Modelling the Communicativii Process Between Agents

Ofelia Vasilescu

F-mail: vofelia@u3.ici.ro

Abstract: The purpose of this paper is to present a language
for the modelling of communication between agents, that
includes deontic and illocutionary constructs. Deontic
concepts, as obligations, permission, and prohibitions are
essential for modelling communication between agents. The
description the dynamics of obligations, i.e. how obligations
are created and destroved, uses the tools of the speech act
theory. Since it is a logic programming language, it has simple
semantics and is executable.

Keywords: cooperating agent, logic programming language.
deontic concepts, illocutionary acts, instrumental acts

1. Introduction

Technical advances in computer networking and
organizational demands made decentralized and
co-operating information systems get ever more
important. In order to specify and design these
systems, we need the concept of intelligent and
cooperating agents. The term "agent" means an
entity, human or machine, that functions
continnously and autonomously in an
environment in which other processes are carried
on and other agents exist. Agents are often taken
to be "high-level". meaning that they can be
described in mental terms such as belicfs,
knowledge. capabilitics, decisions, plan, goals,
desires, intentions, obligations, commitments, etc.

A vast literature was dedicated to different mental
aspects. The social relations of obligations,
prohibitions, and permissions have been studied in
deontic logic. and can be found in [Gabbay,
1984], [Meyer.1993]. One of the first axiomatic
systems for deontic logic was the "standard
system" KD defined by von Wright in 1951
[Wright, 1951}, where the deontic operators O (for
Obligation) and P (for Permission) were
introduced together with a small number of
axioms stating their properties and
interrelationships. In 1964, von Wright extended
his original system to a system for dvadic logic
[Wright, 1964], where conditional obligations
were introduced. Meyer suggested in 1988 to
reduce deontic logic to a variant of dynamic logic
[Meyer,1993]. The dynamic logic led to the strict

Studies in Informatics and Control, Vol. 9, No. 4, December 2000

representation between actions and assertions. An
action may change the current situation, an
assertion may not. Meyer considered the
obligations as pertaining only to actions, not to
assertions. Only could he specify the obligations,
but there is no tool for the dvnamic creation of
obligations. In 1995, Dignum et al showed how
such constructs could be provided through a
combination of deontic logic and illocutionary
logic [Dignum, 1995]. Illocutionary logic is a
formalisation of the theory of speech acts
[Searle79], which can be used for modelling
communication structures. One must distinguish
[Dignum, 1995] between speech acts and
instrumental acts; speech acts arc used for
comimunication between agents, whereas
instrumental acts are not.

The aspects of obligations and commitments have
been largely studied recently. These aspects are
essential for cooperation and coordination among
agents. When coordinating their activities, agents
create and fulfil obligations, that is agents ask
each other to do things, they promise to do things,
and they carry out what has been requested or
promised. Thus each agent holds an agenda
describing what it is obliged to do in the future,
This agenda is not static, but changes as the agent
adds and removes obligations. The agent removes
obligations by meeting them. The agent adds new
obligations to its agenda as a response to requests
from other agents. This means that agents use
speech acts (directives, commissives, and
declaratives) to create and cancel their obligations.
Speech acts, therefore, provide a natural basis for
a structured description of actions that take place
in agent communication and interaction.

In this paper. we introduce a language based on
first order logic for creating, specifving and
monitoring obligations between agents. The paper
is organised as follows. Section 2 introduces the
language and gives its syntax and semantics.
Section 3 illustrates a communication process
between agents. Finally, Section 4 draws the
conclusions.

353

2. Language of Communication
Between Agents

There are two main approaches to designing an
agent communication language. The first
approach is procedural, where communication is
based on an executable content. This could be
done using such programming languages as Java.
The second approach is declarative, where
communication is based on declarative statements,
such as definitions and assumptions. Because of
the limitations of the procedural approach (e.g. it
is difficult to check and co-ordinate an executable
content), declarative languages have been
preferred in the design of agent communication
languages. Most declarative language
implementations are based on illocutionary acts,
such as requesting or commanding; such actions
are commonly called performatives. Two more
popular declara.ive agent languages are: the
Knowledge query and manipulation language
(KOQOML) and the knowledge interchange format
(KIF).

We introduce a language for specifying, creating,
and monitoring obligations based on the first
order logic. This approach was inspired by von
Benthem ¢t al in [Benthem et al, 1995] where first
order logic was used to model dynamics. In order
to provide logic programming semantics, the
syntax of language is restricted accordingly. This
approach has several advantages:

¢ Simple semantics. The meanings of the
language constructs are easy to understand as
they are given using first order semantics.

¢ Executable specifications. As they can be

interpreted as ordinary logic programs,
specifications in the language are executable.

¢ [Explicit creation of obligations. The language
makes it possible to explicitly create
obligations by means of speech acts.

2.1 Syntax

The syntax of language is now defined. The
alphabet, as usual for first order predicate logic,
consists of a set C of constants, a set I of
variables, a set £ of function symbols, a set P of
predicate symbols, a set of connective symbols
and a set of punctuation symbols. The Universe of
Discourse consists of different kinds of objects

354

including agent, time points, actions and state of
affairs. In order to distinguish between terms
denoting such different kinds of objects, the
terms are typed. We introduce the types Ag for
agents, T for time points, 4 for actions, and So4
for states of affairs. We also introduce the type A4S
for the contents of speech acts, which may be
actions, states of affairs, or combinations of these;
A and SoA are subtypes of AS. To enable the
construction of different actions and states of
affairs, a special set of function symbols is
defined:

asetAc= {~, n,v}ic F of connectors;

e aset /P = {dir., dir,, com, com_cond , auth,
retract} F of illocutionary points;

o aset/4 c F of instrumental acts constructors;
e asect Sod < F of states of affairs constructors;

o asetDO={0, Au, Pe, Fo }c So4 c F of
deontic operators;

These function symbols are typed as follows:

~:1A8 5 A4S

ACASXAS - AS

v:IASXAS -5 AS
dire:AgxAgxASxT— 84
dira:dgxAgxASxT — S4
com: AgxAgxASx T — 84
com cond : Ag x Ag XASXTXASX T — S84
auth:4gx4gx4ASxT— S4
retract : Ag x Ag xASx T — S84
0:AgxASXxTxT — SoA

Au :AgxASxTx T — Sod

Pe 1 AgxASXxTx T — Sod

Fo :A4gxASxTx T — Sod

The predicate symbols in this language are <, <,
=, done and holds with arity two and fulfilled
with arity three. The predicate symbols holds,
done, and fulfilled are typed as follows:
holds :Sedx T
done :AxT

fulfilled :ASxTxT

Studies in Informatics and Control, Vol. 9, No. 4, December 2000

A well set formula in this language is a clause in
Clausal Normal Form [Llovd, 1987]., ie. an
ordinary logic programming formula. We use
Prolog notation and adopt the convention that
constants are denoted by lower-case letters and
variables by upper-case letters.

The function symbols introduced above shall be
read as follows:

dir. (Agl.Ag2 AS.T)- Agl asks AgZ to
fulfil AS latest at T :

dir, (Agl,AgZ2,AS.T)- Agl requests that
Ag?2 shall fulfil AS latestat T ;

com (Agl, Ag2 . AS.T) Agl commits
itself toAg? to fulfil AS latestat T ;

com cond(Agl.Ag2 AS1,T1.AS: .T2) -
Agl commits itself o AgZ? to fulfil ASz
latest at T2 if AS: isfulfilled at T1;

auth (Agl.AgZ .AS,T)- Agl authorizes AgZ2
to request that Agl shall fulfil AS before T;

retract (Agl.AgZ AS)-Agl withdraws
the authorization from Ag2 to request that
Agl shall fulfil AS;

0(Ag.AS,T1,T2)- It is obligatory for Ag to
fulfil AS between T1 and T2;

Au{Ag,AS.T1.T2)- Agent Ag is authorised
to request that AS shall be fulfilled between
Tland T2,

Pe(Ag.AS T1.T2)- Agent Ag is permitted
to fulfil AS between T1 and T2;

FOo(Ag,AS.T1,72)- Agent Ag is forbidden
to fulfil AS between T1 and TZ;

~AS - The negation of AS ;

AS1 A ASz - The conjunction of AS: and
AS: ;
AS: v AS: - The disjunction of AS: and
ASa ;

The predicate built by holds. done, and
fulfilled shall be read as follows:

holds(SoA,T)- The state of affairs SoA
holds at T;

done(A,T)- The action A has been
performed at T;

Studies in Informatics and Control, Vol. 9, No. 4, December 2000

fulfilled(AS.T1,T2)- AS is fulfilled with
respect to T1 and T2, i.e. AS is performed
between T1 and T2 (if AS corresponds to an
action), or AS holds at T2 (if AS corresponds
to a state of affairs).

2.2 Semantics

The well set formulas of the language are clauses
in Clausal Normal Form, since the language
inherits its semantics from logic programming.
Here is a number of axioms in the form of rules
for the language constructors.

The meaning of the predicate fulfilled is
defined by the following rules:

Al. fulfilled(SoA, T1.T2)«
holds(SoA,T2) .

AZ. fulfilled(A,T1,T2)«
done(A.T3).
= Te= 12,

A3. fulfilled(AS: A AS2,T1.T2)«
fulfilled(AS:,T1.72),
fulfilled(AS:, T1.T2).

Ad. fulfilled(ASt v AS2.T1.T2)«
fulfilled(AS:. T1,72).

A5. fulfilled(AS: v AS2,T1,T2)«
fulfilled(AS:,T1,72).

A6, fulfilled(-AS,T1.72)«
—fulfilled(AS.T1,72).

A7. holds(0(Agl,AS,T1,T3),T2)«
done(dir,(AgZ2 ,Agl,AS,T3),T1),
holds (Au(Ag2 ,Agl,AS T4, T5),T1),
Tl < 72 £ T3,

T4 < Tl £75.

A8. holds(O(AQl.AS,T1.T3),T2)«
done(dir<{Ag2 ,Agl,AS.T3),T1).
nolds(Pe(Ag2,Agl AS, T0,T3) T1),
T0 <71 272 £73.

3355

A9. holds(O(Agl AS.T1,T3) T2)«
done(com(Ag, .AS.T3).T1).
—fulfilled(AS,T1,72).

T1 < T2.
A10. holds(O(Agl . AS2,T1,T4).72)«

done(com_cond(Agl,AgZ AS; . T3.AS,
T4).T1).

fulfilled(AS,.T1,T3),
—~fulfilled(AS,,T3,T4),
T1<T2<T3<T4.

All. holds(Au(Ag,AS,T1,T3),T2)«
done(auth(_,Ag.AS.T3).T1),
Tl = T2 < T3.

3. Example

Let us consider the case of communication
between a customer and an intelligent decision
support system viewed like a multi-agent system.
Figure 1 presents the communication process
between customer and coordination agent.

The customer asks that the co-ordination agent of
the system performs a product. Given a product
demand, the co-ordination agent accepts the
request. That means that if the customer initiates
an order for the product of the demand, the co-

Initiate order

Product demand

Accept_demand

Pay for order

ordination agent has to fulfil it by delivering the
product. Aftcr delivery, the customer has to pay
for the product. In this example. the actions which
may come up in the domain arc speech acts and
instrumental acts. Product_demand,
accept_demand and order correspond to speech
acts and deliver and pay are instrumental acts. For
these actions we define the corresponding
function symbols, as follows:

{product_demand, accept_demandorder; < S84
and {deliver, pay} < [4.

The action that a customer asks the coordination

agent to perform a product P in a quantity latest

at TT is in effect a clear directive of the customer

for the co-ordination agent that the co-ordination
agent shall submit a request by accept_demand
This is formalised as domain axiom D1.

D1.
done(dir.(Customer AgC,accept demand(Ag
C.Customer .P,.Q.Tf).T2).T1)«

done(product_demand(Customer AgC.P.Q.Tf
). TL).

The demand is accepted if the coordination
agent knows the specification of product asked
by the customer and if it can produce it until Tf:

D2.
done(accept _demand(AgC.Customer.P.Q.Tf)
e

done(product_specification(AgC,Cu

Deliver order

Figure 1. Ordering Process

356

Studies in Informatics and Control, Vol. 9, No. 4, December 2000

stomer.P.Q.Tb.Te) . T),
Te < Tf.

The product specification action is also an
authorisation, where the co-ordination agent
authorises a customer for a delivery, i.e. if the
customer requests a delivery then the co-
ordination agent should comply to. This is
expressed in the following axiom:

D3. done(auth(AgC, Customer,deliver(AgC,

Customer,P.G.Te) . Th) . T)«
done(product_specification(AgC,
Customer.P,Q,Th.Te).T).

The action that the customer gives an order 1o the
co-ordination agent afler having received the
accepted demand is an authority directive,
expressed in axiom D4, But giving an order is not
only a directive, it is also a conditional
commissive because if the co-ordination agent
delivers in time the customer will pay. This is
expressed in axiom D5.

D4. done(dir,(Customer.AgC, deliver(AgC,
Customer.P.Q.Te) . Thb) . T«
done{order(Customer AgC.P.Q.Te) . T).
D5. done(com cond (Customer AgC,
deliver{AgC.Customer P.Q.Te). . Te pay
(Customer AgC.P.M.Tp).Tp). M«
done(order(Customer AgC.P.Q.Te).T).

With axioms Al1-All and the domain axioms D1-
D5 we can describe the communication process
between the customer and the co-ordination agent.

John asks that 800 pieces of bearings are
processed within maximum 50 days running from
the dav mentioned in the demand. This demand
actually illustrates Cl.

C1l.
done(product_demand(john.agC,bearing.800
J50).1).

On the second day. the co-ordination agent agC
can introduce a fifth day from the demand to meet
it, and a delivery period after 40 davs. The
demand is valid as far as the fifth day. The fact is
the following:

Studies in Informatics and Control, Vol. 9, No. 4, December 2000

c2.
done(product specification(agC.john,
bearing ,800.5.40).2).

From C2 and D3 we can derive that on the second
day the co-ordination agent agC authorises John,
latest on a fifth day, to request him to deliver,
after a 40 -day period , 800 pieces of bearings:

F1.
done(auth(agC.john,deliver(agC, john,
bearing,800,40).5).2)

Now from F1 and All we can derive that on a
fifth day it holds that from 2 to 5 days John is
authorised to request that the co-ordination agent
agC delivers 800 pieces of bearings within 40
days:

F2.

holds(Au{john,deTiver(agC,john,
bearing,800,40),2,5).5)

John accepts the specification and gives the order
in the following fact :

C3.
done(order(john.agC . bearing.800,40) .4)

From C3 and D4 then follows:

F3.
done(dir,(john,agC.deliver(agC, john.
bearing,800.40),40) .4)

Now from F3, F2 and A7 we can derive that:

F4.

nolds(0(agC.deliver(agC, john,
bearing.800.,40) .4,40).4)

From C3 and D5 there follows:

Fb.

done(com_cond(john, agC,
deliver(agC.john bearing, 800.40) .40, pay

(john,agC . bearing,800,45) ,45) ,4)«
done(order(john,agC, bearing.800,40) .4).
Now from F5 and A10 there follows:

F6.
holds(O(john,pay(john.agC . bearing.800.4)
4.45).4)

357

The predicates C1 through C3 show the actions that
have been performed and the moment they have
been performed. From the predicates C1-C3 and the
axioms, it can be derived which states of affairs hold
at a certain time point, like F2, F4 and F6.

4, Conclusions

This concludes the language for modelling
communication and obligations between agents.
The language allows the specification of
obligations, it supports explicit and dynamic
creation of obligations by agents. It does so by
means of expressions as directives, commissives,
and authorisations. This language has been
described in a first order framework.

REFERENCES

1. BENTHEM., J. V. and BERGSTRA, J,, Logic of
Transition Systems, JOURNAL OF LOGIC,
LANGUAGE AND INFORMATION, Vol, 3,
1995, pp. 247-283.

358

2. DIGNUM. F. and WEIGAND, H., Modelling
Communication Between Cooperative Systems,

CaiSE, 1995,

3. GABBAY, Handbook of Philosophical Logic,
REIDEL, Dordrecht, 1984.

4 LLOYD, J, Foundations
Programming, SPRINGER- VERLAG, 1987.

5. MEYER, J]-I. CH and WIERINGA, R],
Applications of Deontic Logic in Computer
Science: A Concise Overview | in J.-J.Ch. Meyer
and R J. Wieringa (Eds) Deontic Logic in

System

Computer Science: Normative
Specification, WILEY, 1993, pp. 17-40.

6. SEARLE, J. R, A Taxonomy of Illocutionary

Acts, Expression and Meaning: Studies in the
Theory of Speech Acts, CAMBRIDGE

UNIVERSITY PRESS, 1979, pp. 1-29.

7. WRIGHT, G. H. v, Deontic Logic, MIND, Vol.
60, 1951, pp.1-15.

8 WRIGHT, G. H. v, A New System of Deontic
YEARBOOK OF

Logic, DANISH
PHILOSOPHY 1, 1964.

Studies n Informatics and Control, Vol. 9, No. 4, December 2000

of Logic

