
95

ICI Bucharest © Copyright 2012-2022. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

Cloud computing is the recent growing
computational model that provides convenient,
on-demand network access for sharing the group
of computing resources, i.e. servers, networks,
storage, applications, etc. Three-tier intrusion
detection and prevention model was created by
Ali & Yousaf (2020). Virtualization is one of the
key technologies in the cloud environment, which
enables the creation of an intelligent abstraction
layer, called Virtual Machine Monitor (VMM)
or Hypervisor. However, cloud computing is
vulnerable to traditional information technology
(IT) attacks, i.e. intrusion, because it uses and
widens the existing IT infrastructure, operating
systems (OSs), and applications. Network intrusion
detection is discussed in Mauro et al. (2020).

The process of stealing, modifying, or corrupting
other users` information by sending malicious
packets through the network is referred to as
intrusion (Traore et al., 2012). To identify and
protect the cloud user’s data, Intrusion Detection
Systems (IDS), and Intrusion Prevention Systems
(IPS) are important (Xie et al., 2020). The primary
reason for any IDS is to detect assaults/attacks
and to avoid an assault if possible (Mishra et al.,
2020). Most of the current IDSs can be divided
into two main types: signature-based and anomaly-
based IDS. For an intrusion detection system to
be effective, the factors that should be taken into
account are speed, self-monitoring, fault tolerance,
a user-friendly configuration, and the ability of the

system to be cheat-resistant and interruption-free
with minimum overhead so that the malicious data
may be detected and removed from the network
automatically (Mishra et al., 2020).

Just like intrusion detection, intrusion prevention
is also important for maintaining the security
of the cloud user’s data. A two-layer defence
scheme application is presented in (Liu et al.,
2018) Security has become one of the serious
bottleneck problems that need to be resolved.
Privacy, confidentiality, integrity, and access
control are the common requirements of security
(Saxon, Bordbar, & Harrison, 2015). Intrusion
management system is presented in (Mauro,
Galatro, & Liotta, 2020). Techniques based on
access control, such as authentication methods,
represent one of the best ways to defend data
security based on control and limit unauthorized
clients. IoT-based application is discussed in
(Hafeez et al., 2020) and security challenges are
discussed in (Mishra, & Pandya, 2021).

Defense System against Multi-Type Attacks
in Cloud is presented in (Wahab et al., 2021).
In Intrusion Prevention and Detection System
(IPDS), if the first line of defense fails to
prevent attacks, then the second line comes
into play to detect any intrusion and remove
the affected data from the cloud (Feng et al.,
2019) Dynamic intrusion detection in cloud
environment is discussed in (Chkirbene et al,

Studies in Informatics and Control, 31(2) 95-104, June 2022

https://doi.org/10.24846/v31i2y202209

Efficient Intrusion Detection and Prevention Model in
Cloud Environment Using Sgd-LSTM and C2HA

Ponnuviji NAMAKKAL PONNUSAMY*, Vigilson Prem MONICKARAJ, Ezhumalai PERIYATHAMBI
Department of Computer Science and Engineering, R.M.D. Engineering College, Kavaraipettai, India
ponnuviji@gmail.com (*Corresponding author), vigiprem@gmail.com, ezhumalai.es@gmail.com

Abstract: Cloud computing is an attractive technology paradigm that has been widely used as a tool for storing and analyzing
the data of different users. Since access to the cloud is achieved through the Internet, data stored in clouds is susceptible to
attacks from external as well as internal intruders. Henceforth, cloud service providers (CSPs) need to take action in order
to provide a secure framework that would detect intrusion in the cloud and protect and secure customer information against
hackers and intruders. This paper proposes a Sgd-LSTM and signature-based access control policy based Intrusion Detection
and Prevention System (IDPS) model which is meant to detect and prevent various intrusions in the cloud. The proposed
system includes three phases: the user registration phase, intrusion detection phase, and intrusion prevention phase. Initially,
user registration is performed based on a unique ID and password, and then, the password is converted into hashcode by
using the C2HA algorithm and then stored in the cloud for authentication purposes. In the intrusion detection phase, the
status of cloud data is predicted by employing the Sgd-LSTM classifier in order to discard the intruder data packets from the
cloud. At last, in the intrusion prevention phase, data access to the cloud environment is controlled by using signature-based
user authentication in order to authenticate the legitimate user. The proposed classifier can effectively detect the intruders,
which was experimentally proved by comparing it with the existing classifiers.

Keywords: Intrusion Detection and Prevention System (IDPS), Cloud, User authentication, Stochastic Gradient Descent
Long Short-Term Memory (Sgd-LSTM) classifier, Color Hidden Hashing Algorithm.

mailto:ponnuviji@gmail.com
mailto:vigiprem@gmail.com
mailto:ezhumalai.es@gmail.com

https://www.sic.ici.ro

96 Ponnuviji Namakkal Ponnusamy, Vigilson Prem Monickaraj, Ezhumalai Periyathambi

2020). Many supervised learning approaches,
e.g., decision tree (DT), deep neural network
(DNN), support vector machine (SVM), etc.,
have been successfully employed for recognizing
and detecting possible intrusions. In this
paper, an improved algorithm is proposed for
intrusion detection and prevention. For intrusion
detection, data packets are analyzed and the
malicious patterns are identified through data
preprocessing, feature extraction and packet
classification. For determining the malicious
users and protecting the environment from
attackers, all users are registered to the system
before transmitting the packets. The objective is
to obtain a higher accuracy for security attacks
detection and improve the privacy of the cloud
environment using hash code generation.

This paper is summarized as follows. Section 2
presents the literature review which focuses on
the analysis of various research papers. Section
3 presents and discusses the proposed algorithm.
Section 4 discusses the experimental results
obtained, while section 5 concludes this paper.

2. Literature Survey

Mohana Prabha & Vidhya Saraswathi (2020)
introduced a Suppressed K-Anonymity Multi-
Factor Authentication Based Schmidt-Samoa
Cryptography (SKMA-SC) technique for cloud
data security. The SKMA-SC technique comprised
three key processes, namely registration,
authentication, and data access. In SKMA-SC,
the data integrity and confidentiality level in the
needed to be improved. By focusing on security
model, the clould model was improved.

Dey, Ye & Sampalli (2019) designed a “cognitive
system”, a machine learning-based intrusion
detection scheme for data fusion in mobile clouds
involving heterogeneous client networks. The
obtained results indicated that even though the
scheme was highly effective it didn`t solve certain
security issues and featured data leakage.

Hajimirzaei & Navimipour (2019) designed
an IDS based on a combination of a multilayer
perceptron (MLP) network, an artificial bee colony
(ABC), and fuzzy clustering algorithms. Normal
and abnormal network traffic data was detected by
the MLP, while the MLP training was performed
by the ABC algorithm by optimizing the values of

linkage weights and biases. Due to the limitations
of the ABC algorithm, the performance of MLP
was significantly reduced.

He at al. (2016) constructed a Privacy-Aware
authentication (PAA) scheme for Mobile Cloud
Computing (MCC) services by using an identity-
based signature scheme. The advantage is that, the
hash-based authentication process outperformed
well. The main drawback of PAA was no
appropriate secure service was provided in MCC.

3. Intrusion Detection and Prevention
System (IDPS) in Cloud

Cloud computing has grown significantly with
regard to: a) profoundly changing the entire
Information Technology culture from the
construction of data servers, b) the deployment of
programs c) dealing with the technology upgrading
process. But data security threats still represent the
main problem in the cloud. The major security
threats are data breach, information theft, and
omission of data in the cloud infrastructure. These
attacks will only become more sophisticated, so it
is important to adapt protection technologies to the
respective threats. The proposed system includes 3
phases: user registration phase, intrusion detection
phase, and intrusion prevention phase. These
phases are explained below in detail. Figure 1
shows the flow of these phases and the working
of each block.

The proposed paper contributes to the
improvement of cybersecurity performance in
cloud model. In the intrusion detection phase, the
status of cloud data is predicted using the Sgd-
LSTM classifier in order to discard the intruder
packets from the cloud.

3.1 Intrusion Detection Phase

In this phase, the intruder data packets and normal
data packets are identified based on data packet
features using SGD-LSTM. The data packets are
initially loaded from the UNSW-NB15 dataset.
The collected data mainly contains 47 features
including data packet IP address, source port
number, destination IP address, protocol type,
etc. To accurately detect the data packet status,
the dataset undergoes the following stages:
preprocessing, feature selection and data packet
status classification stage.

	 97

ICI Bucharest © Copyright 2012-2022. All rights reserved

Efficient Intrusion Detection and Prevention Model in Cloud Environment Using Sgd-LSTM and C2HA

3.1.1 Preprocessing Stage

The collected data contains massive amounts
of unnecessary, duplicated values, and outliers.
The preprocessing involves three steps:
data sanitization, numerical conversion, and
normalization. Let us consider the input data as:

D D D D Dp i p p p pk� � � � �1 2 3
, , ,........, ,

(1)

where ()
ipD represents the input data, and Dpk

represents the k-number of data.

(a) Data Sanitization: Data sanitization is used
for filtering outliers, replacing missing values,
smoothing noisy data, and correcting inconsistent
data. Here, the noisy data and duplicated data are
removed from the dataset.

(b) Numerical Conversion: The learning
algorithms can only handle numeric data. In
the collected dataset, the features like protocol
type are in string format. Those string values are
converted to numeric data.

(c) Normalization: This step is used for scaling the
feature values into a specific confidence interval.
The main benefit of this step is that it removes
the bias from the raw data. Based on Z-score
normalization, each feature value is reconstructed
into a specific range.

()
ipD

ipip
p

DD
DZ

)(

)(~)(

Χ

Χ−Χ
=

σ
,

(2)

where ipD)(~Χ denotes the standard deviation of
data and

ipD)(Χσ denotes the mean of ipD)(Χ .
The preprocessing stage is represented as:

() ()
ipip DPD  → ingpreprocess

(3)

In equation (3), ()pDP denotes the preprocessed
data.

3.1.2 Feature Selection Stage

Feature Selection is intended to select the features
of data packets and contribute most to the
intrusion prediction process. The collected data
contains important features that might be used for
identifying intrusion data packets; they should be
carefully analyzed in order to separate only the
relevant information. For a feature, the proposed
system uses the Enhance Fragrance Coefficient-
based Butterfly Optimization (EFCBO) algorithm.
The traditional Butterfly Optimization Algorithm
(BOA) is characterised by slow convergence
due to its stochastic behaviour and blindness
of the fragrance coefficient. To eliminate these
behaviours, the proposed algorithm enhanced
the fragrance coefficient of BOA using a self-
adaption method.

Figure 1. Architecture diagram of Sgd-LSTM and signature-based access control policy

https://www.sic.ici.ro

98 Ponnuviji Namakkal Ponnusamy, Vigilson Prem Monickaraj, Ezhumalai Periyathambi

EFCBO algorithm is an inspired meta-heuristic
algorithm that mimics the butterflies’ natural
foraging and mating behaviour. The stimulus
intensity for the butterfly is decided by the
landscape of the objective function. In the EFCBO
algorithm, initially each butterfly’s position
vector is in ktn × , where nt denotes the number
of iteration and k denotes the population size.
Each butterfly’s position vector is represented as:

BT t BT BT BTk n() , , ,.......,� � �1 2
, (4)

where BTk(t) represents k -th butterfly’s position
at the c urrent iteration t . The main phases
involved in EFCBO are global and local search.
The next position of a certain butterfly in the
global phase is computed as:

BT t BT t r q BT t U Fk k k g() () () ()� � � � �� ��1
2


, (5)

where BTk(t+1) represents the position of butterfly
at iteration 1+t , q is the best position in search
space, r~ is the random value ()]1,0[~∈r ,

)(gFU is the fragrance coefficient, which is
updated using a self-adaption method as follows
and ψ is the fragrance distribution range:









−×=

n
g t

tFU 1)(ψ

(6)

BT t BT t r BT t BT t U Fk k m n g() () () () ()� � � � �� ��1
2
 , (7)

where BTm(t) and BTn(t) are the positions of the
m -th and n -th butterflies in the searching space.
Here, the position of the butterfly is updated based
on switching probability)(ρs and a random value
r~ , where the switching probability is in the range
between 0 and 1 if s r ()� �� � .

Update the next position of a butterfly using
equation (5) if s r ()� �� � .
Update the next position of a butterfly using
equation (7).

Record and replace the best solution and the best
fitness value if there is a better solution. Repeat
the process until the maximum iteration. By
applying the EFCBO algorithm, in the feature
selection phase, the necessary features are selected
from dataset features. The selected features are
represented as:

{ }ni  ,.....,,, 321=
(8)

where i is the selected feature set, and n is the
nth feature in the feature set i .

3.1.3 Data Packet Status
Classification Stage

The selected features are given to the classification
phase, which classifies the data packet status as
normal data and data related to cyberattacks
based on different types of attacks, i.e. DoS
attacks, exploits, generics, shellcodes, and so on.
The proposed system uses Stochastic Gradient
Descent Long Short-Term Memory (Sgd-LSTM)
networks. The default behaviour of the LSTMs
is based on a novel type of Recurrent Neural
Network (RNN) which is capable of knowing
long-term dependencies by remembering
information for long periods of time The RNN is
affected by the exploding gradient problem. This
gradient problem can create major issues such as
long training time, poor system performance, and
bad prediction rate. To overcome this gradient
problem, the LSTM network is employed and
the weight values of LSTM are optimized using
Stochastic Gradient Descent (SGD) parameter to
achieve a superior performance. The structure of
Sgd-LSTM is illustrated in Figure 2. At the forget
gate, input gate, and output gate respectively, a
weight value WFG , WIG and WOG is generated;
these values are applied to the following equation
to obtain an optimized weight value:

� � � �W W w FG IG OGw w �; { , , } (9)

where, wW ′ is the optimized weight value, wW
is the old weight value and µ denotes the step
size of selected features. The obtained weight
values for forget gate, input gate and output gate
are ′WFG , ′WIG and ′WOG , respectively. The steps
involved in Sgd-LSTM-based data packet status
classification are given below.

Forget Gate: The first step in the LSTM is to
choose which information should be omitted from
the cell for that particular time step. The sigmoid
function determines this using the previous hidden
state (�HT t()�1) along with the current input

)(ti , where t is the current time step.

� � ��FG FG HT i FGt sig W t t b() (), ()� � ��� �� �� �� 1 , (10)

where θ IG t() represents the forget gate output,
)(•sig represents the sigmoid function, bIG is

the bias value and �HT t()�1 is the previous
hidden state.

Input Gate: This gate is used for updating the
memory cell state and it involves two functions.

	 99

ICI Bucharest © Copyright 2012-2022. All rights reserved

Efficient Intrusion Detection and Prevention Model in Cloud Environment Using Sgd-LSTM and C2HA

One is the sigmoid function, and the other is the
tanh function. The sigmoid function decides
which values to let through (0 or 1), wheras the tanh
function gives weightage to the values which are
passed, deciding their level of importance (-1 to 1).

� � �� IG IG HT i IGt sig W t t b() (), ()� � ��� �� �� �� 1 (11)
� � �() . ()t tanh t bMC HT i� �� �� �� �� � �� , (12)
where θ IG t() represents the input gate output,

)(•tanh denotes the tanh function,)(tϖ and
is a vector of new candidate values that could be
added to the cell state, and bIG and ϖb are the
bias values.

Cell Gate: In this step, first, the previous cell
states are pointwise multiplied by the forget
gate output, and then the output from the input
gate is multiplied with the current cell state.
Then the outputs obtained through the pointwise
multiplication are taken and a pointwise addition
is performed, which updates the cell state to new
values that give the new cell states.

� � � � � �� � � � �() () ()t t tFG IG� � �1 , (13)
where)(~ tϖ represents the new modified cell
state,)1(~ −tϖ represents the previous cell state
and  and ⊕ represent pointwise multiplication
and addition, respectively.

Output Gate: The output gate chooses which
should be the next hidden state. First, the previous
hidden state and the current input is passed to a
sigmoid function, which chooses which parts of
the cell state shall make up the output. Then, the
cell state is passed to tanh function to push the
values into the range between -1 and 1 and it is
multiplied by the output of the sigmoid gate.

� ��OG OG HT i OGt sig W t t b() (), ()� � �� ��� �� 1 (14)

�HT OGt t tanh t() () ()� � �� � �� � , (15)

where ϑOG t() represents the output of output
gate, bOG is the bias value and ΦHT t() is the
hidden state which represents classification
output, i.e. data packet status. This classification
result contains 10 classes: 9 different types of
intruder data packets (Analysis, backdoors, DoS,
exploits, fuzzers, generics, reconnaissance attacks,
shellcodes, worms) and a normal data packet. The
pseudocode of Sgd-LSTM is shown in Figure 3.

Figure 3. Pseudocode of Sgd-LSTM

Figure 2. The structure of the Sgd-LSTM network

https://www.sic.ici.ro

100 Ponnuviji Namakkal Ponnusamy, Vigilson Prem Monickaraj, Ezhumalai Periyathambi

After identifying the status of data packets, the
intruder packets are removed from the cloud and
only the normal data packets are kept in the cloud.
After identifying intruders in the cloud environment,
it is essential to provide a secure framework for
preserving users’ data and secure access.

3.2 Registration Phase

Registration limits access to data by allowing
only the approved users. In this phase, the users
register their information in the cloud for data
access. For this purpose, initially, the user chooses
a signature i.e. a unique ID üID and password üp̃
and then sends a registration request to the Trusted
Cloud Centre (TCC) along with{ üID, üp̃ }.

{ } TCCuser pID uuREQR  → ~, _  , (16)

where }{_ ⋅REQR represents the registration
request and TCC represents the Trusted Cloud
Centre. After receiving the registration request
from the user, the TCC computes the hash value
for the user password. The hash value of the user
password is denoted as)(ˆ ~puΗ . Here, the hash
value is computed using the Color Hidden Hash
Algorithm (C2HA).

3.2.1 Color Hidden Hash Algorithm
(C2HA)

The C2HA is one of the hashing algorithms, which
computes the hash value for the given input using
RGBA color values. In C2HA, the end-user can
choose hash code length, and also makes hash
code private between channels, by sharing unique
additional data between them. The steps involved
in C2HA are explained as follows:

i.	 Initially, the input text pu ~ is joined with
constant unique text ct~ then the constructed
input is converted into a binary array, which
is expressed in equations (2) and (3).

),(~
~~ cp tujoinT → (17)

)~(~ TBT y
conversionbinarytoText  → , (18)

where T~ is the obtained input by joining pu ~
and ct~ , and)~(TBy is the obtained byte array
corresponding to T~ .

ii.	 Then, the byte array is grouped as 4-bit sets
to obtain a relevant rgba value. For example,
let us consider 00000610 as the byte
array value. This byte array is grouped as

)0,0,0,0(irgba and)0,1,6,0(jrgba . Here,

the first row is allotted to the Red column, the
second row is allotted to the Green one, the
third one is allotted to the Blue column, and
the last row is allotted to the Alpha column.

iii.	 Then, the obtained rgba values
)0,0,0,0(irgba and)0,1,6,0(jrgba are

added by taking their modules of 255. The
result is)0,1,6,0(Rrgba .

iv.	 If a set of rgba values includes more than 2
values, they are grouped two by two and the
above process is repeated until obtaining a
single rgba value. And also if the number of
rgba values in a value set is an odd number,
then the last pixel value is moved as the same
value without doing any processing on it.

v.	 Finally, a corresponding hexadecimal value
is computed for the resultant rgba value

)0,1,6,0(Rrgba . Using private constant text
with input text makes the algorithm secure
for communication.

 (19)

After the user registration, the user requests the
TCC to access the cloud which is dealt in under
Intrusion Prevention Phase in subsection 3.3.

3.3 Intrusion Prevention Phase

Intrusion prevention is a structure of system
security which is meant to protect data from the
various types of threats. Due to the rapid growth
of intrusions, it is necessary to control and protect
the data access from unauthorized users in the
cloud. For this purpose, an access control policy
is proposed. It is designed to ensure that sensitive
information cannot be accessed by the wrong
person, while only the right person can access it.

3.3.1 Login Phase

Generally, login consists in a set of credentials
that help to authenticate a user. If any user wants
to access the data from the cloud, they give their
unique ID and password to the cloud and send a
login request to the TCC for data access.

{ } TCCuser pID uuREQL  → ~, _  , (20)

where }{_ ⋅REQL represents the login
request. After this user login request, the user
authentication is performed.

	 101

ICI Bucharest © Copyright 2012-2022. All rights reserved

Efficient Intrusion Detection and Prevention Model in Cloud Environment Using Sgd-LSTM and C2HA

3.3.2 User Authentication Phase

In the user authentication phase, the TCC verifies
whether the user is a legitimate user or not. After
receiving the login request from the user, the TCC
compares the hash code already generated. If the
hash code matches the TCC grants the permission
for the user to access the cloud. The generated
hash code is employed by cloud users only once
at a time. After accessing data, the users generate
a new password, and a new hash code is generated
for every user, and it protects users’ data from
unauthorized users.

4. Results and Discussion

In this section, the outcomes of the proposed
technique are discussed based on experimental
evaluation. This section includes performance
metrics and a comparative analysis with graphical
plots. For performance evaluation, the proposed
system uses the UNSW-NB15 dataset, which
is collected via the IXIA PerfectStorm tool in
the Cyber Range Lab of the Australian Centre
for Cyber Security (ACCS). The UNSW-NB15
consists in a mixture of evidence on real normal
data packets and synthetic contemporary attack
instances in the form of numerous records of
users; it includes observations on normal data
packets and nine families of attacks.

4.1 Performance Analysis
for Sgd-LSTM

Here, experiments are conducted on the UNSW-
NB15 dataset to validate the performance of the
proposed Sgd-LSTM classifier using 6 quality
metrics, namely: precision, sensitivity, F-Score,
accuracy, specificity, and training time. These
metrics are measured based on four important
parameters: true positive (T ve()+), false positive
(F ve()+), true negative (T ve()−), and false
negative (F ve()−) as follows:

Precision (1M): It represents the fraction of data
packets correctly recognized as intruder packets
it concerns all packets, which are detected as
intruder packets.

M T ve
T ve F ve1

�
�

� � �
()

() ()
(21)

Sensitivity (2M): It is the fraction of intruder
packets correctly detected.

M T ve
T ve F ve2

�
�

� � �
()

() ()
(22)

F-Score (3M): It is the harmonic mean of the
precision and the sensitivity.

21

21
3

*2
MM
MMM

+
×=

(23)

Accuracy (4M): It is the fraction of data packets
that is correctly predicted.

M T ve F ve
T ve F ve T ve F ve4

�
� � �

� � � � � � �
() ()

() () () ()
(24)

Specificity (5M): The fraction of normal packets
that is correctly predicted.

M T ve
F ve T ve5

�
�

� � �
()

() ()
(25)

Training time (M6): The time taken by the
proposed algorithm for training the network.

Table 1 illustrates the performance of the proposed
and existing classifiers in terms of precision,
sensitivity, F-Score, accuracy, specificity, and
training time. For an accurate prediction, the
classifier should attain high precision, sensitivity,
F-Score, accuracy, and specificity, and an efficient
classifier would need a shorter training time. This
performance comparison is graphically plotted in
the following figures.

Table 1. Performance Comparison for the Proposed and Existing Classifiers

Techniques Precision Sensitivity F-Score Accuracy Specificity Training Time (in sec)
Proposed Sgd-LSTM 96.89 96.59 95.99 96.98 96.10 322

LSTM 94.55 94.95 94.39 94.58 91.02 416
ANN 93.62 93.54 93.43 93.12 90.99 423
KNN 92.85 92.56 92.86 92.63 90.05 459

ANFIS 91.55 91.23 92.03 91.56 89.36 472

https://www.sic.ici.ro

102 Ponnuviji Namakkal Ponnusamy, Vigilson Prem Monickaraj, Ezhumalai Periyathambi

Figure 4 compares the performance of the
proposed classifier and existing classifiers such
as Long Short-Term Memory (LSTM), Artificial
Neural Network (ANN), K-Nearest Neighbour
(KNN) and Adaptive Neuro-Fuzzy Inference
System (ANFIS) in terms of precision. The
graphical comparison shows that the proposed
Sgd-LSTM attains the highest precision value of
96.89%. The precision value of existing LSTM,
ANN, KNN, and ANFIS is 94.55%, 93.62%,
92.85%, and 91.55%, respectively. These
results have revealed that the proposed classifier
recognizes the intruder’s packets accurately
compared to existing classifiers.

Figure 4. Precision Analysis

The effectiveness of the proposed and existing
classifiers is also evaluated based on their attained
sensitivity, which is shown in Figure 5. The
sensitivity values of existing classifiers ANFIS,
KNN, ANN, and LSTM is 91.23 %, 92.56 %,
93.54%, and 94.95% respectively. But the proposed
classifier achieves a sensitivity of 96.59 % , which
is more than 2% higher than that of the existing
classifiers. This comparison proved that the proposed
classifier is the most promising for data packet status
identification as sensitivity is concerned.

Figure 5. Sensitivity Analysis

Figure 6 illustrates the performance of the
proposed and existing classifiers with respect to
F-Score value. The F-score value for the proposed

classifier is 95.99%, which is 1.60% higher than
that of LSTM, 2.56% higher than that of ANN,
3.13% higher than that of KNN, and 3.96% higher
than that of the ANFIS classifier. Based on these
results, it is very clear that the proposed classifier
attains a superior performance compared to other
existing classifiers in terms of the F-Score, too.

Figure 6. F-Score Analysis

Figure 7 illustrates the accuracy level of the
proposed Sgd-LSTM which is weighted against the
accuracy level of existing classifiers. The accuracy
of the proposed classifier is 96.98%, whereas the
accuracy level of the existing classifiers LSTM,
ANN, KNN, and ANFIS is 94.58%, 93.12%,
92.63%, and 91.56%, respectively.

Figure 7. Accuracy Analysis

The specificity of the proposed and existing
classifiers is illustrated in Figure 8 for
performance comparison.

Figure 8. Specificity Analysis

	 103

ICI Bucharest © Copyright 2012-2022. All rights reserved

Efficient Intrusion Detection and Prevention Model in Cloud Environment Using Sgd-LSTM and C2HA

The experimental results demonstrate that the
proposed classifier is more promising than others
with regard to specificity, too.

Figure 9 illustrates the efficiency level of the
proposed and existing classifiers in terms of
training time. For an efficient classification, the
classifier should be faster and accurate. From
all the experimental results, it is clear that the
proposed classifier is highly efficient and accurate.

Figure 9. Training Time Analysis

4.2 Performance Analysis of C2HA

Here, the speed level of the proposed C2HA
used in hash code generation is validated by
the performance comparison for C2HA and
the traditional MD5 and SHA512 algorithms
in terms of hash code generation time. Figure
10 illustrates the hash code generation time for
the proposed C2HA and traditional MD5 and
SHA512 algorithms.

Figure 10. Hash code generation time Analysis

The time required for generating a hash code for a
particular text or file is called hash code generation
time. By comparing the proposed C2HA approach
with the MD5 and SHA512 algorithms, it is clear
that the proposed technique requires a shorter
time for hash code generation. The hash code
generation time for C2HA is 1574 ms, whereas
the MD5 and SHA512 algorithms need 2731

ms and 3547 ms, respectively. This comparison
proves that the C2HA is faster than the MD5 and
SHA512 algorithms. The fitness values obtained
by varying the number of iterations are illustrated
in Table 2.

Table 2. Fitness Comparison

Techniques
Number of Iterations

5 10 15 20 25

Proposed EFCBO 63 79 85 97 110

BOA 54 61 69 82 95

ABC 45 55 62 76 87
CSO 36 48 56 70 79
WOA 31 44 53 62 70

On analyzing Table 2, it is obvious that the fitness
level is efficiently increasing as the iteration count
increases. The fitness level for the proposed
EFCBO algorithm is 63 for 5 iterations, whereas
the fitness level for an existing technique, such
as Butterfly Optimization Algorithm, Artificial
Bee Colony, Cuckoo Search Optimization, and
Whale Optimization algorithm is 54, 45, 36, and
31, respectively. Similarly, for all the remaining
iteration counts, the proposed EFCBO algorithm
obtained the highest fitness level.

5. Conclusion

The security issue in the cloud environment is one
of the major barriers to cloud implementation.
Various attacks take advantage of the network
and protocol susceptibility to damage the cloud
users’ data and applications. To detect such attacks
and protect the cloud user’s data from various
intrusions, this paper proposed a Sgd-LSTM
and signature-based access control policy based
intrusion detection and prevention system in the
cloud. For the purpose of performance evaluation,
the proposed Sgd-LSTM, EFCBO, and C2HA
techniques are weighted against several existing
techniques. The obtained results proved that the
proposed technique is highly efficient and more
secure and accurate in comparison with other
techniques. In the future, the proposed work
could be extended by integrating the cryptography
algorithm with the proposed system to prevent data
transmission attacks in the cloud environment.

https://www.sic.ici.ro

104 Ponnuviji Namakkal Ponnusamy, Vigilson Prem Monickaraj, Ezhumalai Periyathambi

REFERENCES

Ali, A. & Yousaf, M. M. (2020). Novel three-tier
intrusion detection and prevention system in software
defined network, IEEE Access, 8, 109662-109676.
DOI: 10.1109/ACCESS.2020.3002333

Chkirbene, Z., Erbad, A., Hamila, R., Mohamed, A.,
Guizani, M. & Hamdi, M. (2020) TIDCS: A dynamic
intrusion detection and classification system based
feature selection, IEEE Access, 8, 95864-95877. DOI:
10.1109/ACCESS.2020.2994931

Dey, S., Ye, Q. & Sampalli, S. (2019). A machine
learning based intrusion detection scheme for data
fusion in mobile clouds involving heterogeneous
client networks, Information Fusion, 49, 205-215.
DOI: 10.1016/j.inffus.2019.01.002

Feng, J., Yang, L. T., Dai, G., Wang, W. & Zou,
D. (2019). A Secure High-Order Lanczos-Based
Orthogonal Tensor SVD for Big Data Reduction in
Cloud Environment, IEEE Transactions on Big Data,
5(3), 355-367. DOI: 10.1109/TBDATA.2018.2803841

Hafeez, I., Antikainen, M., Ding, A. Y. & Tarkoma,
S. (2020). IoT-KEEPER: Detecting malicious
IoT network activity using online traffic analysis
at the edge, IEEE Transactions on Network and
Service Management, 17(1), 45-59. DOI: 10.1109/
TNSM.2020.2966951

Hajimirzaei, B. & Navimipour, N. J. (2019). Intrusion
detection for cloud computing using neural networks
and artificial bee colony optimization algorithm, ICT
Express, 5(1), 56-59.

He, D., Kumar, N., Khan, M. K., Wang, L. & Shen,
J. (2016). Efficient privacy-aware authentication
scheme for mobile cloud computing services, IEEE
Systems Journal, 12(2), 1621-1631. DOI: 10.1109/
JSYST.2016.2633809

Liu, J., Yu, J. & Shen, S. (2018). Energy-Efficient
Two-Layer Cooperative Defense Scheme to Secure
Sensor-Clouds, IEEE Transactions on Information
Forensics and Security, 13(2), 408-420.

Mauro, D. M, Galatro, G. & Liotta, A. (2020).
Experimental Review of Neural-Based Approaches for
Network Intrusion Management, IEEE Transactions on
Network and Service Management, 17(4), 2480-2495.

Mishra, N. & Pandya, S. (2021). Internet of Things
Applications, Security Challenges, Attacks, Intrusion
Detection, and Future Visions: A Systematic
Review, IEEE Access, 9, 59353-59377. DOI: 10.1109/
ACCESS.2021.3073408

Mishra, P., Varadharajan, V., Pilli, E. S. & Tupakula, U.
(2020). VMGuard: A VMI-Based Security Architecture
for Intrusion Detection in Cloud Environment, IEEE
Transactions on Cloud Computing, 8(3), 957-971.
DOI: 10.1109/TCC.2018.2829202

Mohana Prabha, K. & Vidhya Saraswathi, P.
(2020). Suppressed K-Anonymity Multi-Factor
Authentication Based Schmidt-Samoa Cryptography
for privacy preserved data access in cloud computing,
Computer Communications, 158, 85-94. DOI:
10.1016/j.comcom.2020.04.057

Saxon, J., Bordbar, B. & Harrison, K. (2015).
Introspecting for RSA Key Material to Assist Intrusion
Detection, IEEE Cloud Computing, 2(5), 30-38. DOI:
10.1109/MCC.2015.100.

Traore, I., Woungang, I., Nakkabi, Y., Obaidat, M. S.,
Ahmed, A. A. E. & Khalilian, B. (2012). Dynamic
Sample Size Detection in Learning Command Line
Sequence for Continuous Authentication, IEEE
Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 42(5), 1343-1356. DOI: 10.1109/
TSMCB.2012.2191403

Wahab, O. A., Bentahar, J., Otrok, H. & Mourad,
A. (2021). Resource-Aware Detection and Defense
System against Multi-Type Attacks in the Cloud:
Repeated Bayesian Stackelberg Game, IEEE
Transactions on Dependable and Secure Computing,
18(2), 605-622. DOI: 10.1109/TDSC.2019.2907946

Xie, Y., Feng, D., Hu, Y., Li, Y., Sample, S. & Long, D.
(2020). Pagoda: A Hybrid Approach to Enable Efficient
Real-Time Provenance Based Intrusion Detection
in Big Data Environments, IEEE Transactions on
Dependable and Secure Computing, 17(6), 1283-
1296. DOI: 10.1109/TDSC.2018.2867595

	_Hlk103585033
	_Ref531187245
	_Hlk32594319
	_Hlk32594402
	OLE_LINK1
	_Hlk54707109
	OLE_LINK2
	OLE_LINK3
	OLE_LINK4
	OLE_LINK5
	OLE_LINK7
	OLE_LINK6
	OLE_LINK8
	OLE_LINK18
	_Hlk44972930
	OLE_LINK9
	OLE_LINK19
	OLE_LINK21
	OLE_LINK22
	OLE_LINK23
	OLE_LINK24
	OLE_LINK26
	OLE_LINK25
	OLE_LINK27
	_Hlk45460440
	OLE_LINK30
	OLE_LINK31
	_Hlk54550218
	OLE_LINK32
	OLE_LINK33
	OLE_LINK34
	_Hlk47794788
	OLE_LINK35
	OLE_LINK36
	OLE_LINK38
	OLE_LINK40
	OLE_LINK39
	OLE_LINK64
	OLE_LINK41
	OLE_LINK42
	OLE_LINK43
	OLE_LINK44
	OLE_LINK45
	OLE_LINK46
	OLE_LINK47
	OLE_LINK48
	OLE_LINK49
	OLE_LINK50
	OLE_LINK51
	OLE_LINK52
	OLE_LINK53
	_Hlk47721412
	OLE_LINK54
	OLE_LINK61
	OLE_LINK62
	OLE_LINK63
	OLE_LINK68
	_Hlk54167232
	_Hlk54167150
	_Hlk47516516
	OLE_LINK29
	_Hlk102550451
	_Hlk51058719
	OLE_LINK134
	OLE_LINK149
	OLE_LINK157
	_Hlk47688643
	_Hlk54872780
	_Hlk99993150
	bau005
	_Hlk94355086
	_Hlk105149976
	_Hlk105077994
	_Hlk96214082
	_Hlk103883969
	_Hlk96677932
	_Hlk105678234
	_Hlk105678499
	_Hlk105666564
	_Hlk103885062
	_Hlk105679308
	_Hlk105678685
	_Hlk105678708
	_Hlk105679285
	_Hlk105679298
	_Hlk105679719
	_Hlk96939829
	_Hlk106869426

