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Abstract: In this paper, two essential testing methods for
firing sequence of Petri nets are presented. The first testing
method is to test whether the firing sequences in two
subsystems can be shuffled into their composition system.
The second method is for testing whether a given sequence
belongs to a composition system, by testing whether the
sequence belongs to the subsystems of the composition
system. An example has becn proposed using our new
methodology, to demonstrate the advantages of this
methodology.
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1. Introduction

A composition via a set of places consisis
simply of merging distinguished places of two
nets. This kind of operation has already been
used in [1]. [2] and [3] discussed composition of
two nets via the set of share transitions of the
two nets. [4] and [5] described composition of
two nets via their common subnet of the two
nets under their structural meaning. In the
method of dependency analysis, 6] synthesised
a large Petri Net by combining smaller ones.
Whether the composition preserves the
properties depends on the dependency relations
among the transitions. [7] presented the
dynamic analysis method based on the reduction
of the reachability graph  proposed.

The idea of all these techniques above is to
perform a global system analysis from the
analysis of its subsystems.

The set of all firing sequences of a Petri net is
an important tool for describing the dynamic
behaviour of concurrent systems. For example,
the temporal Petri nets model is the integration
of the general Petri net and the temporal logic
[8, 9]. The firing sequences of such kind of
Petri nets are analysed under temporal logic
conditions. An analysis method with the help of
wo-regular cxpressions and Buchi-automata is
presented in [9], based on the reachability graph
of Petri nets. Paper [10] used temporal Petri nets
as a modelling tool, and studied the
specification and verification of multi-axis high-
speed machines. Paper [11] presented the
method of mapping Petri nets with inhibitor arcs
onto basic LOTOS behaviour expressions.

By comparison with |7, 8, 9], our analysis
method is based on T-invariants and our testing
methods are based on the synchronous
composition of Petri nets and the reachability
graph of subnets. On the other hand, their
methods are based on the reduction reachability
graph |7] or the reachability graph of Petri net
and automata method [8, 9]. Compared with [6],
our study aims at the relativity of subnets under
synchronous composition operation for Petri
nets. The aim from [6] is the liveness of systems
under a kind of knitting operation for Petri nets.

This paper is organized as follows. Section 2
presents the basic concepts and terminology for
Petri nets. The behaviour properties of
synchronous composition nets are discussed in
Section 3. Two testing algorithms are given in
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Section 4, respectively. In order to evaluate our
methodology, an example is discussed in

Section 5. Section 6 is meant for the
conclusion.

2. Basic Concepts and
Terminology

Awiple N = (P, T, F) is called a net iff

) Pl =8, PUl £¢:

() Fc(PxTYw(T xP), and

3 dom(F)ucon(F)y=P UT.
ForVx eP T,

x ={y|(y eP xT)A((y,x)eF)}and

x*={l(y eP xT)A ((x,y) €F)}are
called the pre-set and the post-set of X,
respectively.

S =(N,M,)=(P,T,F,M,)is called a
Petri net iff

)] N=(P, T, F)isanet,

) M, P —>Z (set of non-negative
integers) is called an initial marking of N (or
2 ); and

3) the following firing rules apply:

(3.1) te€T,Mis a marking of X, t is
said to be M -enabled (denoted as M [t > ) iff

Vp e 'tnP: M(p)>0;and

(3.2) 1 can be fired from M if fis M -
enabled (denoted as M[f >). Firing ¢ from

M results in a new marking M ' (denoted as
Mt >M"), for Vp €P, we have

Mp)+1, ifper -°t,
M(p)=<M(p)-1, if pe’t-1;
M(p), otherwise.
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It A, t,, ..t €T and
markings M,, M,, ..., M, such that

Molt, > Mi[t, > M, ... M, \[t, > M,,

then marking M, is said to be reachable from
M,, denoted M, e R(M)or
Mo > M,, where o =11, ... 1, is called
a transition sequence from M to M,. And
R(M,) is called the set of all reachable
markings from M.

L  L(E)={ol(c e T*)A(M,[o >)},
then L(Z) is called the language of Z .

The synchronous composition is a well-known
operation in Petri nets research. The properties
and the analysis method of synchronous
composition net such as reachability, deadlock,
as well as how to construct and to reduce state
space of composition net from state spaces sub-
nets have been studied [2. 3]. However, few
rescarches have focused on their sequences
testing aspects, which we will be discussed in
this paper.

There are two Petri nets
2, =P, T,,F, M) i=12, . Suppose

it it >
that these two nets are live and bounded. Now

we make a new net 2 by connecting those
common transitions. The goals of our research
are

(PI) How to test
lopy ®a.2j Sl § =120k

assume o ; € (Z,),i=12;

(P2) How to test
o,e (£)?j=12,..k.7

3. Behaviour Properties of
Synchronous Composition Nets

A number of formal definitions are shown as
follows. They are essential to our further
discussion.
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Definition 1

Let £, =(P,,T,,F, ,M,),i =12, betwo
Petrinets, P, NP, =, and T, T, = &.
Set £=(P,T;,F,M), such that

(1) P=P P
(2) T =Lials
3) F=FukF,; and

4 Mp)=M,(p), if peP,i=12

then X is called a synchronous composition net
of £, and X, ,denoted X =X, DX, .

Definition 2

Let X be a finite alphabet, ¥ < X . (1) Set
Iy, X =Y suchthat Vo e X', and
I'y , (o) is the remnant sub-string after

deleting each element in X —Y from o.
'y y is called a projection mapping from X

oV . @SetI;',,: ¥ — X", such that
Vo'eY”, and

e = | (0 e XA, (0)=0")]

. TY_L x is called an extension mapping from

Y to X, where © * ” is a closed operation of

the language.

Definition 3

Let X be a finite alphabet, ¥ < X . Lyand Ly
be the languages on X and ¥, respectively. Set

Iy oy (Ly)= {1-}(—>Y (0)e 1"‘I Voe LX}
ad I7%, o (L) = | T3 2 (6",

Yo'ely

then I', ,(L,) and T},', . (L,) are called

the projection language of Ly from X'to ¥, and
the extension language of Ly from X to T,

respectively. Then I, ;(L,) and
I,",(L,) are called projection language of
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L, from X to} . and extension language of
L, from ¥ to X | respectively.

For example :
If

X ={abc},L(X) = .
{abba babbc pbcaa} X, = {a,c}’

en

Iy, x (L(X)) = {aa,ac,caa} .
Theorem 1

Let Zi = (P; 3T13F: :Mo, ),l = 1,2, be two
Petri nets, and X=X ,@Z,  Then

L(Z) =T (LED T (L(E,)).
Proof

For convenience suppose the empty letter
geg T, and

(i) Mle>M'oS M=M',

(ii) VieTl,tec=t.

oe L(PN) iff

AM  M,,.,M,eR(M,). such that

22

M, (o) > M,[c(2)>M,.. M, \[o(k)> M,

where

oc=c(l)eag(2)e. ec(k).

Let M, = (M,

2

{(M{ME > ((C;g(f )f ,OT]T} /\

((A/[T T
i+1,1 ’MI+1,2 -

(1 mnY +(coG+f 07

MY, i=0,1,2

2 2 A

k. iff
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(7 M5 >
vV

(oT (CTo(i+ 1))TY
(Mir-;—ll! :+12)T—
v ML) +(c o +0f o f

W:l ’M:;)T 2

((c o+ ,(C; a(:+1))‘y
(Mri-l,l >M{12) =

(MS,MT)r+

A

where C, = ct 7 CI is the incidence matrix

of Z , (i +1) indicates l?}l-veclors

(00..1..0)7, i= wky j=112.

iff

(M11[0'1(I+1)>M1+11)/\(M52:
i+l,2)/\ (o.l (] +1) -

oi+ D)) A(oyi+1)=¢)]

Mylo,(+)>M,, )~ (M, =
M, DA(o,(i+1) =
o+ A(o i+ =¢)|

y M, [o, i +1) >M:‘+1,1)/\
(M ,[o,(i+1) >M,+1,z)"\

(0 (i+1)=0,(i+1)=o(i+1)]
iff
(M, o, >Mk,1)A(Mi2[O-2 >M, ;)N

(0,()+5,2)
e.eg,(k)=0,)n(j=12)

iff

(o, e (T P (o, =T1 7 (6P~ (F=1,2).
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(e oY (cs oty

iff

(0 eI (LENAG=12).

iff

o eIZL (L(Z) NI (L(E,)).

Hence
E@E =1 s B E)nT, (L(E) O
Lemma 1

Let £, =(P,,T,;F, ,M),i =12, betwo
Petrinets, L =X, @ X, andA=T7 NT,.
Then
Tpoya (L(E) =Ty (LED) A Ty (LE)).
Proof
From theorem 1,
LE) =T (LE)AT L (L(E,).
Thus

T—yA(L (X)) =

IrLa Ty e LEMN ATy, (07 Ty 'or (L(E)) =

L s (LE DT, (LX)

Hence Lemma 1 is proven. ad

4. Testing Algorithms of Firing
Sequences

In order to verify system functions,. sequences
presenting system functions are tested to see
whether these sequences belong to the target
system [8, 9]. Testing firing sequences of
complex systems is often a difficult task
Decomposing complex systems and
deconcentrating test firing sequences prove to
be effective. Our idea for such testing is based
on Theorems 2 and 3 shown below.

Theorem 2

Let Z,=(B,T;F,M,),i=12 be two
live Petri nets, X=X @, and
A=T T, Y o, el(Z),i=12, then

r}",»a (0,)= rrﬁa (02),
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iff o, @, L(2).
Proof

Since o, € L(X,),/=1,2 _then
I 50000 =T, (0y).

iffVoeo, @o,:
I (0)el(Z),i=)2.

iff 0,@0, (LX), i=12.

ift

0,®@0, I (LENATL L (L(E,).
From Theorem 1. we have 0, @ 0, € L(X).

Theorem 3

Let Z, =(P,1,F,M,)i=12 be two
Petrinets, Z =2, @ Z,.and A=T N T,.

Then. 'g; = I, T (o L(2,) =12, if

gel().

Proof

It is easy to see if this consequence is true by
applying Lemma 1, Theorem 1 and Theorem 2.

Based on Theorem 2 and Theorem 3, the testing
algorithms for a given group of firing sequences
are described as follows.

Algorithm 1. Shufiing Test

Input o, € I(Z),i=12,j=12,..9

)

Output  b(j), j=12,....¢q [ if
o, ®0,, (X ®L,) then b(j)=1,
otherwisc b(j)=10./

(N begin

(2) for j=1to g do

(3 if FTI_,A (CTU )= r',g »A (Glj) then
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(4) b(j)« 1

(5) else H(j)« 0

(6) endif
(7Y endfor
(8) endbegin.

Algorithm 2. Belonging Test

put o, j=12,..4,%,,i=12

2

Output  H( /), j=12,....¢q /if
o, e (L, ®I,) then b(j) = 1. otherwise
b(j)=01

(H begin
(2) Gencerate reachability graphs
RMG(Z,) of X,,i=12: based on the

algorithm of well-known reachability graphs for
bounded Petri nets [12] :

3) for Jj=1togq do

E)) if T ,;(0)el(X;),i=12 then
(3) h(j)« 1

(6) elsc H(j) <0

(7) endif

(8) endfor

(9)endbegin.

It is clear that the Shufiing Test aigorithm needs only a
few projections and comparisons. while  the
Relonging Test algonthm needs only a few projections
and tests for subsystems. Therefore. the compilexity of
testing large systems has been reduced

5. Example

In order to evaluate our analysis methodology
described above, two well-known cxamples



E] 22

Figure 1. Synchronous Composition of Petri Nets

have been selected to demonstrate the
application of our methodology.

Example. Two Petri rets Z, are shown in
Figure 1, and their synchronous composition net
is also shown in Figure 1. Two now problems
are considered s follows.

respeciively. It is necessary to test whether
o,; @c,. < L(X) are true, where
J J

L=2%,®Z, (sec Figure 1). By applying
algorithm Shufting Test described previously,
the result (when g = 10) is given in Table 1.

Table 1. The Testing Result of the Algorithin ShuPng Test for 10 Sequences

oy Oy, FIHA({;}I_} I (o)) Ll =1y ,0(0,;)? | 0,@0,,cL(X)?
E S—
aceba gabfa aba | aba = c
bebeac bfab bba bab *+ no C
acdebe | bfaga ab | baa # no C
beacde | bfag ba ba = e
beacde | bfaga ba baa GL no —
acdeb gabf ab ab = -
acdeb | gebfag ab aba # —
beacdea | bfag baa ba * B
beac bfag ba ba =
&=
bebea bfabf bba bab *
no C
Problem 1 Probiem 2

The Petri nets 2, in Figure 1 have a group of

sequences O, f=L12,...,q, i=12,
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The Petri nets 2 in Figure 1 has a group of
sequences o, j=1,2,..., 4. Itis necessary
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Table2. The Testing Result of the Algorithm Belonging Test for 10 Sequences

o, Trar(o)) I; -;?‘2(6;) L, T, {JJ}GJ'(ZJ? Iy 5T, (Gf)é](zl) ) | o,el(Z)?
abefabes abeabe abfabf Z = ¢
befacdea beacdea bfaa € & &

gacgdeacde | acdeacde gaga S € 5
gacbed acbed gab & ] &
bfdecabc bdecabe bfab & e &
bfeacdea beacdea bfaa e o3 &
fgcdeac cdeac fea & & &

befagedeac | hbeacdeac bfaga e e -

gacgde acde gag = c -
gacdega acdea gaga € € e
to test whether o ; € L(X), j=1,2,...,q are
J
true, where £ =X, ®X, (see Figure 1). By REFERENCES
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