact          (b) Marking         (c) Simplified

Figure 5. Result of security-marking grid

3.7 Cubic B-spline Smooth Path

Because the fusion algorithm produces path spikes 
when turning, the transshipment robot should 
smooth the path, if it needs to reduce the robot’s 
wear and tear and energy consumption when 
transporting heavier materials (Gültekin, Diri & 
Becerikli, 2023). Herein, path spikes are smoothed 
using cubic B-spline curves. Smooth path steps 
are as follows:

Step 1: B-spline curve parameters are set;

Step 2: The optimal path nodes output is saved by 
the fusion algorithm;

Step 3: The optimal path nodes are utilized as 
control points to generate B-spline curves;

Step 4: The B-spline curve is output and the 
algorithm ends.

4. Results and Discussions

The simulation environment comprises two 20×20 
grid maps. The obstacle coverage for Scene 1 is 
33.24%. The obstacle coverage for Scene 2 is 
51.80%. (1, 1) denotes the robot’s starting point 
coordinates and (20, 20) denotes its end point 
coordinates. By varying the parameter values and 
observing the changes in algorithm performance, 
the optimal parameter combination can be 
determined. In this study, the sparrow search 
algorithm and genetic algorithm are initialized 
exclusively for the purpose of performance 
comparison with the fusion algorithm. The 
parameters of the particle swarm algorithm are 
as follows: number of particles NP=50, ω=0.5, 
c1max=c2max=2.5, c1min=c2min=0.5. The parameters of 
the ant colony algorithm are as follows: number 
of ants M=50, α=1, and β=12. The parameters of 
the genetic algorithm are as follows: number of 
individuals in the first-generation N=50, crossover 
probability Pc=0.8 and mutation probability 
Pm=0.3. The parameters of the sparrow search 
algorithm are as follows: number of sparrows 
NP=50, safety value = 0.8, discoverer ratio 
RP=0.3, and scout ratio SP=0.2. To rule out 
randomness in the algorithm’s optimization 
results, all four algorithms were run independently 
for 30 times.

4.1 Shortest Path Results in Scene 1

The path planning results of sparrow search 
algorithm (SSA), GA, PSO, and PSO-ACO in 
Scene 1 are illustrated in Figures 6(a), 6(b), 6(c), 
and 6(d). The iterative convergence curves are 
depicted in Figure 7, while the experimental data 
are depicted in Table 1.

The shortest path length of PSO-ACO is 3.02%, 
3.94%, and 8.29% shorter than the one of SSA, 
GA, and PSO, respectively; the average path 
length of PSO-ACO is 13.17%, 8.58%, and 
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14.31% shorter than the one of SSA, GA, and PSO, 
respectively; the minimum number of corners of 
PSO-ACO is 50%, 80% and 62.5% lower than the 
one of SSA, GA, and PSO, respectively; the mean 
value of the number of corners of PSO-ACO is 
57.14%, 81.25%, and 70% lower than the one of 
SSA, GA, and PSO, respectively; the minimum 
value of the number of iterations of PSO-ACO 
is 22.73% lower than the one of GA and 61.36% 
lower than the one of PSO; the mean value of the 
number of iterations is reduced by 40%, 27.78%, 
and 74.65% compared to the one of SSA, GA, and 
PSO, respectively.

Table 1. Comparison of experimental data in Scene 1

Algorithm
Optimal path length Number of turns Iterations

Optimal value Average value Optimal value Average value Optimal value Average value
SSA 29.5145 32.9661 6 7 14 30
GA 29.7990 31.3102 15 16 22 23
PSO 31.2100 33.4047 8 10 44 71

PSO-ACO 28.6240 28.6240 3 3 17 18

(a) SSA (b) GA

(c) PSO (d) PSO-ACO
Figure 6. The optimal path comparison of four algorithms in Scene 1

Figure 7. Iterative convergence curves in Scene 1
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4.2 Shortest Path Results in Scene 2

The path planning results for SSA, GA, PSO, and 
PSO-ACO in Scene 2 are illustrated in Figures 
8(a), 8(b), 8(c), and 8(d). The iterative convergence 

curves are illustrated in Figure 9, while the 
experimental data are illustrated in Table 2.

The shortest path length of PSO-ACO is 2.90%, 
1.94%, and 5.57% shorter than the one of SSA, 

(a) SSA (b) GA

(c) PSO (d) PSO-ACO
Figure 8. The optimal path comparison of four algorithms in Scene 2

Table 2. Comparison of experimental data in Scene 2

Algorithm
Optimal path length Number of turns Iterations

Optimal value Average value Optimal value Average value Optimal value Average value
SSA 30.6861 33.2445 7 8 16 27
GA 30.3848 32.7061 15 17 20 23
PSO 31.5540 33.3227 12 14 63 82

PSO-ACO 29.7960 29.7960 6 6 19 21

Figure 9. Iterative convergence curves in Scene 2
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GA, and PSO, respectively; the average path 
length of PSO-ACO is 10.37%, 8.90%, and 
10.58% shorter than the one of SSA, GA, and PSO, 
respectively; the minimum number of corners of 
PSO-ACO is 14.29%, 60% and 50% lower than 
the one of SSA, GA, and PSO, respectively; the 
mean value of the number of corners of PSO-ACO 
is 25%, 64.71%, and 57.14% lower than the one 
SSA, GA, and PSO, respectively; the minimum 
value of the number of iterations of PSO-ACO 
is 5% lower than the one of GA and 69.84% 
lower than the one of PSO; the mean value of the 
number of iterations of PSO-ACO was reduced by 
22.22%, 8.70%, and 74.39% compared to the one 
of SSA, GA, and PSO, respectively. 

4.3 Path Planning Results that Contain 
Security Identifiers

The fusion algorithm, that incorporates the security 
marking grid in Scene 1 and Scene 2, respectively, 
is run. Figures 10 and 11 indicate that no contact 
with the obstacle grids occurred on the robot travel 
path. The optimal path lengths are 29.2132 and 
32.1421, respectively. The number of corners is 
7 and 13, respectively. This optimization method 
focuses on the safety of the path, which increases 
the path length, but also ensures the safety of the 
transport robot during operation.

Figure 10. Security marking grid in Scene 1

Figure 11. Security marking grid in Scene 2

4.4 Smooth Path-Planning Results

The fusion algorithm using the smoothing method 
in Scene 1 and Scene 2, respectively, is run. 
Figures 12 and 13 indicate that the number of 
corners is 4 and 6, respectively. The optimal path 
lengths are 28.6540 and 31.3274, respectively. 
This optimization method utilizes the number of 
corners as the main indicator for evaluating the 
quality of the path. This path-planning method can 
be chosen, if the lowest energy consumption of the 
transportation robot is a prerequisite.

Figure 12. Smooth path in Scene 1

Figure 13. Smooth path in Scene 2

Compared to straight-line movement, any 
turn generates additional energy consumption, 
regardless of the specific size of the turning angle. 
The purpose of this approach is to simplify the 
calculations, while also preserving the practicality 
of the model. Given these conditions, the energy 
consumption formula is defined as follows:

··sum m ttE L E N E= +                                    (13)

where L denotes the total length of the path; Nt, 
denotes the number of turns in the path; Em denotes 
the energy consumption for moving one cell 
forward; and Et denotes the energy consumption 
for each turn. 
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The parameters are as follows: Em=1, Et=0.5. The 
energy consumption values are as follows: 32.7132 
(as seen in Figure 10), 38.6421 (as seen in Figure 
11), 30.6540 (as seen in Figure 12), and 34.3274 (as 
seen in Figure 13). Therefore, the smoothed path 
consumes less energy than the original path.

5. Conclusion

Herein, a path-planning method of a fusion 
algorithm with complementary advantages is 
proposed. For the characteristics of material 
transfer work, three path-planning methods are 
proposed: the shortest path, the safest path, and 

the path with the lowest energy consumption. The 
robot can select the appropriate path according to 
the characteristics of the material to be transported. 
By analysing the simulation results, the paths 
planned by the algorithm are superior to SSA, GA, 
and PSO. Simultaneously, the sub-strategy-based 
path planning method proposed herein, tailored 
to material characteristics, not only enhances the 
efficiency of shop-floor material transfer robots, 
but also renders material transportation paths 
more adaptable. This study provides a basis for 
researching the application of robot path planning 
algorithms in planning various types of material 
transport routes within shop-floor environments.
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