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1. Introduction

Cloud computing is the recent growing 
computational model that provides convenient, 
on-demand network access for sharing the group 
of computing resources, i.e. servers, networks, 
storage, applications, etc. Three-tier intrusion 
detection and prevention model was created by 
Ali & Yousaf (2020). Virtualization is one of the 
key technologies in the cloud environment, which 
enables the creation of an intelligent abstraction 
layer, called Virtual Machine Monitor (VMM) 
or Hypervisor. However, cloud computing is 
vulnerable to traditional information technology 
(IT) attacks, i.e. intrusion, because it uses and 
widens the existing IT infrastructure, operating 
systems (OSs), and applications. Network intrusion 
detection is discussed in Mauro et al. (2020).

The process of stealing, modifying, or corrupting 
other users` information by sending malicious 
packets through the network is referred to as 
intrusion (Traore et al., 2012). To identify and 
protect the cloud user’s data, Intrusion Detection 
Systems (IDS), and Intrusion Prevention Systems 
(IPS) are important (Xie et al., 2020). The primary 
reason for any IDS is to detect assaults/attacks 
and to avoid an assault if possible (Mishra et al., 
2020). Most of the current IDSs can be divided 
into two main types: signature-based and anomaly-
based IDS. For an intrusion detection system to 
be effective, the factors that should be taken into 
account are speed, self-monitoring, fault tolerance, 
a user-friendly configuration, and the ability of the 

system to be cheat-resistant and interruption-free 
with minimum overhead so that the malicious data 
may be detected and removed from the network 
automatically (Mishra et al., 2020). 

Just like intrusion detection, intrusion prevention 
is also important for maintaining the security 
of the cloud user’s data. A two-layer defence 
scheme application is presented in (Liu et al., 
2018) Security has become one of the serious 
bottleneck problems that need to be resolved. 
Privacy, confidentiality, integrity, and access 
control are the common requirements of security 
(Saxon, Bordbar, & Harrison, 2015). Intrusion 
management system is presented in (Mauro,  
Galatro, & Liotta, 2020). Techniques based on 
access control, such as authentication methods, 
represent one of the best ways to defend data 
security based on control and limit unauthorized 
clients. IoT-based application is discussed in 
(Hafeez et al., 2020) and security challenges are 
discussed in (Mishra, & Pandya, 2021). 

Defense System against Multi-Type Attacks 
in Cloud is presented in (Wahab et al., 2021). 
In Intrusion Prevention and Detection System 
(IPDS), if the first line of defense fails to 
prevent attacks, then the second line comes 
into play to detect any intrusion and remove 
the affected data from the cloud (Feng et al., 
2019) Dynamic intrusion detection in cloud 
environment is discussed in (Chkirbene et al, 
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2020). Many supervised learning approaches, 
e.g., decision tree (DT), deep neural network 
(DNN), support vector machine (SVM), etc., 
have been successfully employed for recognizing 
and detecting possible intrusions. In this 
paper, an improved algorithm is proposed for 
intrusion detection and prevention. For intrusion 
detection, data packets are analyzed and the 
malicious patterns are identified through data 
preprocessing, feature extraction and packet 
classification. For determining the malicious 
users and protecting the environment from 
attackers, all users are registered to the system 
before transmitting the packets. The objective is 
to obtain a higher accuracy for security attacks 
detection and improve the privacy of the cloud 
environment using hash code generation.

This paper is summarized as follows. Section 2 
presents the literature review which focuses on 
the analysis of various research papers. Section 
3 presents and discusses the proposed algorithm. 
Section 4 discusses the experimental results 
obtained, while section 5 concludes this paper.

2. Literature Survey 

Mohana Prabha & Vidhya Saraswathi (2020) 
introduced a Suppressed K-Anonymity Multi-
Factor Authentication Based Schmidt-Samoa 
Cryptography (SKMA-SC) technique for cloud 
data security. The SKMA-SC technique comprised 
three key processes, namely registration, 
authentication, and data access. In SKMA-SC, 
the data integrity and confidentiality level in the 
needed to be improved. By focusing on security 
model, the clould model was improved.

Dey, Ye & Sampalli (2019) designed a “cognitive 
system”, a machine learning-based intrusion 
detection scheme for data fusion in mobile clouds 
involving heterogeneous client networks. The 
obtained results indicated that even though the 
scheme was highly effective it didn`t solve certain 
security issues and featured data leakage.

Hajimirzaei & Navimipour (2019) designed 
an IDS based on a combination of a multilayer 
perceptron (MLP) network, an artificial bee colony 
(ABC), and fuzzy clustering algorithms. Normal 
and abnormal network traffic data was detected by 
the MLP, while the MLP training was performed 
by the ABC algorithm by optimizing the values of 

linkage weights and biases. Due to the limitations 
of the ABC algorithm, the performance of MLP 
was significantly reduced.

He at al. (2016) constructed a Privacy-Aware 
authentication (PAA) scheme for Mobile Cloud 
Computing (MCC) services by using an identity-
based signature scheme. The advantage is that, the 
hash-based authentication process outperformed 
well. The main drawback of PAA was no 
appropriate secure service was provided in MCC. 

3. Intrusion Detection and Prevention 
System (IDPS) in Cloud

Cloud computing has grown significantly with 
regard to: a) profoundly changing the entire 
Information Technology culture from the 
construction of data servers, b) the deployment of 
programs c) dealing with the technology upgrading 
process. But data security threats still represent the 
main problem in the cloud. The major security 
threats are data breach, information theft, and 
omission of data in the cloud infrastructure. These 
attacks will only become more sophisticated, so it 
is important to adapt protection technologies to the 
respective threats. The proposed system includes 3 
phases: user registration phase, intrusion detection 
phase, and intrusion prevention phase. These 
phases are explained below in detail. Figure 1 
shows the flow of these phases and the working 
of each block.

The proposed paper contributes to the 
improvement of  cybersecurity performance in 
cloud model. In the intrusion detection phase, the 
status of cloud data is predicted using the Sgd-
LSTM classifier in order to discard the intruder 
packets from the cloud.

3.1 Intrusion Detection Phase

In this phase, the intruder data packets and normal 
data packets are identified based on data packet 
features using SGD-LSTM. The data packets are 
initially loaded from the UNSW-NB15 dataset. 
The collected data mainly contains 47 features 
including data packet IP address, source port 
number, destination IP address, protocol type, 
etc. To accurately detect the data packet status, 
the dataset undergoes the following stages: 
preprocessing, feature selection and data packet 
status classification stage.
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3.1.1 Preprocessing Stage

The collected data contains massive amounts 
of unnecessary, duplicated values, and outliers. 
The preprocessing involves three steps: 
data sanitization, numerical conversion, and 
normalization. Let us consider the input data as:

D D D D Dp i p p p pk� � � � �1 2 3
, , ,........, ,

          
(1)

where ( )
ipD  represents the input data, and Dpk  

represents the k-number of data. 

(a) Data Sanitization: Data sanitization is used 
for filtering outliers, replacing missing values, 
smoothing noisy data, and correcting inconsistent 
data. Here, the noisy data and duplicated data are 
removed from the dataset.

(b) Numerical Conversion: The learning 
algorithms can only handle numeric data. In 
the collected dataset, the features like protocol 
type are in string format. Those string values are 
converted to numeric data.

(c) Normalization: This step is used for scaling the 
feature values into a specific confidence interval. 
The main benefit of this step is that it removes 
the bias from the raw data. Based on Z-score 
normalization, each feature value is reconstructed 
into a specific range.
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where ipD )(~Χ  denotes the standard deviation of 
data and 

ipD )(Χσ  denotes the mean of ipD )(Χ . 
The preprocessing stage is represented as:

( ) ( )
ipip DPD  → ingpreprocess

                        
(3)

In equation (3), ( )pDP  denotes the preprocessed 
data.

3.1.2 Feature Selection Stage

Feature Selection is intended to select the features 
of data packets and contribute most to the 
intrusion prediction process. The collected data 
contains important features that might be used for 
identifying intrusion data packets; they should be 
carefully analyzed in order to separate only the 
relevant information. For a feature, the proposed 
system uses the Enhance Fragrance Coefficient-
based Butterfly Optimization (EFCBO) algorithm. 
The traditional Butterfly Optimization Algorithm 
(BOA) is characterised by slow convergence 
due to its stochastic behaviour and blindness 
of the fragrance coefficient. To eliminate these 
behaviours, the proposed algorithm enhanced 
the fragrance coefficient of BOA using a self-
adaption method.

Figure 1. Architecture diagram of Sgd-LSTM and signature-based access control policy
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EFCBO algorithm is an inspired meta-heuristic 
algorithm that mimics the butterflies’ natural 
foraging and mating behaviour. The stimulus 
intensity for the butterfly is decided by the 
landscape of the objective function. In the EFCBO 
algorithm, initially each butterfly’s position 
vector is in ktn × , where nt  denotes the number 
of iteration and k  denotes the population size. 
Each butterfly’s position vector is represented as:

BT t BT BT BTk n( ) , , ,.......,� � �1 2
,                (4)

where BTk(t) represents k -th butterfly’s position 
at the c urrent iteration t . The main phases 
involved in EFCBO are global and local search. 
The next position of a certain butterfly in the 
global phase is computed as:

BT t BT t r q BT t U Fk k k g( ) ( ) ( ) ( )� � � � �� ��1
2


, (5)

where BTk(t+1) represents the position of butterfly 
at iteration 1+t , q is the best position in search 
space, r~  is the random value ( )]1,0[~∈r ,  

)( gFU  is the fragrance coefficient, which is 
updated using a self-adaption method as follows 
and ψ  is the fragrance distribution range:









−×=

n
g t

tFU 1)( ψ
                                

(6)

BT t BT t r BT t BT t U Fk k m n g( ) ( ) ( ) ( ) ( )� � � � �� ��1
2
 , (7)

where BTm(t) and BTn(t) are the positions of the 
m -th and n -th butterflies in the searching space. 
Here, the position of the butterfly is updated based 
on switching probability )(ρs  and a random value 
r~ , where the switching probability is in the range 
between 0 and 1 if s r ( )� �� � .

Update the next position of a butterfly using 
equation (5) if s r ( )� �� � .
Update the next position of a butterfly using 
equation (7).

Record and replace the best solution and the best 
fitness value if there is a better solution. Repeat 
the process until the maximum iteration. By 
applying the EFCBO algorithm, in the feature 
selection phase, the necessary features are selected 
from dataset features. The selected features are 
represented as:

{ }ni  ,.....,,, 321=                            
(8)

where i  is the selected feature set, and n  is the 
nth feature in the feature set i .

3.1.3 Data Packet Status  
Classification Stage

The selected features are given to the classification 
phase, which classifies the data packet status as 
normal data and data related to cyberattacks 
based on different types of attacks, i.e. DoS 
attacks, exploits, generics, shellcodes, and so on. 
The proposed system uses Stochastic Gradient 
Descent Long Short-Term Memory (Sgd-LSTM) 
networks. The default behaviour of the LSTMs 
is based on a novel type of Recurrent Neural 
Network (RNN) which is capable of knowing 
long-term dependencies by remembering 
information for long periods of time The RNN is 
affected by the exploding gradient problem. This 
gradient problem can create major issues such as  
long training time, poor system performance, and 
bad prediction rate. To overcome this gradient 
problem, the LSTM network is employed and 
the weight values of LSTM are optimized using 
Stochastic Gradient Descent (SGD) parameter to 
achieve a superior  performance. The structure of 
Sgd-LSTM is illustrated in Figure 2. At the forget 
gate, input gate, and  output gate respectively, a 
weight value WFG , WIG  and WOG  is generated; 
these values are applied to the following equation 
to obtain an optimized weight value:

� � � �W W w FG IG OGw w �; { , , }                   (9)

where, wW ′  is the optimized weight value, wW  
is the old weight value and µ  denotes the step 
size of selected features. The obtained weight 
values for forget gate, input gate and output gate 
are ′WFG , ′WIG  and ′WOG , respectively. The steps 
involved in Sgd-LSTM-based data packet status 
classification are given below.

Forget Gate: The first step in the LSTM is to 
choose which information should be omitted from 
the cell for that particular time step. The sigmoid 
function determines this using the previous hidden 
state ( �HT t( )�1 ) along with the current input 

)(ti , where t  is the current time step.

� � ��FG FG HT i FGt sig W t t b( ) ( ), ( )� � ��� �� �� �� 1 , (10)

where θ IG t( )  represents the forget gate output, 
)(•sig  represents the sigmoid function, bIG is 

the bias value and �HT t( )�1  is the previous 
hidden state. 

Input Gate: This gate is used for updating the 
memory cell state and it involves two functions. 
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One is the sigmoid function, and the other is the 
tanh  function. The sigmoid function decides 
which values to let through (0 or 1), wheras the tanh 
function  gives weightage to the values which are 
passed, deciding their level of importance (-1 to 1). 

� � �� IG IG HT i IGt sig W t t b( ) ( ), ( )� � ��� �� �� �� 1  (11) 
� � �( ) . ( )t tanh t bMC HT i� �� �� �� �� � �� ,          (12)
where θ IG t( )  represents the input gate output, 

)(•tanh  denotes the tanh  function, )(tϖ  and 
is a vector of new candidate values that could be 
added to the cell state, and bIG and ϖb  are the 
bias values. 

Cell Gate: In this step, first, the previous cell 
states are pointwise multiplied by the forget 
gate output, and then the output from the input 
gate is multiplied with the current cell state. 
Then the outputs obtained through the pointwise 
multiplication are taken and a pointwise addition 
is performed, which updates the cell state to new 
values that give the new cell states. 

� � � � � �� � � � �( ) ( ) ( )t t tFG IG� � �1 ,          (13)
where )(~ tϖ  represents the new modified cell 
state, )1(~ −tϖ  represents the previous cell state 
and   and ⊕  represent pointwise multiplication 
and addition, respectively.

Output Gate: The output gate chooses which 
should be the next hidden state. First, the previous 
hidden state and the current input is passed to a 
sigmoid function, which chooses which parts of 
the cell state shall make up the output. Then, the 
cell state is passed to tanh function to push the 
values into the range between -1 and 1 and it is 
multiplied by the output of the sigmoid gate.

� ��OG OG HT i OGt sig W t t b( ) ( ), ( )� � �� ��� �� 1   (14)

�HT OGt t tanh t( ) ( ) ( )� � �� � �� � ,                 (15)

where ϑOG t( )  represents the output of output 
gate, bOG is the bias value and ΦHT t( )  is the 
hidden state which represents classification 
output, i.e. data packet status. This classification 
result contains 10 classes: 9 different types of 
intruder data packets (Analysis, backdoors, DoS, 
exploits, fuzzers, generics, reconnaissance attacks, 
shellcodes, worms) and a normal data packet. The 
pseudocode of Sgd-LSTM is shown in Figure 3. 

Figure 3. Pseudocode of Sgd-LSTM

Figure 2. The structure of the Sgd-LSTM network
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After identifying the status of data packets, the 
intruder packets are removed from the cloud and 
only the normal data packets are kept in the cloud. 
After identifying intruders in the cloud environment, 
it is essential to provide a secure framework for 
preserving users’ data and secure access.

3.2 Registration Phase

Registration limits access to data by allowing 
only the approved users. In this phase, the users 
register  their information in the cloud for data 
access. For this purpose, initially, the user chooses 
a signature i.e. a unique ID üID and password üp̃ 
and then sends a registration request to the Trusted 
Cloud Centre (TCC) along with{ üID, üp̃ }.

{ } TCCuser pID uuREQR  → ~,  _  ,                      (16)

where }{_ ⋅REQR  represents the registration 
request and TCC represents the Trusted Cloud 
Centre. After receiving the registration request 
from the user, the TCC computes the hash value 
for the user password. The hash value of the user 
password is denoted as )(ˆ ~puΗ . Here, the hash 
value is computed using the Color Hidden Hash 
Algorithm (C2HA). 

3.2.1 Color Hidden Hash Algorithm 
(C2HA) 

The C2HA is one of the hashing algorithms, which 
computes the hash value for the given input using 
RGBA color values. In C2HA, the end-user can 
choose hash code length, and also makes hash 
code private between channels, by sharing unique 
additional data between them. The steps involved 
in C2HA are explained as follows:

i.	 Initially, the input text pu ~  is joined with 
constant unique text ct~  then the constructed 
input is converted into a binary array, which 
is expressed in equations (2) and (3).

),(~
~~ cp tujoinT →                                 (17)

)~(~    TBT y
conversionbinarytoText  → ,                 (18)

where T~  is the obtained input by joining pu ~  
and ct~ , and )~(TBy  is the obtained byte array 
corresponding to T~ . 

ii.	 Then, the byte array is grouped as 4-bit sets 
to obtain a relevant rgba value. For example, 
let us consider 00000610 as the byte 
array value. This byte array is grouped as 

)0,0,0,0( irgba  and )0,1,6,0( jrgba . Here, 

the first row is allotted to the Red column, the 
second row is allotted to the Green one, the 
third one is allotted to the Blue column, and 
the last row is allotted to the Alpha column.  

iii.	 Then, the obtained rgba values 
)0,0,0,0( irgba  and )0,1,6,0( jrgba  are 

added by taking their modules of 255. The 
result is )0,1,6,0( Rrgba .

iv.	 If a set of rgba values includes more than 2 
values, they are grouped two by two and the 
above process is repeated until obtaining a 
single rgba value. And also if the number of 
rgba values in a value set is an odd number, 
then the last pixel value is moved as the same 
value without doing any processing on it. 

v.	 Finally, a corresponding hexadecimal value 
is computed for the resultant rgba value

)0,1,6,0( Rrgba . Using private constant text 
with input text makes the algorithm secure 
for communication.

                             (19)

After the user registration, the user requests the 
TCC to access the cloud which is dealt in under 
Intrusion Prevention Phase in subsection 3.3.

3.3 Intrusion Prevention Phase

Intrusion prevention is a structure of system 
security which is meant to protect data from the 
various types of threats. Due to the rapid growth 
of intrusions, it is necessary to control and protect 
the data access from unauthorized users in the 
cloud. For this purpose, an access control policy 
is proposed. It is designed to ensure that sensitive 
information cannot be accessed by the wrong 
person, while only the right person can access it. 

3.3.1 Login Phase

Generally,  login consists in a set of credentials 
that help to authenticate a user. If any user wants 
to access the data from the cloud, they give their 
unique ID and password  to the cloud and send a 
login request to the TCC for data access. 

{ } TCCuser pID uuREQL  → ~,  _  ,                      (20)

where }{_ ⋅REQL  represents the login 
request. After this user login request, the user 
authentication is performed.  
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3.3.2 User Authentication Phase

In the user authentication phase, the TCC verifies 
whether the user is a legitimate user or not. After 
receiving the login request from the user, the TCC 
compares the hash code already generated. If the 
hash code matches the TCC grants the permission 
for the user to access the cloud. The generated 
hash code is employed by cloud users only once 
at a time. After accessing data, the users generate 
a new password, and a new hash code is generated 
for every user, and it protects users’ data from 
unauthorized users.

4. Results and Discussion

In this section, the outcomes of the proposed 
technique are discussed based on experimental 
evaluation. This section includes performance 
metrics and a comparative analysis with graphical 
plots. For performance evaluation, the proposed 
system uses the UNSW-NB15 dataset, which 
is collected via the IXIA PerfectStorm tool in 
the Cyber Range Lab of the Australian Centre 
for Cyber Security (ACCS). The UNSW-NB15 
consists in  a mixture of evidence on real normal 
data packets and synthetic contemporary attack 
instances in the form of numerous records of 
users; it includes observations on normal data 
packets and nine families of attacks.

4.1 Performance Analysis  
for Sgd-LSTM

Here, experiments are conducted on the UNSW-
NB15 dataset to validate the performance of the 
proposed Sgd-LSTM classifier using 6 quality 
metrics, namely: precision, sensitivity, F-Score, 
accuracy, specificity, and training time. These 
metrics are measured based on four important 
parameters: true positive (T ve( )+ ), false positive 
( F ve( )+ ), true negative (T ve( )− ), and false 
negative (F ve( )− ) as follows:

Precision ( 1M ): It represents the fraction of data 
packets correctly recognized as intruder packets 
it concerns all packets, which are detected as 
intruder packets.

M T ve
T ve F ve1

�
�

� � �
( )

( ) ( )                            
(21)

Sensitivity ( 2M ): It is the fraction of intruder 
packets correctly detected.

M T ve
T ve F ve2

�
�

� � �
( )

( ) ( )                            
(22)

F-Score ( 3M ): It is the harmonic mean of the 
precision and the sensitivity.

21

21
3

*2
MM
MMM

+
×=

                                  
(23)

Accuracy ( 4M ): It is the fraction of data packets 
that is correctly predicted.

M T ve F ve
T ve F ve T ve F ve4

�
� � �

� � � � � � �
( ) ( )

( ) ( ) ( ) ( )   
(24)

Specificity ( 5M ): The fraction of normal packets 
that is correctly predicted.

M T ve
F ve T ve5

�
�

� � �
( )

( ) ( )                            
(25)

Training time (M6): The time taken by the 
proposed algorithm for training the network.

Table 1 illustrates the performance of the proposed 
and existing classifiers in terms of precision, 
sensitivity, F-Score, accuracy, specificity, and 
training time. For an accurate prediction, the 
classifier should attain high precision, sensitivity, 
F-Score, accuracy, and specificity, and an efficient 
classifier would need a shorter training time. This 
performance comparison is graphically plotted in 
the following figures.

Table 1. Performance Comparison for the Proposed and Existing Classifiers

Techniques Precision Sensitivity F-Score Accuracy Specificity Training Time (in sec)
Proposed Sgd-LSTM 96.89 96.59 95.99 96.98 96.10 322

LSTM 94.55 94.95 94.39 94.58 91.02 416
ANN 93.62 93.54 93.43 93.12 90.99 423
KNN 92.85 92.56 92.86 92.63 90.05 459

ANFIS 91.55 91.23 92.03 91.56 89.36 472
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Figure 4 compares the performance of the 
proposed classifier and existing classifiers such 
as Long Short-Term Memory (LSTM), Artificial 
Neural Network (ANN), K-Nearest Neighbour 
(KNN)  and Adaptive Neuro-Fuzzy Inference 
System (ANFIS) in terms of precision. The 
graphical comparison shows  that the proposed 
Sgd-LSTM attains the highest precision value of 
96.89%. The precision value of existing LSTM, 
ANN, KNN, and ANFIS is 94.55%, 93.62%, 
92.85%, and 91.55%, respectively. These 
results have revealed that the proposed classifier 
recognizes the intruder’s packets accurately 
compared to existing classifiers.

Figure 4. Precision Analysis

The effectiveness of the proposed and existing 
classifiers is also evaluated based on their attained 
sensitivity, which is shown in Figure 5. The 
sensitivity values of existing classifiers ANFIS, 
KNN, ANN, and LSTM is 91.23 %, 92.56 %, 
93.54%, and 94.95% respectively. But the proposed 
classifier achieves a sensitivity of 96.59 % , which 
is more than 2% higher than that of the existing 
classifiers. This comparison proved that the proposed 
classifier is the most promising for data packet status 
identification as sensitivity is concerned.

Figure 5. Sensitivity Analysis

Figure 6 illustrates the performance of the 
proposed and existing classifiers with respect to 
F-Score value. The F-score value for the proposed 

classifier is 95.99%, which is 1.60% higher than 
that of LSTM, 2.56% higher than that of ANN, 
3.13% higher than that of KNN, and 3.96%  higher 
than that of the ANFIS classifier. Based on these 
results, it is very clear that the proposed classifier 
attains a superior performance compared to other 
existing classifiers in terms of the F-Score, too.

Figure 6. F-Score Analysis

Figure 7 illustrates the accuracy level of the 
proposed Sgd-LSTM which is weighted against the 
accuracy level of existing classifiers. The accuracy 
of the proposed classifier is 96.98%, whereas the 
accuracy level of the existing classifiers LSTM, 
ANN, KNN, and ANFIS is 94.58%, 93.12%, 
92.63%, and 91.56%, respectively. 

Figure 7. Accuracy Analysis

The specificity of the proposed and existing 
classifiers is illustrated in Figure 8 for 
performance comparison. 

Figure 8. Specificity Analysis
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The experimental results demonstrate that the 
proposed classifier is more promising than others 
with regard to specificity, too.

Figure 9 illustrates the efficiency level of the 
proposed and existing classifiers in terms of 
training time. For an efficient classification, the 
classifier should be faster and accurate. From 
all the experimental results, it is clear that the 
proposed classifier is highly efficient and accurate.

Figure 9. Training Time Analysis

4.2 Performance Analysis of C2HA

Here, the speed level of the proposed C2HA 
used in hash code generation is validated by 
the performance comparison for  C2HA and 
the traditional MD5 and SHA512 algorithms  
in terms of hash code generation time. Figure 
10 illustrates the hash code generation time for 
the proposed C2HA and traditional MD5 and 
SHA512 algorithms.  

Figure 10. Hash code generation time Analysis

The time required for generating a hash code for a 
particular text or file is called hash code generation 
time.  By comparing the proposed C2HA approach 
with the MD5 and SHA512 algorithms, it is clear 
that the proposed technique requires a shorter 
time for hash code generation. The hash code 
generation time for C2HA is 1574 ms, whereas 
the MD5 and SHA512 algorithms need 2731 

ms and 3547 ms, respectively. This comparison 
proves that the C2HA is faster than the MD5 and 
SHA512 algorithms. The fitness values obtained 
by varying the number of iterations are illustrated 
in Table 2.

Table 2. Fitness Comparison

Techniques
Number of Iterations

5 10 15 20 25

Proposed EFCBO 63 79 85 97 110

BOA 54 61 69 82 95

ABC 45 55 62 76 87
CSO 36 48 56 70 79
WOA 31 44 53 62 70

On analyzing Table 2, it is obvious that the fitness 
level is efficiently increasing as the iteration count 
increases. The fitness level for the proposed 
EFCBO algorithm is 63 for 5 iterations, whereas 
the fitness level for an existing technique, such 
as Butterfly Optimization Algorithm, Artificial 
Bee Colony, Cuckoo Search Optimization, and 
Whale Optimization algorithm is 54, 45, 36, and 
31, respectively. Similarly, for all the remaining 
iteration counts, the proposed EFCBO algorithm 
obtained the highest fitness level. 

5. Conclusion 

The security issue in the cloud environment is one 
of the major barriers to cloud implementation. 
Various attacks take advantage of the network 
and protocol susceptibility  to damage the cloud 
users’ data and applications. To detect such attacks 
and protect the cloud user’s data from various 
intrusions, this paper proposed a Sgd-LSTM 
and signature-based access control policy based 
intrusion detection and prevention system in the 
cloud. For the purpose of performance evaluation, 
the proposed Sgd-LSTM, EFCBO, and C2HA 
techniques are weighted against several existing 
techniques. The obtained results proved that the 
proposed technique is highly efficient and more 
secure and accurate in comparison with other 
techniques. In the future, the proposed work 
could be extended by integrating the cryptography 
algorithm with the proposed system to prevent data 
transmission attacks in the cloud environment.  
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