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1. Introduction

Deep learning has achieved many promising 
results in pattern recognition tasks (Ding et 
al., 2021; Liang et al., 2020). Deep learning 
reduces the intensity and experience required for 
professional data analysis and provides accurate 
generalization for independently identically 
distributed data (Tian & Fu, 2020; Li et al., 
2021). Without the support of sufficient data, deep 
learning algorithm tends to fail in the overfitting 
situation. This significant gap between deep 
learning and intelligence has attracted researchers’ 
attention. The method to solve limited data for 
deep learning is termed few-shot learning. 
Recently, many works (Shorfuzzaman & Hossain, 
2021; Feng & Duarte, 2019) have tackled such 
problems. Meta-learning learns from a variety 
of tasks. Such an approach is referred to meta-
learning based few-shot learning, which is trained 
on a series of datasets and sequentially produces 
a corresponding learner. By dividing the tasks 
into disjoint sets, the meta-training set consists of 
limited training data, and the trainer is trained on 
a task sampled from the task distribution. Then 
the learner can be evaluated on the corresponding 
meta-testing set. Thus, the meta-learner achieves 
high classification performance on the test dataset. 

Previous meta-learning methods focused on 
achieving generalization for few-shot learning. The 

existing meta-learning based few-shot learning 
can be divided into 1) learning an initialization, 
2) learning an optimizer, and 3) memory-based 
method. The methods of learning an initialization 
assume that a global initialization (Finn et al., 
2017) learned from the base dataset can quickly 
adapt to the novel dataset. The methods (Ravi & 
Larochelle, 2017; Rusu et al., 2019) are about 
learning an optimizer how to optimize the model’s 
parameters. The memory-based methods (Mishra 
et al., 2018) leverage external memory from 
past episodes to tackle few-shot learning. Both 
learning an initialization and learning an optimizer 
neglect to improve the generalization performance 
via learned knowledge. The closest method to 
the one proposed in this paper is the third one. 
Unlike utilizing the learned experiences in the 
memory module, the present approach utilizes 
the knowledge from the well-trained model. The 
main factor for meta-learning is the fast adaptation 
which indicates that the feature reuse is vital in 
the whole process. Simply finetuning on a large-
scale dataset easily overfits the target dataset with 
limited samples. Considering a certain correlation 
between support images and query images, the 
knowledge and features learned in the base dataset 
construct the classification model for the novel 
dataset. Following this idea, some works showed 
that benefiting of representations from the base 
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dataset contributes to the fast adaptation to the 
novel dataset. The baseline trains the model to 
learn the basic knowledge through the meta-
training dataset. A linear classifier is utilized to 
finetune the model on the meta-test dataset. The 
above methods train the model from scratch 
without considering the trained model. The 
previously trained model has a comprehensive 
understanding of the overall distribution of the 
dataset. Therefore, the previously trained model 
is essential to guide current training. To utilize 
the previous knowledge guiding the training, 
knowledge distillation is introduced to transfer 
predicted distribution by matching certain 
statistics between the teacher and student models.

Knowledge distillation (Gou et al., 2021) can 
transfer informative relationships. Prior works 
improved the performance of a smaller model 
from the guidance of a large model. The compact 
network (Li et al., 2020) is compressed by various 
network pruning and weight decomposition 
methods. The layer-wisely accumulated errors are 
reduced via the layer-wise knowledge distillation 
approach (Bai et al., 2020), leading to a more 
robust and generalizable student network. One 
of the core challenges of few-shot knowledge 
distillation methods lies in unequal feature 
representative dimensions and errors introduced 
from a large network during inference. The 
high-dimension embedding representation is 
more expressive than the low-dimension in 
feature representation (Hu et al., 2021). A larger 
embedding dimensionality can reduce the capacity 
gap between embedding and feature spaces. 
However, this will increase the difficulty in 
producing well-generalized embedding for a small 
model because of the higher computing costs 
and higher chances of being wrongly classified. 
Besides, the standard meta-learning based few-
shot learning trains the model from scratch. 
The strategy neglects to consider the previous 
knowledge as guidance. Most existing knowledge 
distillation methods transfer the prediction 
distribution as additional knowledge (Fu et al., 
2021), while the feature relationship is not fully 
utilized during the knowledge distillation period.

This paper proposes a novel few-shot learning 
algorithm based on the meta-learning and 
knowledge distillation strategy to improve the 
model’s performance. Since the well-trained model 
has obtained enough knowledge on specific tasks, 
the learned knowledge can be applied to guide 
the current model’s training without introducing 

a larger model. This self-knowledge distillation 
approach could push the lower-dimension feature 
representation to embed more expressive semantic 
knowledge. Transferring more knowledge is 
an effective means of improving generalization 
capabilities. By preserving the mutual similarities 
between samples in every batch, the approach 
improves the generalization capacity of the original 
embedding space. Unlike the simple feature 
distribution matching during the self-knowledge 
distillation period, the student model learns more 
relationships within one batch than just applying 
distribution matching. Besides, the performance of 
the proposed approach was further improved with 
corrected self-knowledge distillation to the student 
model by making sure the predictions of the teacher 
model are corrected during training. Transferring 
the corrected feature similarities contributes to 
better guidance (Wen et al., 2021). The informative 
feature vector provided from the trained model can 
enhance the feature embedding generalization on 
the unseen categories.

The rest of the paper is organized as follows. Section 
2 reviews the existing Few-Shot Learning and 
knowledge distillation. In Section 3, the proposed 
main algorithm and its implementation details are 
described. Section 4 describes the experimental 
settings. In Section 5, the results are analysed. 
Finally, this paper is concluded in Section 6.

2. Related Works

2.1 Few-shot Learning

The core idea of few-shot learning is that the 
model generalizes well to the unseen categories. 
Meta-learner (Ravi & Larochelle, 2017) aims 
to capture current knowledge within a task and 
remember them by the Long Short-Term Memory 
(LSTM) mechanism. Unlike the previous method, 
Meta networks (Munkhdalai & Yu, 2017) learn 
meta-level knowledge across tasks and shift their 
inductive biases via fast parameterization for rapid 
generalization. Model-Agnostic Meta-Learning 
(MAML) (Finn et al., 2017) uses a recurrent 
neural network to describe the distribution of all 
tasks and task-specific parameters to fine-tune the 
model. The above methods train the model from 
scratch without considering the trained model. To 
utilize the previous knowledge guiding the training, 
the knowledge distillation method is employed to 
transfer predicted distribution by matching certain 
statistics between the teacher and student models.
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2.2 Knowledge Distillation

The knowledge distillation method can transfer 
informative relationships. Knowledge distillation 
usually utilizes a teacher-student strategy to 
extract the knowledge from the teacher model and 
guide the student model’s training. Most existing 
knowledge distillation methods transfer the 
prediction distribution as the additional knowledge, 
while the feature relationship is not fully utilized 
during the knowledge distillation period. The 
standard knowledge distillation approaches usually 
require a complex high-performance teacher 
model. Besides, transferring the more enriched 
features should consider the different architectures 
and feature resolutions. Thus, the self-knowledge 
distillation approach is considered instead.

3. Method

3.1 Problem Definition

From the perspective of datasets, the datasets 
can be divided into two parts. One is a base 
dataset 1{( , )} baseN

base i i iD x y == , and another is a 
novel dataset 1{( , )} novelN

novel i i iD x y == . The ( , )x y  
represents an image and its corresponding label.  
N* is the number of the total images. The categories 
in the base dataset are disjoint from the categories 
in the novel dataset. During few-shot learning, the 
episode strategy forms the training and testing. 
If C classes with K images per class are selected 
to form the query dataset, the training is referred 
to as C-way K-shot few-shot learning. The task 
consists of a small set of labeled support images 
and unlabeled query images. Both the support and 
query images are sampled from the same class. 
The classifier is adjusted on the labeled support 
images to recognize the query images correctly.

3.2 Embedding Backbone

It is essential to extract enough meaningful 
features due to the limited instances. Besides, 

the generalization performance is also necessary 
for such a limited feature situation. A generalized 
model is applied to obtain meaningful embedding 
features for the downstream tasks. ResNet 
introduces the identity shortcut connection to 
fit the desired mapping by taking advantage of 
enough capacity and preventing the overfitting 
mechanism. ResNet has been used as a backbone 
network for feature extraction because of its 
versatility and good performance.

3.3 Meta-learning

The meta-learning involves data, algorithm, 
and selection of model hyperparameters that 
contribute to an excellent procedure. During the 
meta-training period, relevant data are utilized to 
learn a better initial weight. Thus, the well-trained 
model can quickly fine-tune downstream tasks. 
Under the few-shot learning setting, our final 
target is to achieve such a learning procedure. 

In meta-learning based few-shot learning, a meta-
learner is trained to learn the shared knowledge 
in the base dataset and then adjusted on the novel 
dataset. Different tasks contain different categories, 
so the learner trained on the base dataset is learned 
to recognize the novel categories. Because the base 
categories are disjoint from the novel categories, the 
learner is adjusted with limited support instances 
to classify the query instances. Thus, the learner 
should quickly adapt to the novel tasks. Finally, 
the learner learns high-level transferable knowledge 
and task-specific knowledge.

If the high-level transferable knowledge can 
represent the common features among all the tasks, 
slightly fine-tuning the parameters can produce 
good results. Following the algorithm (Dhillon et 
al., 2020), the tasks from the training set are merged 
into a single task, and a classifier is performing 
classification on this combined dataset. The details 
of the training algorithm are shown in Algorithm 1.

Algorithm 1. General training algorithm of meta-training based few-shot learning
Input: Embedding model f, dataset D
Output: Meta-parameters w
Randomly initialize θ
While true:
Generate meta-tasks from D and merge all meta-tasks into one task T
For each epoch in total training epochs: 

Randomly select samples from the task T and train the embedding model
Compute the loss on the testing dataset for all instances
Update the model parameters by the loss θ

End for
Save the updated meta-parameters w’
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Here, the ResNet-12 is selected as the embedding 
model to learn transferable knowledge as in 
equation (1):

( )y f xθ=                                                         (1)

where x and θ denote the input images and learner 
module parameters.

The objective is to minimize the error between the 
model prediction and its actual label through the 
loss function as in equation (2):

min( ( ; , ) ( ))base
trainL D w Rθ θ θ′ = +              (2)

where the Lbase is a loss function of the learner and 
R(θ) is a normalization item to avoid overfitting. 
During training on the training dataset Dtrain, the 
embedding model parameter θ is updated during 
iteration with fixed meta-learner parameter w. The 
meta-learner minimizes the average test error of 
the learner on the distribution of tasks p(T) as in 
equation (3):

~ ( )min ( ( ; , ))meta
p testw E L D wθΓ Γ′ ′=             (3)

where the Lmeta is a loss function of the meta-
learner and Dtest is the test dataset. W’ is the 
updated meta-learner parameter.

Equation (4) was used to evaluate and verify the 
performance of the meta-test datasets. The meta-
learning process is shown in Figure 1.

( ( ; , ))meta
s testE L D wθ ′ ′                                  (4)

Figure 1. Meta-learning process

3.4 Generalized Self-knowledge 
Distillation

Knowledge distillation transfers the knowledge 
from another effective classification model to 
produce a well-generalized embedding that 
enhances the effectiveness of handling unseen tasks. 

The standard knowledge distillation applies the 
high dimension to represent the extracted features, 
leading to the conflict between feature dimensions 
in different layers. The model capacity gap between 
them can degrade the performance of knowledge 
transfer. To effectively utilize the knowledge in 
the teacher model and avoid introducing a more 
complex algorithm, self-knowledge distillation is 
taken in account to solve such issues.

Similar to the stand knowledge distillation, the 
self-knowledge distillation method replaces the 
larger model with itself and uses the historical 
knowledge to supervise the current training 
process as in equation (5):

' arg min( ( , ; ')
[ ( ; '), ( ; )])

train

train train

w L D Y w
KL f D w f D w

α
β

=
+                

(5)

where the α  and β  are the weights for their 
corresponding loss functions. Y is the class label. 
L and KL are cross-entropy and KL-divergence 
loss functions, respectively. In self-knowledge 
distillation-based few-shot learning, the trained 
model is considered the teacher and its output is 
applied as the supervision for the next training 
process from the scratch. The next generation of 
training programs aims to minimize the weighted 
loss functions in equation (5). The first loss is a 
cross-entropy loss between model predictions 
and their actual class labels. The second is the 
Kullback-Leibler divergence (Bu et al., 2016) (KL) 
between predictions and historical predictions. 
The predictions used in the loss are the classified 
features. The training circle is repeated three times 
and then the best model is used for testing.

The self-knowledge distillation method benefits 
from the feature complexity and model parameters. 
The detailed diagram for the whole process is 
shown in Figure 2. 

Figure 2. Self-knowledge distillation process

Both two models are trained with the same dataset. 
The bottom model is about to be trained under 
the supervision of the upper well-trained model. 
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The two models are trained to produce features 
with the same batch during the model distillation 
period. The upper model does not backward the 
loss. The bottom model takes the KL-divergence 
loss between the two models’ features and cross-
entropy loss of its current prediction with ground 
truth. The bottom model is considered more 
discriminative than the previous model with a 
fully trained model’s guidance.

However, with a similar training strategy, the 
self-knowledge distillation probably introduces 
a misguide due to the primordial mistakes in the 
teacher model. Following the teacher model’s 
prediction, the student model could not learn the 
accurate distribution of the tasks if the mistakes 
exist both in the teacher and student models. 
Since nearly half the prediction of the student 
model on CIFAR-10 and CIFAR-100 datasets are 
incorrect, the transfer of the corrected prediction 
is required, which enhances the generalization. A 
simple improvement is introduced on the original 
KL divergence. During the generalized self-
knowledge distillation period, if the maximum 
prediction of the teacher model is not located on 
the correct ground-truth label, their values between 
the prediction and the position of the ground-truth 
label are swapped as shown in Algorithm 2.

3.5 Similarity Matching

Although KL-divergence has been introduced 
to measure the distribution similarity between 
the historical predictions and current ones, the 
feature relationships within the batch itself 
have not been fully considered. In statistics, the 
statistical analysis method is used to determine 
the quantitative relationships between two or more 
variables that are dependent on each other. During 
the distillation period, the student model gradually 
learns the feature similarities from the teacher 
model. To utilize the learned predicted distribution 
to determine the relative relationships between 
features and generalizes to the unseen tasks, the 
proposed loss function attempts to measure the 
distance between features and transfer the feature 

relationships. The loss function is designed 
depending on pairs of feature similarities and 
defined as in equation (6):

( , )
( ( , ), ( , ))

i j T

sim sim i j i j
x x D

L l u x x v x x
∈

= ∑
         

(6)

The similarity matching loss function provides 
the student model with better pairwise feature 
relationships. The input samples xi and xj from 
one batch DT are utilized during distillation to 
extract features by teacher model u and student 
model v, respectively. Considering the significant 
feature difference at initial training and the 
slight difference after enough iterations, lsim is a 
regression loss as in equation (7):

2

1

0.5*( ) , 11( , )
0.5,

n

sim
i

v u if v u
l u v

n v u otherwise=

 − − <= 
− −

∑
    

(7)

To infer the relationships within the pairwise 
features, the Huber loss-based similarity matching 
loss (Lei et al., 2019; Huang & Wu, 2021) is 
proposed to address the similarity matching 
issue focusing on the inner feature relationships. 
Compared with the commonly used regression 
loss function like MSE and MAE, Huber loss 
function enhances its robustness and reduces the 
equalization of gradients. Therefore, Huber loss 
updates parameters at a faster speed and achieves 
the global optimal value. Since the novel dataset 
has no intersection with the base dataset in the few-
shot learning, the category of the minimum loss 
between query sample and each support category 
is regarded as the class of the query sample. This 
property is also appropriate for the similarity 
matching. The distance between features is large at 
the beginning and converges to a small value in the 
end. Therefore, the student model learns the proper 
relationships between the features. The feature 
similarities within a batch are further normalized 
to ensure stable convergence as in equation (8):

2

2
( , )

( , ) 1

i j T

i j
i j

i j
x x DT

x x
u x x

x x
D ∈

−
=

−∑
               

(8)

Algorithm 2. Swapping the value for KL-divergence
Input: teacher model prediction p_t, ground truth y_gt
Output: corrected teacher model prediction p_t
For i in len(p_t):

true_index = argmax(softmax(yt(xi|t)))
If true_index != y_gt[i]:
    p_t[i][y_gt[i]], p_t[i][true_index] = p_t[i][true_index], p_t[i][y_gt[i]]

End for
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Firstly, the proposed model is trained from scratch 
with cross-entropy loss. The first model is then 
used as the teacher model to transfer prediction to 
the next generation of models. The current model 
is iterated with the latest trained model during the 
distillation period. From the simple supervised 
model to the distilled model, the teacher model 
always transfers prediction to guide the student 
model’s training. The diagram for the complete 
process is shown in Figure 3. When the distillation 
period begins, the generalized self-knowledge 
distillation strategy is applied with multiple loss 
functions, including corrected KL-divergence 
loss, similarity matching loss, and cross-entropy 
loss. Therefore, the final object for the distillation 
period is ce c simL KL Lα β γ+ + .

Figure 3. Similarity matching

4. Experimental Settings

4.1 Datasets

The miniImageNet dataset (Vinyals et al., 2016) is 
a commonly used standard for few-shot learning 
in recent years. As a subset of ImageNet, the 
dataset randomly picks 100 classes, and each 
class contains 600 images. The split strategy was 
applied (Ravi & Larochelle, 2017) and the dataset 
was divided into 64, 16, 20 classes for training, 
validation, and testing, respectively. 

The tieredImageNet dataset (Ren et al., 2018) is 
another subset for few-shot learning with more 
categories. The dataset was divided into 608 
classes. There are 351 classes for training, 97 
classes for validation, and 160 for testing. Such 
splitting ensured the distinction between training 
and testing.

The CIFAR-FS dataset (Bertinetto et al., 2019) 
and the FC100 dataset (Oreshkin et al., 2018) 
are generated from the CIFAR100 dataset based 
on different selection criteria. The front dataset 
follows the miniImageNet and was divided into 

64/16/20 classes for training/validation/testing. The 
latter follows the tieredImageNet and is split into 
60,20,20 classes for training, validation, and testing.

4.2 Optimization Details

ResNet12 is applied as the backbone and the 
weights are equally set for all the losses in 
balancing the magnitude for different tasks 
(Tian et al., 2020). The total training epochs for 
miniImageNet and tieredImageNet are 100 and 60, 
respectively. Images are resized to 84 × 84 pixels.

The first training stage aims at training the 
learner based on the cross-entropy loss. During 
the meta-training period, Stochastic Gradient 
Descent (SGD) is set as an optimizer with a 
momentum of 0.9. The learning rate is 0.05, and 
the decay rate is 0.1 for different datasets. The 
learning rate is decayed at 60 and 80 epochs for 
miniImagenet and at 30, 40, and 50 epochs for 
tieredImageNet. The model is trained for 100 
iterations for miniImageNet and 60 iterations 
for tieredImageNet. For two CIFAR100 based 
datasets, the learning rate is decayed at 45, 60, and 
75 epochs. The model is trained for 90 iterations. 
The set optimizer is SGD, and it is optimized by 
cross-entropy loss.

The second stage aims at distilling the trained 
knowledge into the current model. The same 
learning schedule is used during the meta 
distillation period. After distillation, the model 
evaluates the meta-test dataset. The accuracy is 
calculated with 95% confidence intervals over test 
episodes. The test episode is set to 600. Using the 
base learner to extract feature embeddings for 
the support and query images, a simple logistic 
regression classifier is trained to recognize the 
query images.

5. Experimental Results

5.1 Comparison with Prior Works

The proposed approach is evaluated according 
to the few-shot setting during the meta-testing 
period. The accuracy of every experiment is 
conducted with 600 randomly sampled tasks. The 
symbol “-” indicates no reported result.

For the miniImageNet dataset, the present 
approach outperforms all previous works by at 
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least 1.4% for the one-shot setting and by 0.9% 
for the five-shot setting. More details are shown 
in Table 1. From the table, it can be found out that 
knowledge distillation can effectively improve 
the recognition accuracy in the meta-learning 
based few-shot image classification without a 
larger teacher model. Based on the corrected 
KL-divergence, the model can further enhance 
the feature reuse and construct a discriminative 
feature space under the proposed similarity 
matching loss constraint.

Table 1. Comparisons in miniImageNet

Model Backbone
miniImageNet 5-way
1-shot 5-shot

(Oreshkin et 
al., 2018) ResNet-12 58.50±0.30 76.70±0.30

(Ravichandran 
et al., 2019) ResNet-12 59.04 77.64

(Gidaris et al., 
2019) WRN-28-10 63.77±0.45 80.70±0.33

(Dhillon et al., 
2020) WRN-28-10 57.73±0.62 78.17±0.49

(Vinyals et al., 
2016) ResNet-12 63.08±0.80 75.99±0.60

(Snell et al., 
2017) ResNet-12 60.37±0.83 78.02±0.57

(Rusu et al., 
2019) WRN-28-10 61.76±0.08 77.69±0.12

(Lee et al., 
2019) ResNet-12 62.64±0.82 78.63±0.46

(Yoon et al., 
2019) ResNet-12 61.65±0.15 76.36±0.10

(Tian et al., 
2020) ResNet-12 63.92±0.80 80.55±0.63

The present 
approach ResNet-12 65.39±0.73 81.51±0.64

For the tieredImageNet dataset, the present 
approach outperforms all previous works by 0.5% 

for the one-shot setting and nearly by 1.3% for 
the five-shot setting. More details are shown in 
Table 2. Compared to the miniImagenet dataset, 
the categories and amount of the tieredImageNet 
dataset are much more prosperous, and the present 
approach is still competitive among other works.

Table 2. Comparisons in tieredImageNet

Model Backbone
tieredImageNet 5-way

1-shot 5-shot
(Ravichandran 

et al., 2019) ResNet-12 63.52 82.59

(Gidaris et al., 
2019) WRN-28-10 70.53 ± 

0.51
84.98 ± 

0.36
(Dhillon et al., 

2020) WRN-28-10 66.58 ± 
0.70

85.55 ± 
0.48

(Vinyals et al., 
2016) ResNet-12 68.50±0.92 80.60±0.71

(Snell et al., 
2017) ResNet-12 65.65±0.92 83.40±0.65

(Rusu et al., 
2019) WRN-28-10 66.33±0.05 81.44±0.09

(Lee et al., 
2019) ResNet-12 65.99±0.72 81.56±0.53

(Yoon et al., 
2019) ResNet-12 63.08±0.15 80.26±0.12

(Tian et al., 
2020) ResNet-12 70.90±0.89 84.83±0.65

The present 
approach ResNet-12 71.43±0.94 86.13±0.66

For the CIFAR-FS and FC100 datasets, the present 
approach outperforms all previous works for the 
one-shot and five-shot settings. More details are 
shown in Table 3. The results verify the proposed 
design in which the model’s generalization 
performance can be effectively improved based 
on more effective feature relationships for few-
shot learning.

Table 3. Comparison to prior works in CIFAR-FS and FC100

Model Backbone
CIFAR-FS 5-way FC100 5-way

1-shot 5-shot 1-shot 5-shot
(Oreshkin et al., 2018) ResNet-12 - - 40.10±0.40 56.10±0.40

(Ravichandran et al., 2019) ResNet-12 69.2 84.7 - -
(Qiao et al., 2019) ResNet-12 70.4 81.3 - -
(Snell et al., 2017) ResNet-12 72.20±0.70 83.50±0.50 37.50±0.60 52.50±0.60
(Lee et al., 2019) ResNet-12 72.60±0.70 84.30±0.50 41.10±0.60 55.50±0.60

(Gidaris et al., 2019) WRN-28-10 73.60±0.30 86.00±0.20 - -
(Tian et al., 2020) ResNet-12 73.84±0.86 86.67±0.67 43.71±0.77 60.81±0.84

The present approach ResNet-12 74.64±0.85 87.63±0.59 45.04±0.71 60.89±0.80
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5.2 Ablation Study

The proposed approach, along with ResNet-12 as 
the baseline, consists of similarity matching and 
generalized self-knowledge distillation functions. 
An ablation study was conducted to further 
evaluate the affected performance of the proposed 
approach. The ablation study experiments are 
presented in Table 4. Each experiment was 
evaluated separately, according to the different 
few-shot settings.

As seen in Table 4, the proposed approach 
achieves the best performance among all the 
prior works based on the excellent baseline 
model. Furthermore, the proposed self-knowledge 
distillation method can further improve the 
recognition accuracy of the model for few-shot 
learning based on the experimental results.

Specifically, the few-shot learning with the self-
knowledge distillation method can effectively 
improve identification accuracy. With original 
KL-divergence and similarity matching loss 
functions, the performance of all the student 
models has surpassed the performance of the 
corresponding teacher models with the same few-
shot setting. The relationship between features is 
used to compensate for the feature relationships 
between intra-batch and improve the model’s 
generalization performance for unseen tasks.

Secondly, the corrected KL-divergence loss 
function is employed to replace the original KL-
divergence. With the updated loss function, the 
overall performance of the proposed methods 
is further improved for all the datasets except 
the FC100 dataset. The performance degradation 
problem of the 5-shot setting in tieredImageNet 
could be caused by the fact that the student 
model is somehow overfitting the training 
dataset. In addition, the student model can 
correct some inherent inaccurate predictions 

based on the corrected transferrable guidance 
from the teacher model.

Moreover, the model performance gain at the 
1-shot setting is more significant than that at the 
5-shot setting for all comparative experiments 
within the same dataset. The different shot settings 
for the same dataset differentiate between the 
number of support samples and query samples. 
From all the comparison experiments, more 
support samples contribute to better performance. 
At the same time, in addition to the simple feature 
mapping, the similarity relationships between 
features further introduce the utilization of the 
existing features to a certain extent.

6. Conclusion and Future Work

This paper proposes a more efficient meta-learning 
framework based on generalized knowledge 
distillation and similarity matching. This is a 
general few-shot classification algorithm, which 
can be further applied to other cases. The proposed 
method provides a theoretical basis for the present 
subsequent works on feature relationship reuse. 
The present approach benefits from transferrable 
knowledge via a well-trained model based on the 
self-knowledge distillation method. The traditional 
self-knowledge distillation method transfers the 
prediction distribution while neglecting to transfer 
the feature relationships within one batch. The 
feature similarity relationships within the batch 
compensate for the distribution matching in the 
self-knowledge distillation period. In addition, 
the self-knowledge distillation algorithm may 
transfer the inherent error prediction from the 
teacher model to the student model. A generalized 
self-knowledge distillation function was utilized 
to modify the inaccurate prediction of the 
teacher model. The final experimental results 
have shown that the proposed loss functions are 
compatible with each other in the few-shot image 

Table 4. Ablation study of the proposed approach on benchmark datasets

Model
miniImageNet 5-way tieredImageNet 5-way CIFAR-FS 5-way FC100 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline 61.56±0.83 79.27±0.63 69.53±0.90 85.08±0.65 71.24±0.99 85.63±0.63 41.65±0.76 58.17±0.76

Distill+Sim 64.33±0.72 80.70±0.60 71.41±0.89 85.62±0.73 74.52±0.76 87.47±0.60 44.42±0.69 60.89±0.80
Distill+Sim+KLc 65.39±0.73 81.51±0.64 71.43±0.94 86.13±0.66 74.64±0.85 87.63±0.59 45.04±0.71 60.78±0.76



	 79

ICI Bucharest © Copyright 2012-2022. All rights reserved

Enhancing the Generalization Performance of Few-Shot Image Classification with Self-Knowledge Distillation

classification. The present approach performs 
better than other algorithms on the commonly used 
benchmark datasets. In future work, more in-depth 
research on feature extraction will be conducted 
and local metric information will be combined 
with global feature distribution to establish 
better feature space. Leveraging dynamic feature 
extraction and adjusting the features from different 

distributions to fit the few-shot learning setting for 
feature extraction will be considered. The global 
feature distribution can provide confidence for the 
current instance and capture the inductive bias for 
each category. The model generalization ability 
can be further improved by utilizing the difference 
in feature distribution.
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