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1. Introduction

Building models for applying stabilization policies to economic processes has been for long attempted.
Various classical methods have been used: from econometric models based on rational expectations
(which assume that shifts in economic policy produce revised expectations of rational agents), to
regulatory mechanisms, normally regarded as engineering tools. Armold Tustin accomplished a pioneering
work in this latter direction. In 1953, he published a book significantly titled “The Mechanism of
Feonomic Systems: An approach to the problem of economic stabilization from the point of view of
control svstem engineering”. A. W. Phillips continued Tustin’s work at the London School of Economics.
Originally trained as an electrical engineer, he was aware that an economic system is dynamic, with
feedback loops and behaviors that are not susceptible to simple cause and effect. In a well- known article
published in 1934 and entitled “Stahilization Policy in a Closed Economy”, he introduced a stabilization
mechanism that was explicitly based on a PID maode of control. It is the historical relevance of this model
that gives us the main reason why to adapt it for incorporating a fuzzy control mechanism.

First a theoretical background for our approach is provided. Section 2 resumes certain basic concepts of
fuzzy control and makes a summary description of the fuzzy control algorithm. In Section 3 the
relationship between linear and fuzzy controllers is addressed. Actually, any fuzzy controller can be
regarded as a supersct of linear controllers. Hence, the former can emulate the latter under certain
assumptions. The design procedure that allows us to emulate a conventional PID controller by means of a
linear fuzzy controller is introduced in Section 4.

The emulation of a conventional controller is only a starting point for further exploitation of the full

capabilities of a fuzzy controller. One of these consists in the possibility of implementing nonlinear
modes of control. We can benefit from this property when designing a fuzzy control strategy to stabilize
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an economic process, by choosing among different shapes of the membership functions, different
implication functions, different T-norms and T-conorms to model the logical connectives used in the
antecedent of various rules, and by scaling inputs in order to fully exploit the range of universe of
discourse. Classical tuning procedures may be applied during the emulation stage, and some fine-tuning
procedures in the final design stage, when making the fuzzy controller gradually nonlinear. The
consequences on model performance of such specific choices and various tuning paramcters may be
evaluated by simulation. Section 5 and Section 6 are discussing these topics.

In order to illustrate how the economic stabilization models can be adapted to use fuzzy modes of control
instead of conventional ongs, we refer to Phillips” stabilization model. which is a well- known pionecring
work in this field. There are two variants of this model we refer to:

e A closed economy stabilization variant, where the model is given in terms of input-output description;

e Anopen cconoiny stabilization variant, where the model is given in terms of state-space description.

As a consequence, different approaches will be made for either case.

With regard to the former, the stabilization mechanism was origially based on a conventional PID mode
of control. Therefore, adopting a more flexible design strategy could reside in replacing it by a fuzzy PID
controller. Section 7 describes this approach.

As far as the latter variant is concerned. we have to choose a control strategy in accordance with the state-
space description of the model. Hence, a state-feedback controller will be used. a case in which there are
two alternative design methods to be applied in determining the feedback gain matrix: the first refers tc a
pole placement technique and the second consists of a linear quadratic optimization technique. The design
procedure is introduced in Section 8.

In all these cases. to transfer gains from conventional to fuzzy controllers is to be done first.
Subsequently. one can, according to a nonlinear strategy of control, modify some control characteristics.
Finally, fine-tuning of the gains attached to the nonlinear fuzzy controller completes the design strategy.
Some advantages of fuzzy control and a road-map for this paper are presented.

2. The Fuzzy Control Algorithm

Basically, a fuzzy controller can be regarded as a nonlinear static function. which maps controlier inputs
onto controller outputs:

y=fx, xedX. yel

where X and Y are the input and the output space, respectively.

Strictly speaking, it is always possible to use a fuzzy rule-based system as universal approximator of any
nonlinear mapping. This implies that:

vxelX, |F(x) -f(x)|<¢

where /7(x) is the function to be approximated and & can be chosen to be arbitrarily small. The

approximation is based on interpolation. First. a discretization is needed: fuzzy coverings on both the
input and the output space are considered. Subsequently. a fuzzy rule base is defined. each rule having its
antecedent in the input covering and its consequent in the output covering, The consequences of all the
active fuzzy rules are then inferred via fuzzy inference. Finally. a crisp output is computed using an
interpolative mechanism: all the partial fuzzy consequences are combined into an aggregate one and a
numerical value is obtained by defuzzification. The image of the input space through the function f(x)

results in a control hypersurface.

We are now going to provide a more detailed description of a fuzzy controller.

Consider the input space X as being an Ny -dimensional referential:
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X :“X’l x"‘XXj X“'X/thx

where X, is the universe of discourse of the input variable x, .

Forany i in {l,..., Ny}, let us consider a fuzzy covering of the universe of discourse X, :

Yoy

where 4; ; are fuzzy sets. Normally, fuzzy partitions are addressed, that is, fuzzy coverings with the
additional property:

n;
Z,uA”(x;) =1l VxlelX,
J=1

The rule base includes a set of N, parallel fuzzy rules. Each fuzzy rule is an if —then statement. where

the antecedent and the consequent consist of fuzzy propositions. The antecedent (also called premise)
contains a combination of propositions through the logical connectives of and and or . Formally, we
have:

re: ifxis 4y, and ... and x; is 4,;, and
.and xy is Ay then y is B,

In practice, fuzzy control is applied using local inferences. That means each rule is inferred and the results
of the inferences of individual rules are then aggregated. According to this approach, the inference in
fuzzy control is represented by the following steps:

1. Match the fuzzy propositions x; is 4, ., used in the premises of fuzzy rules 7, . with the numerical
data x; (controller inputs):

a!,k = /uAj.k (x;')

where &, ;. is a numerical value representing the matching, In the case of fuzzy inputs A4 , the
matching is normally represented by:

a; ;= hgt(A{N4,,;)

The two cascs can be treated uniformly, if proceeding on a fuzzification of the crisp input x|, by
translating it into a fuzzy singleton:

1 if x; =x]

0  otherwise

Al = fuzz(x), with Haix) ={

Thus, @; ; can be obtained using a sup-min composition, which consists of a projection (sup) and a

combination (min):

@; ;. =Sup min t”A; (X)), 1y, (xi))

2. Determine the degrees of fulfilment (DOF) 8, for each rule 7, :

where 7' is the T-norm representing the and connective in the premises of the ruies. Normally T is
chosen as either the min or the product operator. If the or connective is used, this T-norm has 1o be
replaced by a T-conorm. Of course, both the and and the or connective can be used in the same
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premise. In such case some values ¢, have to be combined by means of a T-norm (and
connective), others by means of a T-conorm (or connective).

3. Deterniine the result B) of each individual rule 7,
Mg, (W) =1 Lﬁ’k, Hsg, (&'))

where 7 is the implication used to model the fuzzy rule. This can be one of the suitable fuzzy
implications. In fuzzy control, a conjunction-based fuzzy implication (also called T-implication) is
normally used: either the min implication (introduced by Mamdani) or the product implication
(introduced by Larsen).

4. Aggregate the partial results B}, of the individual fuzzy rules r; into the overall result B’
He(Y) :lfﬂm »
5. Finally, obtain a crisp output, which a defuzzification method is needed for, starting from the

aggregated fuzzy resuit B’. For example, we can use the center-of-gravity defuzzification method,
which is defined by:

pg(y)-ydy
cog(B) = ——mu—'[l’ —

[y e av
Some discrete versions of this method are mostly used in fuzzy control.
The most common inference methods are: the max-min method, the max-product method and the sum-
product method, where the aggregation operator is denoted by either max or sum, and the fuzzy
implication operator is denoted by either min or prod.
The fuzzy controller introduced by Assilian and Mamdani (1974) was based on the max-min method.
Thus, choosing the min operator for conjunction in the premise of rules as well as for the implication
function, and the max operator for the aggregation, the compositional rule of inference application results
in:
wg(y) =Illélx min (ﬁk, Up, (y))
with:

By =mineg;

i

Q; ; = sup min &uA; (%), py (X ))
X

Notice that the inferred fuzzy consequences B, defined by the membership functions
Mg, (¥) = min (ﬁk, g, ( y))_. are obtained by clipping he initial fuzzy sets B, . due to the min operator.

The max-product method uses Larsen’s implication operator. This inference method is charactenized by
scaling (due to the product operator) the consequent B, of a fuzzy rule r, with the degree of fulfilment

B, of that rule and by aggregaring the results B) to obtain the fuzzy controller output by means of a
max operator:

g (y)=max By pig, (¥)

with:
By = ]—_[ai,k :
i

ai. = hg[(x; n Az.k) = hg[(x: . Al. k) = 1“/[,—‘,, (x:)
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for numerical inputs x] . When fuzzy inputs 4 are faced with, the problem of determining the operator m
in the sup-m composition allows no lenger a trivial solution.

The sum-product method is similar to the max-product method, except for the aggregation operator,
which is done by means of summation:

ty (V) =2 B g, ()
;

Also the use of a bounded sum is possible, resulting in:

TOE m-{z B #g, (1), lJ
k

which eliminates the occurrence of supernormal fuzzy sets and thus conforms to fuzzy set theory.

3. The Linear Controller As A Subset of A Fuzzy Controller

The emulation of a linear controller can provide an initial fuzzy controller. The latter can further be used
as a starting point in designing a more complex fuzzy controller (a nonlinear one), by gradually
modifying the initial choices as to the shape of membership functions. logical operators, etc. Only are
numerical inputs considered.

In the case of a linear controller the input-output mapping is seen as a linear algebraic equation:

N
y:}:q xy+d=c-x+d
i=1

where d 1s an offset. The fuzzy controller function y = f(x) can emulate the linear controller
y=c"-x+d when ascertaining the following assumptions:

Al. Membership functions of the fuzzy sets in the universe of discourse of the inputs are triangularly
shaped and normal;

A2, The fuzzy sets for each input form a fuzzy partition:

-
{-4i.J';j:iE; ngﬂ/iid(rr’):ls VxelX,

A3. The fuzzy rule base is complete;

A4, A T-norm is used for the implication function (T-implication);

A3, The operator for conjunction in the premises of the fuzzy rules is the product operator;
AG6. The (bounded) sum operator is used for aggregation and for the or connective if it is;

A7. Crisp consequents for the individual fuzzy rules are considered and their choice is made in
accordance with the linear controller equation y=c¢'-x+d :

A8, The fuzzy-mean defuzzification method is used (which implies the choice of the aggregation operator
in A6).

Assumptions Al to A4 imply that there exisis a fuzzy rule for every input combination, Assumptions A5

and A6 (using the summation and product operators instead of the max and min operators) are necessary
because of the linear controllers emulation requiring operators that result in linear interpolation. The most
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important assumption to be met is A7, because, given the rest of the assumptions, the output of a fuzzy
controller with N, inputs results in an interpolation of the consequences of at most 2Mx active rules in
an N -dimensional space. Indeed, if each fuzzy partition contains only normal and convex fuzzy sets,
then at any value x/ e X/ there are no more than two consecutive overlapping fuzzy sets A4, , and

A; 4.1, such that:

#A,,,l(x:)>0 and #Ajrz+1('x;)>0

Ai,i’ A:.J.’—H

Ha, . (x})
Ha, (X))
0 P2

X
Figure 1. Crisp Input Matching Two Consecutive Overlapping Fuzzy Sets of A Fuzzy Partition

The numerical consequences of at most 2%x contributing fuzzy rules determine whether or not a linear
relation interpolating these points (hyperplane), does exist. When this hyperplane exists, the input-output
mapping of the fuzzy system satisfies the linear equation y=c'-x+d .

4. Emulating A PID Controller By Means of A Linear Fuzzy
Controller

An easy and usually convenient way to start design a nonlinear fuzzy controller is to emulate a
conventional PID (proportional-integral-derivative) controller by means of a linear fuzzy controller and to
make it progressively nonlinear.

In the case of a conventional PID controller, the control variable u(r) is defined in terms of deviations
from or errors e(r) in a reference value y,, and the process output W) (e e(t) =y, — YD)

de(l)
dt

t
u(t)=G,-e(t)+G, -je(r) dr+G,-
0
where G, G, and G, are proportional, integral and derivative gains, respectively.

If we are concerned with digital control. discrete approximation of the previous relation should be done,
and it can be done by replacing the derivative term by a backward difference and the integral by a sum
using rectangular integration:

4
. e, —e
o - ~ t -1 _
u,—op-e,+6,-Ee,Ts+Gd-_T =

=1 §

=G, e, +G; e, +G,-ce

where T, is the sampling period (in economic applications, 7 is normally assumed to be 1).
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In order to emulate the conventional PID controller through a lincar fuzzy controller, we have to replace
the summation in PID control by a fuzzy rule base acting like a summation. The closed loop system
should thus show exactly the same step response (this is to check the correctness of implementation).

Hence. a fuzzy PID (FPID) controller uses variables as error e. change of error ce . and integral error
ie in the antecedent of if - then tules and the control variable # (which may be replaced by change of
control cu , when having to deal with incremental control) in the consequent of rules.

A fuzzy controller based on the Mamdani-type fuzzy inferences would consist of rules having the form:
reif(e is Ay p)and (ce is 4, ) and (je is A5 ;) then (uis B;)

A PID-like fuzzy controller based on Sugeno-type fuzzy inferences has rules of the form:
hoif(eis 4y ,)and (ce is A, ) and (ie is A; ) then w=aq, -e+a, -ce+ay-ie

We turn now to the representation of a fuzzy controller as an input-output mapping. In the general case it

may result in a nonlinear shaped control hypersurface, When three inputs (¢, ce , ie ) and one output (u )
are considered. this mapping becomes;

u=J(e,ceie)

However, the assumptions introduced in Scction 3 allow us to design a fuzzy rule base acting like a
summation and resulting in a linear mapping;

u, =Gp-e, +Gi-ie, + Gd -ce,

In conventional control. the gains are mainly used for tuning the response. In fuzzy control, scaling of

inputs onto a standard universe of discourse is also important and urges to introduce one more parameler
to deal with.

So, the next step in the design procedure is to transfer the three gains (Gp. i and (id ) used i the
conventional PID controller to four gains (say FGp, FGi, FGd and FGu ) that are necessary for
tuning and scaling the FPID controller. The latter emulates the former if the following condition is met;

u, =Gp-e, +(d -ce, +Gi-ie, =
=[ FGp-e, + FGd -ce, + I'Gi -ieJ- FGu =
=FGp - FGu e, + FGd - FGu -ce, + FGi - FGu -ie,

Comparing the gains of the FPID controller with the gains of the conventional PID controller, the
following relations can be derived:

FGp-FGu=Gp = FGu=——.Gp
FGp
FGd-Fou=Gd = FGd=rap-22
Gp
FGi-FGu=Gi = FGi=FGp-2-
Gp

Let us now assume that the error is in the range [~ £. ] and for the fuzzy controller we set a standard
input universe, say [-100, 100]. In such a case, we have:

ee[-E.E] = FGp-eel-FGp-E. FGp-E]=[-100.100]

Thus, we can set:
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100
FGp=22
P=F

The other gains are now fixed as follows:

FGu:-E‘—-Gp; FGd:m.(id; FG;:EQ.%‘
100 E Gp £ Gp

The conventional PID controller may be tuned using the Ziegler-Nichols frequency response method, resulting in
optimal values for the parameters Gp, Gi and Gd . Afterwards. the equivalent FPID controller is obtained.

deriving its parameters ( FGp . FGi . FGd and FGu ) from those of the PID controller.

The FPID controller scheme is shown in Figure 2,

¢ e [-E, E]
Proportional
fx .A ,\
€ VAVAR U u
pipi du/dt | ’,’}’-X;\
/ !\f\ \
Derivative FGu
Mux Fuzzy
controller

Lol 16 Ll 100/E*GU/Gp

Integral FGi

Figure 2. Fuzzy PI1D Controller (FPID)

Sometimes, a rule base with only two inputs is more convenient. An easy way to reducing the number of fuzzy
controller inputs is to separate the integral action as in the fuzzy PD+ (FPDHT) controller shown in Figure 3.

¢ e [-E. E]

Proportional
j\ ;l\ {J\
!Y%\

c ¥ ! \‘
s dWALL S, 60/ExGa/G S
‘. Mux Fuzzy
Derivative FGd controller FGu
FGi*ie

> /s R 100/E*Gi/
FGi

Integral

Figure 3. Fuzzy PD+I (FPD+I) Controller
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The controller function is thus split into two additive parts:

U=Uppn +U; = frpp (€, ce)+ [} (i€)

The first onc corresponds to the FPD controller and is represented by a surface. At the initial stage of the

design, this surface is a plane, but it may be rendered nonlinear at a subsequent stage. For example, we
can modify the shape of the surface by manipulating the membership functions. Its associated plot is a
design aid by visual inspection when selecting membership functions and constructing rules.

Now let illustrate the construction of a fuzzy rule base for a FPD+I countroller.

We consider a standard universe of discourse (say [—100, 100] ) for both inputs: error and change of error.

For the sake of simplicity, the same fuzzy partition will be considered in both cases (see Figure 4, where
“N”, “AZ” and “P” stand for “Negative”, “About Zero” and “Positive”, respectively).

o
'y

%

- ce
-100 0 100

Figure 4. Fuzzy Partition on the Standard Universe of Discourse [-100, 100}

Due to the summation. the standard universe for the output variable # will be [-200, 200]. According to

assumption A7 introduced in Section 3, fuzzy singletons (whose positions are determined by the sum of
the peak positions of the input sets) will be chosen as consequents to fuzzy rules ( Figure 5).

v

0 i
=200 =100 0 100 200

Figure 5. Fuzzy Singletons Chosen As Consequents to Fuzzy Rules

On choosing the design parameters according to assumptions Al through A8, the control surface
degenerates to a diagonal plane (see Figure 6).

The following Matlab program implements these choices, resulting in a fuzzy inference system (FIS):
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Control

" 100

Change of error

Figure 6. Linear Control Surface

% Preliminary computation

standard_input_range = [-100 100];

number_of inputs = 2;

number_of input_mfs = 3;

min_ir = min{standard_input_range);

max_ir = max(standard_input_range),

input_tri_mfs = {-100 -100 0; -100 0 100; 0 100 100];
step = (max_ir - min_ir) / (number_of_input_mfs - 1)
min_out_range = number_of_inputs * min_ir;
max_out_range = number_of_inputs * max_ir;

standard output_range = [min_out_range, max_out_range|:
output_tri_mfs = [];

for v=min_out_range: step: max_oul_range

current_mf = [vv v] % degenerated triangle = singleton
output_tri_mfs = [output_tri_mfs; current_mf]:
end

number_of output_mfs = size(output_tri_mfs, 1)

% Build FIS for FPD controllers
g=newfis('FPD");

g.andMecthod = "prod";
g.impMecthod = 'prod”;
g.orMethod = "sum’;
q.aggMethod = 'sum';

% Add the first input variable

q = addvar(q. 'input’, 'Error', standard_input_range):

q = addmf(q, 'input’, 1, ' Negative ", 'trimf, input_tri_mis(1,:)).
q = addmf(q. 'input', 1, 'About Zero', 'trimf', input_tri_mfs(2,)).
q = addmf(q, input’. 1. " Positive ", "trimf', input_tri_mfs(3.:)).

% Add the second input variable

q = addvar(q. 'input’. 'Change of error’, standard_input_range):
q = addmfi(q, 'input’, 2. 'Negative'. 'trimf', input_tri_mfs(1,:)).

q = addmf(q. 'input', 2. 'About Zero'. ‘trimf’, input_tri_mfs(2.:));
q = addmf(g, 'input', 2, "Positive". 'trimf’, input_tri_mfs(3.:));

% Add the output variable

q = addvar(q, 'output’, 'Control', standard_output_range);

q = addmf(g, 'output', 1. 'Neg_Big', 'trimf. output_tri_mfs(1.:));

q = addmf(q, 'output’, I, 'Neg_Small', 'trimf', output_tri_mfs(2,));
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q = addmf(q. 'output’, 1, "Zero', 'trimf’, output_tri_mfs(3,:));
q = addmfiq, 'output’, 1, 'Pos_Small’, 'trimf, output_tri_mfs(4,:)).
q = addmf(q, 'output’, 1, 'Pos_Big', 'trimf’, output_tri_mfs(5,:));

% Add the rules. Fuzzy singletons (whose positions are determined by the sum
% of the peak positions of the input sets) are chosen as consequents
ruleList = |];
fori= 1: number_of input_mfs
for j = I: number_of input_mfs
output_val = input_tri_mfs(i, 2) + input_tri_mfs(j. 2);
k = (output_val - min_out_range)/step + 1;
current_rule=1[i j k 1 1];
ruleList = [ruleList; current_rule];
end
end

g = addrule(q,ruleList);
surfview(q)

5. Making the Linear Fuzzy Controller Progressively Nonlinear

There are three sources of nonlinearity in a fuzzy controller:

e The rule base. The position, the shape and the number of fuzzy sets as well as the nonlinear input
scaling cause nonlinear transformations. The rules often express a nonlinear control strategy.

e The inference engine. If the connectives and and or are implemented as for example min and max,
respectively, they are nonlinear.

o The defuzzification. Several defuzzification methods are nonlinear.

All the characteristics emunerated above can be used to gradually make the linear fuzzy controller
nonlinear. The shape of the sets and the choice of rules can most easily be applied.

The shapes of the control surface induced by certain input families of fuzzy sets are shown in Figure 7.

Control
Control

1 : 1
08}
08}
0.5}
0.4t
0.2}
0 - : - 0
400 S0 0 50 100 <100 50 0 50 100

Figure 7. Nonlinear Control Surfaces Induced By Different Input Families
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The control characteristics producing nonlinearities that affect the closed-loop system dynamics must be
chosen by analysing how the response reacts to each of them.

6. Fine-tuning of the Nonlinear Fuzzy Controller

The final phase in the design procedure is that of fine-tuning the gains attached to the nonlinear fuzzy
controller. This operation combines the intuition with some rules of thumb derived from experience. In
simulation it is possible to experiment with different control surfaces and to get an idea of the gain margin
and of the characteristics of response.

There is a large potential for the design approach in fuzzy PID controllers, due to a widespread
application of PID control and well-known tuning rules.

A procedure for hand-tuning of an FPD+I controller may be sketched as follows:

1. Adjust FGp according to the reference step size and the universe of discourse in order to fully exploit
the range of the input universe.

2. Remove integral action and derivative action by setting FGd = FGi =0 . Tune FGu to give the
desired response, ignoring any final value offset.

3. Increase the proportional gain by means of FGu , and adjust the derivative gain by means of FGd
to dampen the overshoot.

4. Adjust the integral gain by means of /Gi to remove any final value offset (steady state errror).

5. Repeat the whole procedure until #Gu gets as large as possible.

7. Phillips' Stabilization Model for A Closed Economy and Its Fuzzy
Extension

7.1 Conventional (PID-like) Modes of Control

Phillips' model naturally assumes that the level of aggregate demand determines the level of national
income. The former is made up of a part originating from private economic agents and a part originating
from the government. The stabilization policy consists in the adjustment of government expenditure in
order to increase or decrease the aggregate demand, resulting in a desired level of the national income.
Faced with modifications induced in aggregate demand, the producers react by making some adjustments
in output: if aggregate demand exceeds the current output, the latter will be increased; otherwise, it will
be decreased.

The stabilization model is given by the equations:

Y() = a-(D()-Y(0): a0 (1)
DO =(1-0-Y()+Gt)-v; 0<l<] )
G =b-l6" 1) -6)): b0 3)
G*(1) - given in the form of a control policy 4)

where: Y(¢) isthe national income;

D) is the aggregate demand;
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a is a reaction coefficient (representing the velocity of adjustment to a discrepancy between
aggregate demand and current output);

(1-¢) is the marginal propensity to spend (i.e. the marginal propensity to consume pius the
marginal propensity 1o invest),

v is an exogenous disturbance, indicating a decrease in aggregate demand;

G(t) is the actual government demand;
G'(r) isthe potential government demand, which stands for the stabilization policy;

b is a reaction coefficient, indicating the speed of response to a discrepancy between potential and
actual public expenditure.

In order to simplify the analysis, the variables are measured in terms of deviation from their desired
levels. so that a negative value simply means that the actual value is smaller than the desired value. Thus,
we are led to consider the reference value Y ¢ as being 0 and the error as being;

e()=VY e —-Y(O)=-Y() (3

Let us assume that national income is initially at the desired level and that an exogenous decrease in
aggregate demand occurs.

The stabilization policy:
u(t)=G"(1) (6)

proposed by Phillips, was defined in terms of a proportional (P), or derivative (D), or integral (I) mode of
control, or a combination of these three modes, that is in terms of a PID control policy. In the latter case,
the relation defining the control variable takes the form:

u) =G, e)+G,-fe(x)dr+G,- dj(:) o
0

where G, G; and G, are the proportional, integral and derivative gains, respectively.
Phillips' model can be manipulated in order to reduce it to a single equation. Finally we obtain:

V4+(al +b)Y +abty —abG" =—aby (8)

When we consider one unit decrease v =1 in aggregate demand, the differential equation of the model
becomes:

Y+(al+b)Y +abtY —abG" =—ab 9)

Inserting the various modes of control defining u(r) = ('}*(r) as generically expressed by (7). let us
determine the time path of national income.
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The conventional PID control scheme for Phillips' stabilization model is shown in Figure 8:

‘ a*p . I
S+ (@*+b)rs+a*pH

Process YO
transfer function

el YO - |+
i+« 0

Yref

Bl

Excgenous decrease
inaggregate demand

Proportional

E

15
Integral

du/dt je—

Derivative

Figure 8. Control Scheme for the Classical Phillips Model

It can casily be shown that, without any stabilization policy, the limit value of national income Y ()

(measured in terms of deviation from its desired level) is y* =-1/¢ (see curve (1) in Figure 9a).

When only a proportional stabilization policy is used (i.c. G, >0,G; =G, =0), the steady state solution
becomes:

V' =-1(t+G,) (10)

and it is smaller in absolute value. That means that the decrease in income determined by an exogenous
decrease in aggregate demand is smaller than the decrease occurring ir default of a stabilization policy.
However, a purely proportional stabilization policy would fail to completely stop the reduction in income
and would tend to provoke oscillations, though damped, when G 5 is too great. Moreover, the

characteristic equation has:

(af-b)*

o real roots for G, <
4a

. in which case the time path of national income is monotonic;

(af-b)?

. , in which case the time path of national income is oscillatory.
a

e complex roots for G, >

The addition of a derivative policy G, to the proportional one has no effect as far as the reduction in
income is concerned (i.e. the stcady state solution remains y =-1/(¢+G »)). but offsets the bias

towards oscillations of G,. One can see that the real part of the characteristic roots is

—%(a@ +b+abG,) in the case of the mixed proportional-derivative policy, and fé—(af +5) in the case

of the purely proportional one. Thus, the former is obviously greater in absolute value than the latter.

A pure integral policy proves successful when G, is smaller than a certain critical value (i.e.
G, <(af+b)£), but may provoke instability in the opposite case. If successful, it has the advantage of
being able to completely done away with the effects of exogenous disturbance.
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When the integral and the proportional stabilization policies are used together, the critical stability limit is
greater than in the case of a pure integral policy (i.e. G, <(af+b)({+G ) ). the conclusion being that the

addition of the proportional policy contributes to running out of the danger of explosive oscillations,

In the case of a mixed integral-derivative policy, the crucial stability condition is G, <(af+b+abG )¢
and provided all the three policies are simultaneously adopted. the crucial stability condition is

Gi<(al+b+abGy)(£+G,).

Let us assume the following parameters for the model described above: a=4, h=2_ /=025

In Figure 9a, curve (1) depicts the time path of national income (measured in terms of deviation from its
desired level), without any stabilization policy (there is a stationary error of —4). Curve (2) depicts the

_(at-b)?

case where G, = TR indicating the frontier between a monotonic behaviour and an oscillatory
a

onec. Curve (3) illustrates the case when a steady state solution of _V* =-1 is desired, involving
GP:I—I:':().'IS.

The time paths in Figure 9b show that the effect of an integral policy is to obtain a null stationary error,
while the effect of a derivative policy is to offset the oscillatory bias of other policies.

0 SR o ERCIp—
4l B r———— aosf |/

2 atbi ) T2

X N BN

4 — e 02 e
o 23 6 01 2 3 4 5 8

a. (1) G,=G;=G,=0,
) G,=1/32; G;=G,=0;

b. (1) G,=G;=8, G4=0;
(2)G,=G,=8,Gy= 1

3) G,=0.75; G,;=G,=0

Figure 9. Time Paths for Specific Choices of Controllier Gains

7.2 The Linear Fuzzy Controller That Emulates the PID-like Phillips' Stabilization Model

The design procedure of the FPID controller was exposed in detail in the previous Sections. So, we are
now in a position to represent the scheme of this fuzzy controller. The scheme is shown in Figure 10,

where the input range [—£, E7] was set to [-4,4] .
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Figure 10. Fuzzy PID Contrel Scheme for Phillips' Stabilization Model

8. Phillips' Stabilization Model for An Open Economy and Its Fuzzy
Extension

8.1 Control Scheme Using A Conventional State-feedback Controller

Let us now modify Phillips' inodel so that foreign trade flows in economy are taken into account.

We shall consider once again the government expenditure as a control variable. This time the aggregate
demand is expressed by the equation:

D) =GO+ Z({t) - MO +C)+1(t) (11)

Since the aggregate demand usually differs from the aggregate supply. the stabilization policy has to
damp such a difference (expressed by an excess demand £(¢) = D(r) - ¥ (¢) ) whenever it occurs. The

following equations complete the model:

v-Y({)=1() (12)
1(t)=o-(D{t)-Y () (13)
Cle)=(1-5)-Y() (14)
Z()=z-Y(r) (15)
M(t)=m-Y()+D{t)-7(r) (16)

where M (1) are imports, Z(1) are exportsand v>0, o >0, 0<s<1, z>0, m>0 are constants.

The basic dynamic mechanism of this model is of multiplier-accelerator type (Eq (12) being of
accelerator type and Eq (13) of multiplier type).

After successive substitutions of variables D(1). Z(t). M), C(t), I(¢) in Eqs (11)-(16) and some
simple manipulations, the dvnamic equation of aggregate supply gets the form of:

Y{t)=a-Y({)+ B8-Gl) (17)
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where:

a:O'(Z—]?I—S! {18)
v(2~cr)
—

F=te-o)

Fo it 3. (19)
Let us assume that Y(0)=1, at =0 . Eq (17) has a unique solution Y (), for any fixed control strategy
G().

An equilibrium solution is a solution where all quantitics D(t), Y (¢}, Z(t), M (1), C@). I{t), G(1) are
constant as time functions, and the aggregate demand equals the aggregate supply. Thus a necessary
condition for the constants D" =¥ 2" M" C*.I".G" to designate an equilibrium solution of the
above model is to verify the equations:

Y'=G"+z2"-M"+C"+1"; I"=0

C'=(Q-9Y", Z'=zY". M =myY

Solving this system with respect to G, results in:

* ) * 1-5 ~H * *
Y :ﬁmg____.'_ C :(—i(_, : oF :_Z_G’
S§—Z—m S—zZ—m §S—Z—m
M="L_c r"=0

S—Z—m
Let denote by:

Dy=D@)-Y"; Y)=Y@)-Y"; GO)=G()-G"; Z®y=2Z(n-2"
Mu=Mwn-M"; COH=COH-C"; It)=1(t)

the deviations of variables D(r), Y(r), Z(t), M (1), C(t), 1(t), G(1) from their equilibrium state.
Surely, such deviations satisfy the equations:

D(y=G)+Z(1)-MO)+C(t)+1(1)
Cy=1-5)Y@®; v-Y()y=I():
Ziy=z-Y(); IO =0-(DO)-Y);
M(t)y=m-Y(O)+D() ~Y (1)

As above, by successive substitutions, the model may be reduced to a single differential equation:
Y()=a-¥{)+pB-Gl) (20)
where @ and £ are given by (18) and (19).

S(t) denotes the foreign trade balance, cumulated over the time-interval [0, t]:

S0 = ]gm dr+5(0)= j[M(T)_ Z()ar +50)

If differentiating, we have S(r) =M(r)-Z(r). Toexpress M (f) and Z(¢) with respect to Y(r) and G(r)
is to obtain:

S()=7-r()+5-G() @1
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where:

:(m—z)(]—rr)ﬁs; 5= 1 22)

z-0 2-0c
The state-space description of the system is finally given by Eq (20) and Eq(21):
YO)=aY()+p-Glx  Y0)=L,
S()=r-r@)+s-Glx  s0)=5,

With the following notations:
Y(0)) Y,
0-(g) 0-0 =[5!

0
A= “ L B= p :
y 0 )
the state-space description of the system becomes:

H)=4-d0)+B-ulk  x(0)=x (24)
In order to stabilize the system, we need design a state-feedback controller. to be described by the control law:

(23)

u(t) = —H x(t) (25)
The feedback gain matrix H = (h 1 hz) must be determined such that the closed-loop system

jc(r) =(A-BH) x{r) is asymptotically stable (i.c. all eigenvalues of 4— B/ have negative real parts).

There are two alternative design methods: the first is based on a pole placement technique and the second
on a linear quadratic optimization technique. In both cases, the design solution can easﬂ\ be
implemented in Matlab.

The state-feedback control scheme is depicted in Figure 11 and can be simulated via Simulink.

il - TN
1t ; ] —!
Distmbancc% Distu_ré)a(tx)lce!
= on
T YG L’? E H LPl:‘l s E:]‘
:__5. = +§ = “—b-L.‘hJ% s
s + s

i Integrator 1 Integrator 2 S(0)
|
i

W

Y(t)

Figure 11. Conventional State-feedback Controller
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8.2 The Linear Fuzzy Controller Emulating the Conventional State-feedback Controller

An equivalent fuzzy controller that emulates the conventional state-feedback controller should reproduce
the same dynamic behavior of the closed-loop system; this is to check that the implementation is correct.

In our case, the gain matrix H is of the form # = (h 1 ha ) and hence, the control law can be wrilten

out:

Y@

u(ty=H-x(t) = (hl hl).(S(t)

}=h1 Y (1) +hy - S (26)

The fecdback gains from the previous control law have to be transferred to the fuzzy controller. However,
since the fuzzy controller is normally equipped with input gains as well as with an output gain, this
transfer will introduce some degree- of -freedom. More precisely, the fuzzy controller can be written as:

u(t) = f(G,-Y(0), G,-S(1))-Gs
and assuming that it acts as a summation, we obtain the following linear control law:
(1) = (G- Y (O + G, -8(0)-G; =G, -Gy Y () +G,-Gy - S() @

Comparing the gains of the conventional state-feedback controller in (26) with the gains of the linear
fuzzy controller in (27), the following relations can be determined:

1
hl:Gl'G3 = (;3: — 'hl (28)
(I]
h
hl :(}2'(}3 = GIZ%'ITZ:Gl_Z (29)
' G, hl

With three gains to be determined and two equations, there is one degree- of -freedom. If the input
universes are chosen to be standard universes {100, 100], then we have. in order to avoid the saturation

in the universes, the following new constraint:

G Y@, <100

Thus from G, -Y () e I~ G G ] = [100, 100], we deduce:
100
Y*

The other two gains are now fixed as follows:

G =

e

- Y . 100 A
L et R
100 v* A

With this procedure of transferring gains, the control scheme of fuzzy controtler is obtained as in Figure 12.
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Figure 12, Fuzzy Controller Emulating A Conventional State-feedback Controller

9. Concluding Remarks

When dealing with nonlinear and time-varving behaviour, the stabilization stratcgies of economic systems
are challenging actions. Advanced control techniques have to be addressed in such cases. As fuzzy
control can be described as a nonlinear mapping, the corresponding fuzzy controller acts as a nonlinear
controller and hence it provides increasing flexibility. Given a fuzzy controller contains a linear controller
as a special case, it is true to say that it performs at lcast as good as the latter. Essentially, a fuzzy
controller is a rule-based controller. As a result. the shapes of the control surface can be individually
manipulated for different regions of the state space. When the parameters of a conventional controller (a
PID one, for example) are tuned, they affect the shape of the entire control surface. In fuzzy control, such
possible effects are limited to neighbouring regions only.

This paper primarily focused on the emulation of a conventional controller (either a PID or a state-
feedback controller) through a linear fuzzy controller as a starting point for further exploitation of the full
capabilities of the nonlinear fuzzy controller. For illustration purposes, we adapted a classical stabilization
mode! (Phillips' model) in order to incorporate fuzzy modes of control. We also suggested how to make
the fuzzy controller gradually nonlinear and how to use fine-tuning procedures for achieving the
validation objective of the controller. However, handling fuzzy control is rather a complex task, taking
much experience. Actually, the potential for performing better depends on the designer capability to
exploit the nonlinear options in the fuzzy controller to his best advantage.
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APPENDIX

Linear Controller is A Subset of A Fuzzy Controller {Proof)
The fuzzy controller function y = f(x), modelled by a fuzzy rule base, can emulate the linear controller:

Ny
y:z‘:ci-xﬂ-d:cr x+d

i=1

when meeting the assumptions Al to A8 introduced in Section 3,

Indeed, according to Al, cach fuzzy partition contains only normal and convex fuzzy sets. Consequently,
at any value x| € X, there are no more than two consecutive overlapping fuzzy sets 4, , and 4, ,,,,

such that (see Figure 1):
My (x>0 and p,, (x)>0
Furthermore, the number of all contributing fuzzy rules is 2%x _where N isthe number of inputs.

Let @;, and @,,,, be the degrees of matching between 4, , and 4, ,,, on the one hand and the crisp

input x! on the other hand. As a result of A2, we have «;, +@; 5, =1.

Given the aggregation is a summation, the fuzzy controller output )’ = ¢’ . x'+d is described by applying
the fuzzy-mean defuzzification directly by using the consequents of all 2% contributing fuzzy rules:

VX

2. Beby

5 k=i

yre

2B
k=1

where b, is the crisp consequent (or, in other words, the support of the fuzzy singleton representing the
consequent) of fuzzy rule 7, .

Given assumptions A2 to A4 and A6 we can write:

2x NN, PN,
Zﬁk = Znaik ’(au +0‘u+1)' Z naik =...
k=1 k=11i=1 k=1 i=2
h 2NXﬁhH -‘VX
=H (af,f “"ai,fn)' 2 Haik =
i=1 k=1 i=h+l
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The left-hand side of the above equation can be written as:

2¥x aNx

2. Biby = Z.Bk(CT X +d):
k=1 k=1

2N,l’ 2 Ny

=c’ Y Proxit Y Pd=
k=1 k=1

2NX

=c’. Z,Bi.-xk +d
=

Hence, the proof is reduced to proving;
2Mx

Zﬂk xp =X

k=1

For the i ™ input this can be written as:

2Ny XN,
Zﬁk Xy = nazk X =
k=1 k=1i=1
2Nt Ny Ny
Yol xe ] am @i Xiea] lam | =
k=1 h=1 h=1
hi h#i
2!!')(—1 NX
= (ai..‘,' CXip g ""1:£+1)‘ Z na’hk =
k=1 b=l
h#i

= (ai,f "Xig Qi ‘x:',f+1)

which is equal to x| . because «, ., =1-a;, and:

r
_ xi,é«;rl - X
Aip = —

Xign ~ Xy

That means that any linear controller can be emulated by a fuzzy controller represented by a static
function description.
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