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Abstract: Agile Manufacturing Systems are evolving to meet
the challenges of an increasmg time based competition in high
variety environments. This paper is motivated by a study of an
Indian Enterprise in the Telecom Sector where a conventional
low variety company is seeking avenues for re-organizing
itself towards agility. We propose a novel concept of Dynamic
Re-configuration with Integrated Scheduling (DRIS) in
manufacturing  systems, to achieve greater agility. It is
suggested that the nherent flexibility in many mutti-skilled
workforce based assembly systems allows dynamic re-
configuration opportunities. However without effective
decisions on when to re-configure, how much to re-configure
and what order to schedule on a re-configured system, it is not
possible to exploit this opportunity. We propose the use of a
Genetic Algorithm (GA) based technique to obtain reasonably
good schedules for such a dynamic re-configurable production
system. The technique has been demonstrated using a simple
model of a production system comprising multiple production
lines, each capable of being re-configured into two or three
independent production lines or re-combined into single lines,
dynamically. The results indicate that the performance of the
GA based technique is superior to the standard scheduling
rules of "Shortest Processing Time" (SPT) and "Earliest Due
Date" (EDD). The results also indicate that as the variability
of demand on production system increases, GA based
technique comes to better solutions for the integrated
scheduling of dynamic re-contiguration systems. It is proposed
that DRIS approach can offer immense opportunities for the
agile enterprise capabilities.
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1. Introduction

Agile Manufacturing is an emerging concept in
industry that aims at achieving flexibility and
responsiveness to the changing market needs.
We propose that dynamic re-configuration with
integrated  scheduling (DRIS) can offer
immense opportunitics for agile systems.
Dynamic reconfiguring of production systems
enables enterprises to respond to market in a
more efficient manner and to obviate the need
for other options such as capacity addition or
worker retrenchment. For example a team of
multi-skilled workers mav be broken down into
independent sub-teams, which may be assigned
to different tasks, as and when needed.
However such a dynamic re-configuration
requires an integrated scheduling which is quite
opportunistic in nature. [t may thus be
imperative for an agile enterprise to handle the
demand wvariations by dynamically re-
configuring its production systems and
opportunistically re-scheduling them. However,
the very capability of dynamic configuration of
production systems makes finding a near
optimal schedule be a vexed problem. The
possible states of the system increase manifold
thereby increasing the complexity to
unmanageable proportions. Genetic algorithms
have been theoretically and empirically proven
to provide robust search in such complex
spaces. Hence it has motivated us to study the
performance of a Genetic Algorithm based
technique for scheduling of DRIS systems, as
compared with the conventional scheduling
rules "Shortest Processing Time" (SPT) and
"Earliest Due Date" (EDD). This paper is an
attempt in this direction.
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2. Application of Genetic

Algorithms

Genetic algorithms are search algorithms based
on the principles of natural selection / survival
of the fittest to obtain reasonably good solutions
to complex problems. These algorithms are not
limited by restrictive assumptions about the
search space (such as continuity, existence of
derivatives etc.). Genetic Algorithms use a
.population of candidate solutions to conduct a
robust search of the search space. The initial
population of candidate solutions is generated
randomly. FEach such solution is then
considered by assessing its value according to a
fitness function. A new population of candidate
solutions is then generated from the old
population by applying the three operators of
the Genetic Algorithm, viz.. icproduction,
crossover and mutation. Each such iteration is
called a generation. The inhereni power of
Genetic Algorithms cusures that the successive
generations o solutions are superior to their
ancestors in terins of their fitness values.

Genetic Algorithms have been invented by
Holland (1975) and used for a wide variety of
problems such as machine learning |{Booker et
al, 1989], cellular manufacturing {Balakrishnan
and Jog, 1995] , combinatorial optimization
[Jog et al, 1991] and game playing [Axelrod
1987]. The application of GAs in scheduling
was first introduced by Davis (1985). Liepins et
al (1987) investigated the simplest scheduling
problem of a static queue of jobs with specified
due dates and run times without precedence
constraints. Gupta et al (1993) studied a single
machine model with an objective to minimizing
flow time wvariance. Lee and Kim (1995)
examine the performance of a parallel GA for a
model in which earliness and tardiness
penalties are allowed to be arbitrary and jobs
share a common due date. Lee and Choi (1995)
consider a more general model where the job
due dates and early/tardy penalties are allowed
to be arbitrary. Cheng et al (1995) consider a
model of identical parallel machines where the
objective is to minimize the maximum
weighted absolute  lateness about an
unrestricted common due date. Jain ct al (1997)
developed an initial schedule by using genetic
algorithms and addressed rescheduling in an
environment of machine breakdowns, increased
order priority, rush orders arrival and order
cancellations. Goldberg (1989) provided an
exhaustive study of genetic algorithms and of
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their various applications. This paper
demonstrates the utility of Genetic Algorithms
for integrated scheduling of the proposed novel
domain of DRIS systems,

We apply genetic algorithm based technique to
obtain reasonably good schedules under
alternative  scenarios of dynamic  re-
configuration. The re-configuration possibilities
involve configuring two or three sub-lines out
of any existing full production line (called
breaking of a line) and combining them back
into the full line (called Unbroken Production
Line). The line can be broken in two modes, i.e.
simultaneous or phased breakup with different
logical implications for scheduling. This is
explained in the next Sections. The different
alternative approaches applied to GA are : "no
break-ups of the production lines allowed”,
"simultaneous break-ups allowed" and "phased
break-ups allowed". These are also compared
with standard scheduling rules "Shortest
Processing Time" and "Earliest Due Date" with
no break-ups allowed.

Industrial Motivation

The principal author has been a consultant to
the ABC company which is a fast growing,
professional, Telecom industry in India. It is
increasingly facing the wvariety challenge
requiring agility. The customers are demanding
smaller and smaller volumes of a variety of
products in more and more timely manner. In
the past the company has invested in large
assembly lines to achieve high efficiency for
large volumes ( low variety) with few dedicated
customers. The aim is to become more agile to
deal with the new challenges, using the existing
production capabilities.

The system analysis of the company indicates
some interesting untapped potentials. For instance
the workforce is virtually multi-skilled as the tasks
involved are quite similar. In the past, training has
been so imparted that any worker can contribute to
any assigned task on the line. This was done to
ensure that some absentees do not halt the lines.
Another interesting potential results from the
nature of the assembled products. Further the
product design is such that the precedence
constraints are relatively fewer across alternative
assembled products. Infrastructure wise every
station on the lines is equipped with the basic
tooling required to assist all the assembly tasks.
This was done in the past to ensure that a
complete product line may be conveniently re-
configured into a new line of appropriate size. All
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of this was done in the past with an overall
assumption that the company will always have a
few, large volume customers for whoin dedicated
product lines could be easily set up. Some of the
assumptions have failed.

The cmerging business scenario is however quite
different than what was expected. There is a growing
need for delivering small volumes of high variety
products for a larger spectrum of end customers.
Therefore the use of large lines to produce large
volumes efficiently is no more a viable solution in the
new scenario. Keeping in view the available potential
flexibility (not used in large lines), our challenge is to
re~configure the system. We propose a novel approach
of dynamic re-configuration of production systems
involving integrated scheduling (DRIS). We have
developed a demonstrative DRIS model that
highlights this approach. In our opinion the
underlying concepts can play a significant role in
Agile manufacturing systems. To deal with the
scheduling complexity due to the dynamic re-
configuration features in DRIS, we use the GA
techniques to develop the schedules more effectively.
The DRIS model is based on the discrete event
perspective employing decision points. Similar to the
decision points described bv Wadhwa and Browne
(1990), the decision points in DRIS model may be
viewed as exploiting the flexibility of the re-
configurable system (i.e. dynamic re<configuration).

The DRIS model uses an underlying concept of
decision-information synchronization (DIS) at each of
its decision points. It follows an overall framework of
the GRAI macro reference model [Doumeingts et al,
1995] applied at the operational level. However
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instead of a periodic decision framework it is based on
the event driven decisions where specific events offer
svstem re-configuration opportunities. The DRIS
model structure can easily be extended 10 deal wilh
the DIS delays [Wadhwa and Bhagwat 1998). The
latter will be useful for gieater applicability in the
Indian Industry where preference is for phased CTM
developments at the operational levels, However for
the purposes of this puper. we are motivated t©
demonstrate the DRIS model within a real tune
control environment involving no DIS delays.

Demonstration Model

The demonstration model comprises a
production system which consists of M
production lines and P products. The
production  lines have the following
characteristics:

¢ Each production line can be broken down into
two or three parts. Once the parts have been
created, each part funciions as an independent
production line. At any time, all the parts can
be combined together to form the original
unbroken production line.

¢ A production line which was part of an
original unbroken machine, cannot be broken
down further.

¢ FEach production line is capable of
manufacturing all the products. This is also
true for production lines obtained by breaking
down original unbroken production lines.
Figure 1 shows the various possible states of a
production line.

Break into three
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into three new
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Combine
P,
P

~
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Figure 1. Possible Configurations of One of the Mazv Production Lines
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Problem Scenario

The problem is to develop a near optimal
schedule for the production of the given set of
products on the production system, which can
be dynamically re-configured, using a Genetic
Algorithm based technique.

A production line is denoted by:

M[ ORIGINAL , PARTNO,TOTAL ]

Where:

ORIGINAL: mnumber of the original
unbroken production line

PARTNO: Part number of this production
line out of the total existing
parts.

TOTAL: total number of parts which the

original production line was
broken into.

Thus M[2.1,3] indicates that this production
line was obtained by breaking the 2™ original
production line into 3 parts and this is the 1*
part out of the three. An original production
line will have PARTNO and TOTAL equal to
zero. E. g M[2,1,1] is the 2™ original unbroken
production line .

Variable factors:

(a) Setup time:

Setup time means the time taken to ready the
production line for the first time so that
preducts can be put on it subsequently .

(b) Changeover time:

Changeover time is the time taken to
changeover to the production of a different
product than the previous one.

(©) Production Rate:
It is the rate at which units of a particular
product are produced on a particular production

line per unit time.

(d) Due Date:

It is the time by which the required quantity of
a product should be ready.

(e) Demand:
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It is the required number of units of a product
to be produced.

Breakage:

Each production line can be broken into two or
three parts. The production data for the new
sub-production lines would be identical, i.e.
they will have the same production rates for
different products, same changeover times, etc.

The type of breakage can be :
(a) Simultaneous:

All the sub-production lines become available
at the same instant after some time.

Ss=[0.2 + (TOTAL/3)*(0.5) |* §,

Where
Ss : Setup time of the new sub-
production line
S; : Setup time of the original

production line

20% of original setup time is a fixed
component while the rest is the variable
component depending upon the number of
parts which the production line is broken into.
E g let M[1,1,1] have  Setup time = 100.
Then

If TOTAL =2 For M[1,1,2] and M[1,2.2]
Setup time = 53.

If TOTAL=3 For M[l,l,l3],M[1,2,3]
and M[1.3,3] .
Setup time = 70.

(b) Phased:
The sub-production lines become available at
different instants of time. For example, If the
number of production lines = 2, then

TOTAL =2

S;= 1.2%5;/2

S;= 1.2*§;
Where

S Time after which first sub-
production line becomes available

Ss: Time after which second sub-
production line becomes available

S Setup time of the original
production line
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For example

if for M[1,1,1] Setup time = 100
For M| 1,1,2]
For M{1,2,2}
TOTAL=3:
§;=1.2*§,/3
S;=2¥%1.2%S,/3
S3= 1.2*§;

Setup time = 60

Setup time = 120.

Where

S, : Time after which first sub-
production line becomes available

S, : Time after which second sub-
production line becomes available

Si;: Time after which third sub-
praduction line becomes available

S; : Setup time of the original
production line
For example
if for M[1,1.1] Setup time = 100,
For M([1,1.3] Setup time = 40
For M[1,2,3] Setup time = 80
For M[1,2,3] Setup time = 120

The time for breakage acts as a penalty for
changing the configuration of the system. It is
modeled in such a way that it has a fixed
component and a variable component to ensure
different penalties for different types of
breakups. The reason why to make a distinction
between simultaneous and phased breakage is
because of the different benefits and costs
involved. While the cost for simultaneous
breakage would be greater than phased
breakage, the total time by which the entire
capacity (arising out of breakage) is available
for production is less with simultaneous
breakage than with phased breakage. Each of
these may be beneficial in different scenarios.

Production Rates:

For both simultaneous as well as phased
breakage

P,=0.9 *P;/ TOTAL
Where

P, = Production rate of a product on
the new sub — production line.
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P;= Production rate of a product on the
original production line.

Thus if for M[1,1,1]

Pl P2 P3
10 20 30
TOTAL = 2:
For M|[1,1,2] and M[1.2,2]
Pl P2 P3
4.5 9 13.5
TOTAL=3:
For M[1,1,3], M[1,2,3] and M[1.3,3]
Pl P2 P3
3 6 9

The factor of 0.9 is for imposing a penalty for
breakage.

Changeover Time:

For both simultaneous as well as phased
breakage

C, =C/TOTAL
Where

C, : Changeover time for a product to
another product on the new sub-
production line.

C; : Changeover time for a product to
another product on the original
production line

For example if for M[1,1.1] Changeover time
from product 1 to product 2 is 100.

TOTAL =2:

For M[1.1,2] and M[1.2,2] Changeover time
from product 1 to product 2 is 50.

TOTAL=3:

For M[1.1,3], M([1,2,3] and M[1,3,3] Changeover
time from product 1 to product 2 is 33.
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Figure 2. Schematic Representation of the Re-configurable Production System

Combining:
The sub-production lines can be combined

together to form the original unbroken
production line.

~

Combination time = ( Setup time of original
production line ) / TOTAL

For example, if Setup time of M [1.1,1] 1s 100,
then the time taken for combining M [1,1,2]
and MJ[1,2,2] back into M[1,1,1] is 100/2=30,

Figure 2. shows the snapshot of the production
system at a particular instant of time.

Genetic Algorithm Implementation
Now we explain the GA implementation within

the DRIS model described above which reflects
a typical industrial scenario.
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(a) Schedule representation:

The most difficult part in a genetic algorithm
formulation for scheduling is the schedule
representation. A linked list is used for
schedule representation. The use of a linked list
is imposed by the dynamic re-configurable
nature of the manufacturing system being
modeled. Figure 3 shows the linked list
representation of the schedule in the computer
program.

All the decisions made on a machine are stored in the
order in which they are made. The decisions can be:

+ [Ifitis an original machine, break it into two

or three parts.

¢ Ifit is not an original unbroken machine, then
combine all its parts.

+ Put a particular product on the machine. no
matter what the type of machine.
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< M(N1,N2,N3) >——hDecision —

Decision — —— —¥ Decision

< M(N1,N2,N3) >—> Decision | Decision st —¥# Decision J

v

< M(N1,N2,N3) >—’ Decision | Decision ~ P Decision

Figure 3. Schedule Representation

(b) Decision representation:

A decision is represented by the following

notation.

P(N) : Put product N on the production line.

B(N) : Break the production line into N parts.

C: Combine all the production lines into
the original unbroken production line.

R: Take

a random

decision during

simulation of the schedule.

An example of a schedule for a production
system of 3 original machines and 8 products

is given below.

(1,1,1) P(7)
(2,1,) P()
(3.1.1) P2)
(1,2,2) P(1)
(1,1,2) P(1)

(2,2,2) P@)

P(8) P(3)
P(4) B(@)
B(3) P(5)
P(1) C

P2) P()

P2y C

P(5) B(2) R
P(1) B(3) R

B3 R R

P(7) R
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(2,1,2) P@8) P(7) R

(3,33) P4) P®) P() R
(323) P6) C P1) R R
(3,1,3) P6) P(1) P(7) R R
(233) P(1) PG3) R R
(2,23) P6) P@B) P(5) C
(2,1,3) P(1) P(5) R

(133) P5) R R R
(1,23) P5) R R

(1.13) P5) R R

(322 P6) R R R

(3,1,2) P(5) R R
() Generation of initial population:

An initial population of schedules is generated
randomly using simulation, with the number of
schedules in the population equal to MAXPOP.
Decisions are taken randomly whenever an
event occurs.
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(d) Genetic Algorithm Operators:

The genetic algorithm uses three operators viz.,
reproduction, crossover and mutation, on the
existing population of schedules, to generate a
new fitter population of schedules. Each of
these processes is briefly described below.

Reproduction

Reproduction is a process in which
individual schedules are probabilistically
selected according to their fitness values.
Schedules with a higher fitness value have a
higher probability of contributing one or
more copies in the next generation of
schedules. The reproduction operator is
implemented in the form of a biased roulette
wheel where each current schedule in the
population has a roulette wheel slot sized in
proportion to its fitness. Each time a new
off-spring is required, a simple spin of the
weighted roulette  wheel yields the
reproduction candidate.

Crossover

Each pair of schedules selected from the
previous population of schedules by the
reproduction operator is called MATE 1 and
MATE 2. These two schedules are then
standardized into a common form and the new
schedules are generated using a crossover
operator. For standardization of the mates, the
following standardization algorithm has been
used:

Standardization algorithm:

1. Start with the first machine node (MN) in
MATE 1

2. For each machine node (a machine node
specifies the sequence of decisions to be
taken on the particular distinct machine
during simulation of the schedule) in
MATE1 MNI1, locate the machine node
MN2 for this machine in MATE2.

3. Reposition MN2 in the same order as of
MN1 in the order of machine nodes in
MATEL. If MN2 does not exist, create a
new machine node in the same order as of
MNI1 in MATEL.
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4. Equate the number of decisions in MN1
and MN2 by adding dummy decision nodes
to the machine node having less decisions.
A dummy decision node specifies a random
decision to be taken at the time of
simulation of the schedule.

5. After going through all MN1, check for
any further MN2 in MATE2 which are
not present in MATEL. If any, create
the corresponding machine nodes at the
end of MATE! in the same order as in
MATE2. Add dummy decision nodes to
these new MNI equal to the number of
decisions in the corresponding MN2 in
MATE2.

6. Stop.

After MATE1 and MATE2 have been
standardized into a common form, the
following parameters are evaluated:

TOTALD : total number of decision nodes in
the two mating schedules. All the
decisions in each schedule are
indexed.

POSIT1 : the index of the first decision
node which is different in
MATE1 and MATE2. It may
have a value from 1 to
TOTALD.

POSIT2 : the index of the last decision
node which is different in
MATE!l and MATE2. It may
have a value from 1 to
TOTALD.

NOOFS : the total number of  decision
nodes which are different in
MATE1 and MATE2.

COEF : the relative similarity of the two
schedules MATE1 and MATE2.

COEF = NOOFS / TOTALD

The two schedules are crossed over with a
probability PCROSS. If no crossover is to be
done, MATE1 and MATE?2 are copied as such
into CHILD1 and CHILD?2. Else if crossover is
to be done, reduced surrogate crossover
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operator is applied. The probable crossing sites
range from between the decision nodes with
indexes POSITI and POSIT1+1 to after the
decision node with index POSIT2. A crossing
site JCROSS is selected uniformly at random
between POSIT1 and POSIT2. Two new
schedules CHILD1 and CHILD2 are generated
by swapping the decision nodes with an index
greater than JCROSS,

Mutation

Mutation performs a secondary role in the
operation of genetic algorithms. Mutation is
needed because even though reproduction and
crossover effectively search and re-combine
extant schedules, occasionally they may become
overzealous and lose some potentially useful
genetic material (decision nodes at certain
places which under certain conditions may
improve the overall schedule). Mutation
operator protects against such an irrevocable
loss. Adaptive mutation operator has been used
instead of normal mutation. It bases disruption
of a schedule on two factors- relative similarity
of its two parent schedules and a mutation
probability PMUTATION. The more similar
the two parent schedules are, the more likely is
mutation to occur.

Studies in Informatics and Control, Vol. 9, No. 4, December 2000

ACTUAL MUTATION  PROBABILITY
(AMP) = COEF * PMUTATION.

Each decision node of CHILD1 and CHILD2 is
mutated with a probability equal to AMP. If
mutation is to be performed on the decision
node, then a new randomly selected decision is
stored in the decision node. After the three
operators-reproduction, surrogate crossover and
adaptive mutation have been applied, the final
new schedules CHILD1 and CHILD2 are stored
in the new population.

By applying these operators repeatedly on the
previous population, a new population of
MAXPOP individual new schedules is
generated.

Figure 4 describes the application of the
crossover and mutation operators as a flow
chart.

SCHEDULE FITNESS

The schedules in the initial starting population
are obtained by simulation and the evaluation
variables arc calculated thereof. The schedules
obtained by reproduction, crossover and
mutation are simulated.
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SELECT MATE! & MATE2

l STANDARDISE MATE] & MATE2 I

v

| CALCULATE TOTALD, POSIT1, POSIT2, NOOFS, COEF ’

PERFORM CROSSOVER ?

NO YES

v | v

— SELECT JCROSS UNIFORMLY AT
ICROSS =TOTALD RANDOM BETWEEN POSIT1 & POSIT2

———{ SETI=1+1

I ]
4

SET INDEX I-=1
SET NEW SCHEDULE CHILDI.
SET NEW SCHEDULE CHILD?2.

v

SELECT DECISION NODE(DN1) FROM MATE1 WITH INDEX [.
> SELECT DECISION NODE(DN2) FROM MATE2 WITH INDEX 1.

I

PERFORM MUTATION

ON DN1? PERFORM MUTATION

ON DN2?

MAKE DECISION MAKE DECISION
RANDOMLY AND STORE RANDOMLY AND STORE
INDNI1 INDN2

YES NO
COPY DN1INTO CHILDI. COPY DN1INTO CHILD2.
COPY DN2 INTO CHILD2 COPY DN2 INTO CHILDI.

STORE CHILD1 AND CHILD2
IN THE NEW POPULATION

Figure 4. Flowchart for Crossover and Mutation
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During simulation, the schedules can get
modified, e.g. a decision may specify a product
on a particular machine when, during actual
simulation, the order is already completed. In
such cases. a new random decision is made and
stored in the schedule.

EVALUATION CRITERIA:

Each product has a due date (DD) by which its
order has to be complete. The evaluation
criteria can be:

TOTAL TIME (TT):

The total time(TT) is the time when all the
product orders are complete. This time is
obtained by simulating the schedule until all
the orders are complete.

TOTAL DELAY TIME (TDT):

Each product bas a duc date. The time at which
the product order gets completed is the order
completion time (OCT).

ODT =0CT ,-DD,
I= product number

ODT ; = order delay time of product L.

TDT=2 ODT,
MAXIMUM TARDINESS:
Another fitness criteria could be
100000-Max Tardiness
FITNESS SCALING
Fitness is defined as
FITNESS = 100000 - TDT

The lesser the total delay time . the higher is
the fitness of the schedule. If left to normal
selection rule, the extraordinary schedules
would take over a significant proportion of the
finite population in a single generation, leading
to premature convergence. Late in a run, there
may be significant diversity within the
population, however the population average
fitness may be close to the population best
fitness. If this is left alone, average members
and best members get nearly the same number
of copies in future generations and survival of
the fittest becomes a random walk among the
mediocre.

Fitness scaling helps to overcome these
obstacles. Linear scaling procedure is used.
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NEW FITNESS = A* FITNESS + B

The coefficients A and B are determined by the
following conditions. The average scaled fitness
is set equal to the average raw fitness. The
scaled maximum fitness is equal to
FMULTIPLE*AVERAGE FITNESS, where
FMULTIPLE is the number of expected copies
desired for the best population schedule.
FMULTIPLE  is given a value of 2. The
stretching required on average and maximum
raw fitness values may cause the low fitness
values go negative after scaling. In such cases,
we do not scale to the desired FMULTIPLE.
The raw and scaled fitness averages are kept
equal and the minimum raw fitness is mapped
to a scaled fitness of zero.

GA PARAMETERS

The parameters for the genetic algorithm are
sclected from research papers published in this
field. Jain (1997) suggested a population size of
80 and FMULTIPLE equal to 1.9. Goldberg
(1989) suggested a mutation probability
inversely proportional to population size. The
parameter values thus selected are

FMULTIPLE = 2
MAXPOP = 80

PCROSS = 0.6
PMUTATION = 0.0125

GENETIC ALGORITHM

The various steps in the genetic algorithm are:

1. INITIALIZATION

a.  Set the values of the GA parameters. Set
the values of MAXPOP, PMUTATION.
PCROSS ,FMULTIPLE and MAXGEN,
the number of generations to be created.

b. Read the database of the manufacturing
system to be processed. Read the number
of products, number of original machines,
changeover times, setup times, production
rates and due dates.

c. Create an initial population of schedules
of size MAXPOP by simulation. This is
called old pop.

d. Calculate the fitness values of all the
schedules and scale the raw fitness values.

2. Set generation no GENNO = 1.
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3. NEW POPULATION

a.

TIME M1,1,1] M[2,1,1] Pl P2 P3 P4
0 0 10771 9016 11297

0

Apply the reproduction operator on the old
pop to select two schedules for mating,

Standardize the two mates into a common
form.

Apply the surrogate crossover operator to
obtain two new schedules by crossing the
two mates.

Mutate each of the the two new schedules by
applying the adaptive mutation operator.
Store the two new schedules hence obtained
in the new population called newpop.

Repeat the above steps from a) to e) until the

size¢ of the new population is equal to
MAXPOP.

Simulate all the schedules of the newpop to
get their raw fitness values.

Decision : Put Product 1 on M[1,1,1}
Put Product 5 on M{2,1.1]

TIME M{l,1,}]] M[2.1,1] PI P2 P3

133

TIME M[1,1,]] M{21,0] P1 Pz P3 P4

1 0 10771 9016
Completion : Setup of Product 1 on M[1,1,1]

11297 19708

h.  Scale the raw fitness values by using lincar
scaling.
i.  Set oldpop equal to newpop.

4. If current GENNO < MAXGEN ,MAXGEN
being the number of generations to be created,
increment GENNO number by one and go to
step 3. Else the fittest schedule of the current
population is the best schedule .

3. Sample Schedule: GA Application

A sample schedule generated by GA application to
a typical reconfigurable production system
problem is presented in Figure 5. We illustrate the
time dimension, machine status and quantities of
remaining product orders. A discrete event
modelling framework is used to conveniently
represent the status of the system at the

Ps P6 P7

19708 6840 18746 10882

P5 P6 P7

6840 18746 10882

Ps Pe P7

P6 P7

148 1 5 10576 9016 11297 19708 6840 18746 10882
Completion: Setup of Product 5 on M|2,1,1]

TIME M[L1.1] M[2,1.1] P1 P2 P3

636 1 0 4224 9016 11297

Conmpletion: Required Quantity of Product 5 made

Decision: Put Product 6 on M[2,1,1]

18746 10882

TIME M[LL1] M[2,1.1] Pl P2 P3 P6 P7

740 1 6 2872 9016 11297 18746 10882
Completion: Changeov;r from Product 5 to Product 6 on M[2,1,1] complete

TIME MJ[1,1,1}] M[2,1,1] P2 P3 P4 P7

961 0 6 9016 11297 19708 15653 10882
Completion: Required Quantity of Product 1 made
Decision: Break M[1,1,1} into 2 parts

TIME M[1,1,2] M[1,2,2] M{2,1,1] P2 P3 P4 P6  P7

104y 0 0 6 9016 11297 19708 14535 10882

Completion: Setup of M[1,1,2] complete
Decision : Put Product 7 on M[1,1,2]

Put Product 6 on M[1,2,2] after its setup is complete. This setup would be complete

at TIME=1121.

Note: Decisions regarding selection of products for sub-production lines are made when the setup of first

sub-production line is complete.
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TIME M[1,1,2] M[1,2,2] M]2.1,1] P2 P3 P4 P6 P7
1111 7 0 6 9016 11297 19708 13555 10882
Completion: Setup of Product 7 on M[1,1,2] complete
TIME M[1,1,2] MI[1,2,2] M][2,1,1] P2 P3 P4 P6 P7
1183 7 6 6 9016 11297 19708 12543 10556
Completion: Setup of Product 6 on M[1,2,2] complete. It had started at TIME = 1121.
TIME M[1,1,2] M{1,2,2] M][2,1,1} P2 P3 P4 P7
1861 7 0 0 9016 11297 19708 7505
Completion: Required Quantity of Product 6 made.
Decision: Put Produat 3 on M[1,2.2]
Put Product 2 on M|2,1.1]
TIME M[1,1,2] M[1.2,2] M[2,1,1] P2 P3 P4 P7
1933 7 3 0 9016 11297 19708 7183
Completion: Changeover from Product 6 to Product 3 on M[1,2,2] complete.
TIME M[1,1,2] M[1,2,2] M[2,1,1] P2 P3 P4 P7
2003 7 3 2 9016 10821 19708 6866
Completion: Changeover from Product 6 to Product 2 on M[2,1,1] complete.
TIME M[1,1,2] M[1,2.2] M[2.1.1] P3 P4 p7
2754 7 3 0 5749 19708 3485
Completion: Required quantity of Product 2 made.
Decision: Put Product 4 on M[2,1.1]
TIME M[1.1.2] M[1,2.2] Mjf2,1.1] P3 P4 P7
2856 7 3 4 5061 19708 3026
Completion: Changeover from Product 2 to Produdt 4 on M[2,1,1] complete
TIME M[1,1.2] M[1.2.2] M|2,1.1] P3 P4
3529 0O 3 4 522 12983
Completion: Required quantity of Product 7 made.
Decision: Combine M[1,1,2] and M[1,2,2] into M[2,1,1]
TIME M{1,1.1] M[2,1.1] P3 P4
3595 0 4 522 12318
Completion: Combination of M[1,1,2] and M[1,2,2] into M[1,1,1] complete
Decision:  Put Product 3 on M[1,1,1]
TIME M(1,1.1] MJ2,L.1} P3 P4
3729 3 4 522 10978
Completion: Setup of Product 3 on M[1,1,1] complete
TIME M[1,1,1] M[2,1,1] P4
3764 0 4 10630
Completion: Required quantity of Product 3 made.
Decision: Put Product 4 on M{1,1,1}
TIME M[1.1.1] M[2,1,1] P4
3886 4 4 9410
Completion: Changeover from Product 3 to Product 4 on M([1,1,1] complete.
TIME M[1,1.1] M[2,1.1]
4409 0 0
Completion: Required quantity of Product 4 made.

Figure 5. Sample Schedule Obtained Through GA Application On A Typical Problem
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beginning or at the end of each event associated
with any decision. The beginning of the
decision is represented by Decision and
completion of any process activity is
represented by the word Completion. As can be
seen, some specific completions give rise to new
decisions. For instance, the completion of a product
order initiates the next decision regarding assignment
of the remaining products on a reconfigured system.
Results and Inferences

Random data sets werc created to model
different production scenarios. The various data
items such as production rates, due dates , setup

1 \ 4 4 —

Total tardiness and maximum tardiness were
computed. The results of GAs were compared
with SPT on the basis of total tardiness and
maximum tardiness.

Further to this, the ratio of the number of
production lines to the number of products was
varied in different databases. Another factor
which was studied was increasing the range of
possible demands for products, the range of
possible production rates and the range of
possible due dates. A production system which
has highly different demands and due dates for
the wvarious products and in which the
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Figure 6. Graph of Ratio of Total Tardiness of A Scheduling Strategy to That of SPT for Alternative
Re-configurable Systems

times , demand, etc. were selected randomly
from uniform distributions, each distribution
being given a specific upper and lower limit.
The operation of production svstem with these
databases (production scenarios) was simulated
using standard scheduling rules SPT (no
breakups allowed) and parameters total
tardiness and maximum tardiness were
computed. The operation of production system
with these databases was also simulated on
three variants of the GA , viz., GA with no
breakups allowed, GA with only phased
breakups allowed and GA with only
simultaneous breakups allowed. The number of
generations for GA in each case was set at 10,
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production lines have different production rates
for different products, was thus studied. The
results of these studics are shown in Figure 6,
Figure 7, Figure 8. In the Figures, the notation
for Alternative Production System
Configurations is MXPY where MX implies X
number of original unbroken production lines
and PY implies Y number of product types.
Note that in the Figures, the ratio of total
tardiness or maximum tardiness, as in the
definition of the fitness function of the GAs , of
schedules obtained by GAs to the
corresponding tardiness of SPT schedule is
plotted. This implies the lesser this ratio, the
better the performance of the scheduling
strategy compared to SPT is.
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right, the number of products is increasing for the
same number of machines ( hence increasing the
scheduling complexity and the number of
alternative options available for allocation ). Thus,

Figure 6 illustrates the results of our experiments
for alternative data sets ( represented by M3P3,
M3P3SA, M3P5B, etc. ). As we go from left to
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each data set represents a specific production
system configuration, standing for an increased
level of product allocation complexity. For these
alternative configurations, the graph indicates the
performance of four altemmative scheduling
strategies - SPT , GAl. GA2, GA3. Under SPT,
the scheduling follows the conventional shortest
processing time rule on the available product and
machines over the planning period. GA1 refers to
the GA application (instead of SPT) where the
production system cannot be re-configured as no
breakups are allowed. GA2 refers an GA
application where the production system can be re-
configured at any event during the evolution of the
system over a given planning period by phased
breakups only (as explained earlier ). GA3
represents an GA application where the system
can be re-configured at any event by simultaneous
breakups only. The measure of performance is
based on total tardiness represented in the
appropriate GA fitness function, to help visualize
the relative performance of alternative scheduling
strategies. As can be seen, the performance of the
GA strategies is significantly superior to the
conventional St T rule. Also. it can be noted that
as the system reconfiguration and product
allocation options  pwltiply, the relative
performance of GA3 is mostly superior as
compared fo that of GA2. This implies that
simultaneous re-configuration strategy is likely to
be superior to phased re~configuration strategy.
Figure 7 supplements our results for the case of
fitness function involving maximum tardiness.

Figure 8 illustrates the effect of increasing
variability in the production system with regard
to production rates, demand and due dates for
the different products. In GAIA, A stands for
data sets created with one set of ranges of
possible values of data items ( production rates,
demand. due date ) while in GAIB, B refers to
data sets created with larger range of possible
values of data items. The performance of GA
strategies appears to be sensitive to both the
relative complexity and relative variability in
the system. However, it is clear that GA based
scheduling strategies consistently perform
better than SPT. Within the GA strategies, the
simultaneous re-configuration strategy mostly
offers a good opportunity for tardiness
reduction.

4.Conclusions

We have performed GA applications on a wide
variety of alternative production system
configurations offering various re-configuration
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options. A sample of these was shown here to
highlight the key results. The GA application
essentially offers an effective platform for
dynamic re-configuration with integrated
scheduling (DRIS). The results indicate that the
schedules generated bv GA are ever better in
terms of total tardiness as well as of maximum
tardiness as compared with the schedules
obtained by conventional heuristics. Therefore
it may be inferred that if the scheduling
objective is to minimize either total tardiness or
maximum tardiness, GA may offer better
solutions. As the range of possible values of
data items (production rates, demand and due
dates) gets wider, GA with simultaneous
breakups allowed, gives better schedules than
GA with no breakups allowed. It may be
inferred from this observation that the dynamic
re-configuration of production lines as proposed
in this paper niay provide additional advantages
while dealing with larger ranges of
possibilities. As the range of possible values of
production rates, demand and due dates gets
larger and the ratio of number of products to
number of machines is also higher, GA with
simultaneous rcconfigurations allowed, offered
better schedules than the rest. This indicates
that DRIS concepts may be implemented with
various te-configuration option levels and GA
may be used for integrated scheduling, to
exploit the underlying flexibility.

The DRIS concepts demonstrated here can offer
various opportunities for dynamic resource
management leading to Agile Enterprises. In
our opinion DRIS concepts are likely also to be
quite useful in the domain of dvnamic supply
chains. The GA application on the DRIS model
also has relevance to the service industry. for
instance the effective management of teams of
multi-skilled workers.
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