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Abstract: A new class of error correcting codes, the array codes, shows large usefulness in improving the reliability of two-
dimensional information. This class of codes could correct multiple burst errors and erasures represented by erroneous or erased
columns in a code array. The paper presents an efficient decoding algorithm for erasures which affect two columns. It also
shows a decoding that can be easily implemented based on an exclusive OR operation over GF (2).
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1. Introduction

The common error correction codes for digital recording systems, such as magnetic and optical disk
drivers, usc redundant storage and are based on Reed Solomon (RS) code. The RS code performs
quite well and can be used for error correction and also for recovering the information lost in
redundant storage area. The RS code involves operation over finite fields, e.g GF(2%), and is
characterized by a cubic complexity [1].

In the last decade use of error correction in digital recording systems, array codes, based on exclusive
OR operations over GF(2), which offer the advantages of a reduced complexity - quadratic, has been
largely considered. The array codes of block type can be described as two -dimensional block codes
which use for construction two types of check parity conditions, combined with diagonal read-out
rule. This class of code can correct multiple burst and also presents the advantages of reduced
complexity, fast encoding and decoding algorithms with simple implementation (the operation over
extended finite fields is this time avoided).

2. Problem Statement

Consider the information stored on m disks and the redundancy on / disks. On each disk the
information symbols are represented by disk sectors, bvtes or bits. For simplicity we will consider the
symbols as bits, i.e. elements from GF(2). Consequently, the (m+/) disks can be represented as a

column in a matrix A with m+/ columns and elements @, ; €GF(2). For easier notation in the encoder

procedure we consider that each column contains a number of (mm-1) binary symbols and the number
of redundant columns (disks) /=2,

Studies in Informatics and Control , Vol. 10, No. 1, March 2001 29



a) Allowed codeword size

Linear correction codes can reach the Singleton bound [2] which states that to correct  errors a code
A(n, ko,d) must have at least 21 parity symbols

212n2~k2

For a single burst error correcting array code A(n; X n, kd) the codeword size n; X n, must satisfy the
condition that for any n, the allowed valucs of n, include all prime numbers above n; [3 ], 1.e. iz ny +1.

If we take n, = n;+2, and consider a symbol as a group of n, bits, the redundancy of the array code is
p=mxn-k

p=m -np—n-(Mm=2)=m-(Mm+2)-m-m =2

A burst of dimension n; represents a column of bits for the array code A(n, x n; ,k.d) and a symbol for
the code A(n,, ko,d). If A(n,, k»,d) can correct one error, =1, the array code A(n; X nz, &, d) can correct

a single burst error represented by a column with »; symbols, and satisfy the Singleton bound An
erasure is an error with a known location, According to the theory of linear codes [2] two columns for
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Figure 1. Array Codeword for Array Code A(m x (nt2), s, d)

parity check symbols let the array code A(n; x n k, d) have the capability to correct any single
column in error or to correct any pair of erased columns. Consequently one allowed dimension of an -
array codeword A(n; x n2) is ny =m and n, =m+2.

Such a structure can be represented as a binary array A=(q, Do a;; eGF(2) in which the (m-1) row

r, _, is added fictitiously and contains only zero-symbols. The binary array code A(m x (m+2),s,d) where

Q={(@)|0<i<m-1;0<j<m+l}, consists of all the codewords represented by arrays A satisfying
certain parity conditions and diagonal read-out rule.
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b} Diagonal read-out rule

Gilbert codes and their generalization are the first arrav codes (they were developed in 1969) to have
allowed burst error correction based on diagonal (helical) readout order of elements of the matrices
which represent the codewords.

If the diagonal read-out is used to transmit the array codeword as a vector codeword, the array code
can be used to correct one or multiple diagonal burst errors [3]. If the diagonal readout rule is used to
compute one of the check parity equations, the array codes can correct bursts representing column
EITOTS.

Diagonal (helical) read-out order of elements of the matrices which represent the codeword can be
used for burst errors correction.

The read-out s of the code is formally defined as follows: the first diagonal (named main diagonal)
starting with element a,,_,  isDo: @, ,,d,, 5, ... Q. For the skipping value s=1. the second

diagonal D, starts in @,,_,, andis: D;: a a a a, , andso on.

m-11 Ym-2.2> - 1 m-1>

¢) Burst correcting capability

The burst correcting capability (BCC) of the array code is a function dependent on the codeword
dimension s x (m+2) and on the particular diagonal read-out used. For an array code A(m x im+2). s,
d) the BCC = b satisfies the inequality:

b<m-1 ifs=1and
b<m, if 1 <s<m+2 )
with the restriction that s and m+2 are relatively prime, i.e. ged (s, m+2) =1 [4].

For s = 1. this implies that m is necessarily a prime number. This assurption does naot contradict the
reality because, from a practical point of view, the addition of an arbitrary number of disks with no
information may be considered, so that m, total number of disks (i.e. total number of information
columns), fulfils the condition to be a prime number.

From (1) results that an array code A(m x (m+2), 1, 3) with parameter N= m{m+2) redundancy p =
2(m-1), minimum distance d = 3 and s = 1 can correct a burst of dimension b < m-1 which means »a
column in matrix A or equivalently, a disk fails. If the errors affect two columns with known location,
which represent two erased colummns. the code has the capability to correct them with no restriction
that the erased columns (disks) carry information or parity symbols [3].

3. Encoding Algorithm

The array code A(m x (n+2), 1, d) over GF(2) is represented by arrays A=(d, )a, where Q=)0
<i<m-1; 0 £j <m+1}, with binary symbols a; eGF(2), O<i<m-2and @, ,.=0forall 0<j=
m +1, satisfying the following two parity equations:

horizontal parity:

(which allows the computation)

m-1

Aim = Zar‘.: ()
t=0

and diagonal parity:
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a D_r,\ o D; (3)

iml

ni—1 m—l
“:here DO: Z (Jm—l-"l.i -+ D, o Cl(
t=1 !

il t

<L

and < [ >=k, represents the unique integer k, 0 <k < m-1, k =/ (mod m). According to Eq (2), the
horizontal redundancy contained in colunm ¢, is computed based on a horizontal panty, which is
alwavs even. For the diagonal redundancy contained in colunu ¢,,+;, according to Eq (3). the parity
may be either even or odd depending on particular parity of the main diagonal Dy,

4. Decoding Algorithm

Provided array A, « (»2) represents the correct codeword, the recorded codeword is denoted by
R=A+E. R=(r, a6ty Kz €GF(2), where E=(¢, ;)q is the error array with elements €, ; eGF(2) and
an addition sign denoting matrix addition to GF(2).

Suppose that in the recording process the codeword has been erroneously used and two columns ¢,
and ¢, (two disks fails), 0 < u, v < m+2 have been erased. The locations of erased columns may
determine three situations:

a. errors have affected the redundant information contained in ¢,,, and ¢,

b. one redundant column ¢, (or ¢,.;) and a column corresponding to the information symbols, ¢;, 0 </
<m -2 are erroneous

c.  errors appear in two information columns.

For the situations (a) and (b), the decoding algorithm which allows the recovery of the erased
columas, is based on the encoding algorithm represented by Eqs (2) and (3). Starting with a known

situation (in a matrix A all the symbols on the row r,_,are zero) a recenstruction of the columns

corresponding to redundant information using a horizontal parity equation for ¢, respectively, a
diagonal parity equation for ¢,.,, takes place .

If the pair of erased columns contains ¢,, (Or ¢,;) and one column ¢; , 0 < j < m-2, first a recovery of
the column corresponding to redundant information ¢, using a horizontal parity equation and
separately the column ¢, using a diagonal parity equation, takes place.

If the two erased columns belong to the information area, case (c), according to the encoding Eqs (2)
and (3), separate use of the parities is excluded because computing the main diagenal Dy by the
encoding equation (3) is not possible. The solution for this decoding situation is presented in [4] based
on the recursive technique of split syndromes.

Based on ¢, and ¢,,.; known svmbols, the main diagonal Dy can be computed using Eq (4):

m-1 n-1
DO = Z[:O a!.m + 1=0 a[_.m-i—l
DU =Cm T Cotl (4)

If we refer to each element in colunm ¢, and ¢+, which represents the syndrome vectors zy and zp as
syndrome components z; y=z; ,..; 0 < & < m-1 and z;p=2smy 0 </ < m-1 it is possible that starting with

the known symbols ¢ 0 < j < m-2 the syndrome components are computed one by one.

"
m=1,j*

Figure 2 gives an algorithm based on Egs (2). (3) and (4), which describes a two-erasure correcting
decoder for array code A(m x (m+2), /, 3) .

Algorithm A covers all possible situations related with locations of two erased columns.
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read R=(% )ocicm 2, rteadu,v

0<j<m+1
for /=0 tom+1I do

begin # =0 end

m-1,j
ifu<mandv=mtl

then begin
fori=01tom-1do

. m
begin 7, = thorm end

m-1
DO = ZIC1 rmJl—f,f

fori=0tom-1do

- . -1
begm rj,m+1 i DO + Zt:or"f-?“

ot
end
end
else begin
ifu<mand(v=morv=mtl)
then begin

m-1
Dy=r Ay mn T 2T

Eu =0 (u=i-1) I
fori=0tom-1do
begin

m—1
By g S0 Btk Vol
\ ‘m m,t

1—u
t=u
end
fori=0tom-1do

. m-1
begln ri,m i ,=0rf,r
end

end

else begin

m
DO = Z::ﬁ rt,m +l:,m+1

fori=0tom-1 do
begin
h, = Zm Y,

i it
t=0
t2u,v

dj — [)0 +Zmil L
1=0 4 'mJd
I#u,v
end
=-]
while (s#m-1) do
begin
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§ < <S -(v- u))m

rs,v — d:|‘+s - + r'.H(_v—uJ .3

rs,u = hs + rr,u

end
end
end

Figure 2. Decoding Algorithm A

8. Conclusion

Appendix is an application which illustrates encoding according to Eqs (2) and (3), and decoding
following the algerithm A steps as presented in Figure 2.

The results prove the simplicity of array codes implem:ntations over GF(2).
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Appendix

Letbe m=5and {a.;} .01 <4 0<j <6

0010101
0000 1 11
d=0 0101 00
01 1 1011
0000000

columns 0<j<4 contain information . columns 5 and 6 contain parity symbols and row 4 is
imaginary and contains zero in all the co-ordinates.

Encoding: column 5 contained a horizontal parity and column 6 contained a diagonal parity, was
computed with:
m—1 =
ai,m - {:‘;ai,f (l)
m-1
@, i Sl o @iict oy (2)
m-1

where ), = Z a

t=1  m-l=Lt

Horizontal parities and diagonal parity are:

a,; =0,a,=1a,,=0,a,,=1,a,;,=0
Dy=a;, +a,, +a,,+a,, =1

ae =l =1l,0,,=0,a,,=l,a,, =0
Decoding

Let assume that received (readed) matrix is erroneous and contains two columns erased v=0 and v=2.
It is:

r 0 2 0 1 0 1
207?201 11
wd= o201 00
21?21 011
0O 00 0O0O0CO0
e stepl o stepd
Compute new value of Dy Compute diagonal syndrome:
DO = Zio (af,m + az.rml) =1 d:‘ . Do a7t ”‘:Ti_l A i
o step2 1;(.],_,»
Compute horizontal syndrome: d=[10101]
b= :“0 . .5‘ :tzf :v uj- i)
t2u,y m
h=[10110] Wiy & o, T

a,, < h +a_,

s
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S« <_ (2 - O) - 1)_.; =2 as, < d;2+3;.5 3 a;‘3+(2—n):.5,0
Ay < diys T i ooysa a,, « h+ay,

a,, < h; £y a4, = d, +dy, =1

a,, = d,+a,,=1 A0 = h+a,=0
ayy=h+a,,=0 .

. HipS s (s—(v-u))_

FE (S e u))m a,, < diyim + A s (v—u))myu
a., <« d-‘:v-vsf‘m T v)mu a,, < h +ag,

a,, «h +a,, s {(3-(2-0)), =1
S« (2 —(2- 0))5 =0 a, < d;;1+1';5 Ty 20950
Ay € dfzmj-s +aie+(270)‘}5,0 Gy & h‘ s

a,, < hy+a,, a,=d;+a;,=0

Ay, =d,+a,, =1 a,=h+a,=0

oo = hy + dyy = 0 = Hepd

e step6 S<_<S_(V_u)>

s (s~ (v—u)) s (1-(2-0)), =4=m-1

ol END

s+(v-u),mu

m

a.,«d, .
’ VTS

a,, < h +a,

s (0-(2-0)), =3
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