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1. Introduction

In recent history, several qualitative technological 
advancements have made a significant impact 
on everyday life. Most of them were in the field 
of computer science and technology. PC, the 
Internet, and smartphones are some examples. 
The latest revolutionary progress has been made 
by the convolutional neural networks (CNN). 
Convolutional neural networks are a specific 
type of deep neural networks that use kernels 
to process neighboring inputs so that their 
spatial (or temporal) correlation is preserved. As 
such, CNN are suitable for the classification of 
different signals, predominantly digital images. 
The accuracy of digital image classification has 
been significantly improved by the CNN, even 
without any feature extraction or preprocessing. 
This facilitated revolutionary advancements since 
digital image classification is a crucial element 
in numerous applications, for example, medical 
image analysis, autonomous vehicles, face 
recognition, etc.

Even though convolutional neural networks only 
recently have been widely applied and researched, 
the concept of the CNN was introduced several 
decades ago. One of the first applications of the 
CNN was introduced by LeCun et al. (1989) 
for handwritten digit recognition. The proposed 
CNN was based on the work of Fukushima 

(1980) where a network that recognizes complex 
patterns based on the low-level complex patterns 
was presented. The recognition results were 
significantly improved by the CNN, but due to 
limited computational power and lack of large 
datasets that could be used for training there has 
not been any substantial further research and 
applications of the CNN. However, nowadays it 
is possible to train a deep neural network on an 
ordinary computer. As a result, the CNN have been 
widely studied and used in numerous practical 
applications and they achieved revolutionary 
results.  The CNN were used in applications for 
solving problems in healthcare (Anwar et al., 
2018; Pereira et al., 2016; Shen et al., 2017), 
security (Zheng et al., 2017), agriculture (Boulent 
et al., 2019), autonomous vehicles (Kebria et al., 
2019), astronomy (Jia, Liu & Sun, 2020), and 
many other areas (Rawat & Wang, 2017). 

Nowadays, powerful hardware and available 
software tools make it relatively easy to create 
a CNN that achieves significantly higher 
classification accuracy compared to other 
classification methods. However, creating the 
optimal CNN is a challenging problem since a 
CNN contains numerous hyperparameters that 
need to be properly selected. CNN parameters 
are adjusted during the training process while 

Studies in Informatics and Control, 31(1) 25-35, March 2022

https://doi.org/10.24846/v31i1y202203

Tuning Convolutional Neural Network Hyperparameters 
by Bare Bones Fireworks Algorithm

Ira TUBA1, Mladen VEINOVIC1, Eva TUBA1, Romana CAPOR HROSIK2, Milan TUBA1* 
1 Singidunum University, 32 Danijelova Street, 11000, Belgrade, Serbia
ituba@ieee.org, mveinovic@singidunum.ac.rs, etuba@ieee.org, tuba@ieee.org (*Corresponding author)
2 University of Dubrovnik, 12 Kneza Damjana Jude Street, 20000, Dubrovnik, Croatia
rcapor@unidu.hr

Abstract: Digital image classification is an important component in various applications. Lately, convolutional neural 
networks have been widely used as a classifier since they achieve superior results, while their application is relatively 
simple. In order to achieve the best possible results, tuning of the network’s hyperparameters is necessary but that 
represents an exponentially hard optimization problem with computationally very expensive fitness function. The swarm 
intelligence algorithms have been proven to be effective in solving such exponentially hard optimization problems, however 
their application to this particular problem has not been sufficiently studied. In this paper, convolutional neural network 
hyperparameters were tuned by the bare bones fireworks algorithm. The quality of the proposed method was tested on two 
standard benchmark datasets, CIFAR-10 and MNIST. The results were compared to CIFAR-Net, LeNet-5 and the networks 
optimized by the harmony search algorithm and the proposed method achieved better results considering the classification 
accuracy. The proposed method for CNN hyperparameter tuning improved the classification accuracy up to 99.34% on the 
MNIST dataset and up to 75.51% on the CIFAR-10 dataset compared to 99.25% and 74.76% reported by another method 
from the specialized literature.

Keywords: Convolutional neural networks, Hyperparameters tuning, Optimization, Swarm intelligence, Bare bones 
fireworks algorithm.



https://www.sic.ici.ro

26 Ira Tuba, Mladen Veinovic, Eva Tuba, Romana Capor Hrosik, Milan Tuba

hyperparameters are parameters that control 
that process. The number and type of layers, 
activation function, optimization algorithm are 
some examples of the CNN hyperparameters. 
Even if these hyperparameters are not set to 
the optimal values, most likely the results will 
be better than those obtained by using other 
classification methods. To improve the accuracy 
of the CNN classification, hyperparameters should 
be fine-tuned specifically for each problem. Since 
the number of hyperparameters and the range of 
possible values for each of them are huge, there is 
no deterministic method for solving this problem 
in a reasonable time. In practice, in many cases, 
CNN hyperparameter tuning is done by guessing 
and estimating. Researchers select values for 
the hyperparameters that they believe would 
produce good results based on the experience 
and the knowledge about the considered problem. 
Since this method has been often used, it was 
named. Finding a more appropriate method is 
an emerging research topic. Since adjusting 
CNN hyperparameters is an exponentially hard 
optimization problem, some metaheuristics that 
proved to be efficient for solving this class of 
problems could be used. One class of algorithms 
successfully applied to different hard optimization 
problems is the class of nature inspired, especially 
swarm intelligence (SI) algorithms (Liu et al., 
2021; Al Harthi et al., 2021). There are some 
initial studies on the application of the SI 
algorithms on tuning CNN hyperparameters, but 
it still represents a new and insufficiently studied 
research topic. Usually, based on the nature of 
the CNN hyperparameters tuning problem, it is 
not possible to apply SI algorithms directly. It is 
necessary to adjust them for integer search space 
and for providing a good solution with a small 
number of fitness function evaluations. 

In this paper, a recent SI algorithm was adapted, 
namely the bare bones fireworks algorithm 
(BBFWA) (Li & Tan, 2018), for tuning some 
of the CNN hyperparameters. The network 
architecture, which includes hyperparameters, 
was established based on the results known in 
the literature (Lee, Park & Sim, 2018), and the 
BBFWA was used for finding the optimal kernel 
size, the number of feature map channels, padding 
and stride in convolutional layers, and padding 
and stride in max-pooling layers. The BBFWA 

was adjusted for the considered problem by 
selecting the appropriate fitness function, setting 
the parameters, and adjusting it for integer search 
space. The classification accuracy was used 
as fitness function. The proposed method was 
compared with standard LeNet-5 and CifarNet, 
as well as with another SI approach from the 
literature, the modified harmony search algorithm 
(Lee, Park & Sim, 2018).

The rest of the paper is organized as follows. 
Related work is presented in Section 2. 
Convolutional neural networks and swarm 
intelligence algorithms are explained in Section 
3. The bare bones fireworks algorithm adjusted 
for CNN hyperparameters optimization is 
presented in Section 4. Section 5 contains 
a comparison of the proposed method with 
methods from the literature and an analysis of 
the obtained results. Finally, Section 6 concludes 
the paper and proposes future research.

2. Related Work

In recent years, CNNs have been intensively 
studied. They were studied theoretically and 
tested on benchmark datasets, but also applied to 
various real-life problems. Currently, the emerging 
research topic is CNN hyperparameters tuning. 
As mentioned before, one promising approach 
is the application of different optimization 
metaheuristics, especially evolutionary and swarm 
intelligence algorithms. The application of the SI 
algorithm to the CNN hyperparameters tuning 
problem is a relatively new research topic and 
there is a relatively small number of papers in the 
specialized literature that tackle this problem, but 
the results are very promising. 

There are several modifications and adaptations 
of one of the earliest swarm intelligence 
algorithms, particle swarm optimization (PSO), 
for CNN hyperparameter tuning. Sinha, Haidar 
& Verma (2018) proposed the PSO for simple 
CNN optimization. The PSO was used to set 
hyperparameters and choose between two possible 
CNN architectures. The quality of the proposed 
method was tested on two benchmark datasets, 
CIFAR-10 and Road Side Vegetation Dataset. The 
proposed method achieved better results compared 
to the AlexNet (Krizhevsky, Sutskever, & Hinton, 
2012) and grid search method.
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Canonical PSO with three additional mechanisms 
for exploration and exploitation improvements and 
faster fitness function evaluation was proposed by 
Wang, Zhang & Zhang (2019). The improved PSO 
was compared with four other versions of the PSO 
and tested on the standard CIFAR-10 benchmark 
dataset. Hyperparameters were determined for the 
AlexNet architecture. The improved PSO was used 
to determine the kernel size, the number of kernels, 
stride and padding of each layer. In comparison to 
other PSO versions as well as to other approaches 
from the literature, the proposed modified PSO 
achieved higher classification accuracy.

Another adaptation of the PSO for finding the 
optimal CNN architecture named quantum 
behaved Particle Swarm Optimization with 
binary encoding (BQPSO) was proposed by Li 
et al. (2019). The BQPSO was used to determine 
kernel size, the number of feature maps, stride and 
padding of the convolutional layers, and padding, 
kernel size, and type of pooling layers. The number 
of neurons in fully connected layers, as well as the 
number and order of different layers, were also set 
by the BQPSO. The proposed method was tested 
on the complex MNIST dataset, MNIST with 
rotated digits plus background images (MRDBI). 
The obtained results were comparable to those 
obtained by other approaches while the main 
contribution was the automatic architecture design 
of the CNN.

Singh, Chaudhury & Panigrahi (2021) proposed 
a multilevel PSO for finding optimal CNN 
architecture and its hyperparameters. The 
proposed method was tested on 5 benchmark 
datasets, MNIST, CIFAR-10, CIFAR-100, Convex 
Sets, and MDRBI, and achieved the classification 
accuracy of 99.13%, 87.34%, 66.97%, 90.33% 
and 65.77%, respectively.

The PSO approach for CNN hyperparameter 
tuning was also proposed by Gao et al. (2020). The 
binary coding was used for describing the CNN 
architecture and hyperparameters such as kernel 
size, number of kernels, type of pooling layer, 
size of pooling. For finding the optimal solution, 
gradient-priority particle swarm optimization was 
proposed. The method was tested on EEG signals 
and used for emotion recognition. In comparison 
to four other methods, the proposed method 
achieved higher classification accuracy.  

Another swarm intelligence algorithm, artificial 
bee colony optimization (ABC), was used for 
finding optimal hyperparameters of the CNN 
(Zhu et al., 2019). The ABC algorithm was 
used to determine the optimal values for 13 
hyperparameters including the number of each 
type of layers, kernel sizes, learning rate, batch 
size and dropout probability. The proposed method 
was tested on the MNIST dataset and the results 
were compared with those obtained by three other 
approaches from the specialized literature. The 
ABC method obtained a lower classification error 
compared to the other approaches.

Shukla, Koley & Ghosh (2020) presented an 
optimized CNN for transmission line protection. 
The CNN was optimized by the grey wolf 
optimization algorithm. Classification accuracy 
was used as the fitness function for determining 
the number of convolutional layers, kernel size 
of convolutional and pooling layers, and dropout 
probability. The proposed method was tested on 
various scenarios and obtained satisfying results.

The harmony search algorithm (HS) was used 
for tuning hyperparameters of CNNs by Rosa et 
al. (2015). They presented the results obtained 
by the CNNs optimized by the original harmony 
search algorithm as well as by three modified 
versions of the HS. The proposed methods were 
tested on CIFAR-10 and MNIST datasets and 
the results were compared with those achieved 
through random search and with parameters from 
the Caffe library (Jia et al., 2014). The modified 
HS versions outperformed other methods while 
among them the best one was self-adaptive global 
best harmony search where a mechanism for 
dynamic HS parameters tuning was presented.

A similar idea of the harmony search algorithm 
was proposed by Lee, Park & Sim (2018). 
They proposed the parameter-setting-free 
harmony search (PFS-HS) for setting CNNs 
hyperparameters. More details about this method 
are given later since it was used for comparison 
with the method proposed in this research work. 

There were also other swarm intelligence 
algorithms proposed for optimizing CNN such 
as the firefly algorithm (Bezdan et al., 2020; 
Strumberger et al., 2019b), monarch butterfly 
optimization algorithm (Bacanin et al., 2020), 
tree growth algorithm (Strumberger et al., 2019a).
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3. Convolutional Neural Networks 
and Swarm Intelligence 
Algorithms

Convolutional neural networks have been widely 
used for solving different classifications of 
digital images and sound signals since numerous 
software frameworks made it relatively easy 
to implement and train the CNN. Even with 
the default hyperparameters values from the 
used library, it is possible to make a CNN that 
outperforms other machine learning methods. 
Besides the good results, another advantage is that 
usually there is no need for image pre-processing 
or feature extraction but the raw data can be used 
as the input. In most cases, a simple resizing of 
images is the whole required pre-processing. 

Even though the CNNs achieve excellent 
results and are relatively simple to use, there are 
some challenges. One of the main challenges 
is hyperparameter tuning. CNNs have a large 
number of hyperparameters that should be 
adjusted individually for each problem. 

A convolutional neural network represents a 
special type of artificial neural networks that 
uses convolution operation instead of matrix 
multiplication. The architecture of one CNN 
consists of the input and the output layers and 
the hidden layers between them, same as in the 
artificial neural networks (ANN). The difference 
is that hidden layers in a CNN can be fully 
connected, convolutional, or pooling layers. Fully-
connected layers are equivalent to the hidden 
layers in an ANN and one or more of them are 
placed before the output layer. In the convolutional 
layer, a kernel which is a weighted matrix is used 
to convolve the input and produce the output. A 
CNN can have one or more convolutional layers. 
Parameters of the convolutional layer include the 
size of the kernel and the number of input and 
output feature map channels along with the stride 
and padding. In the first convolutional layer, the 
number of input feature map channels is equal to 
the depth of the image and in the following layers, 
the number of output feature map channels is 
equal to the number of input channels of the next 
layer. The convolutional layer can be followed by 
a pooling layer that reduces the dimension of the 
data. Parameters of the pooling layer include stride, 
padding, kernel size, type of pooling while the 
number of feature map channels remains the same 

but the dimension of each feature map is decreased. 
There are two most commonly used pooling types, 
max and average. Besides the hyperparameters that 
were mentioned, some hyperparameters are also 
part of ANN such as learning rate, an optimization 
method for backpropagation, loss function, 
number of epochs, batch size, the dropout rate for 
regularization. Also, the number of convolutional, 
pooling, fully connected layers and their order 
should be determined.

Finding the optimal values for all hyperparameters 
is a hard optimization problem. Additionally, the 
calculation of the fitness function requires the 
training of a complete CNN, so it represents a rather 
time-consuming operation which consequently 
limits the number of fitness function evaluations.

Same as for other machine learning algorithms, 
hyperparameters tuning can be done by simple 
random search or grid search. The problem with 
these methods is that only part of the search space 
can be covered and the results depend on the 
chosen grid values. 

A better approach is to use an optimization 
metaheuristic that has been proved to be 
efficient for tackling similar kinds of problems. 
One approach is to use swarm intelligence (SI) 
algorithms. The main idea of SI algorithms is to 
use a population of simple agents that exchange 
information between themselves and through 
iterations, they improve the quality of the best 
found solution. A simple agent that is moved 
around by a specific rule represents one solution 
in the search space. In each SI algorithm, there are 
two main mechanisms or rules of generating new 
candidate solutions based on the previous ones, 
named exploration and exploitation. Exploration 
is used to ensure the global search, to explore 
the whole search space to find promising areas 
where the optimal solution could be. After finding 
these areas, it is necessary to exploit the quality 
of solutions in these particular areas. For that, 
the exploitation operator is used. Defining proper 
exploration and exploitation operators, as well as 
the balance between them, are the main parts of 
each SI algorithm. 

In most of the cases, the application of the SI 
algorithms for CNN hyperparameters tuning, 
is not straightforward and some adaptations 
are needed. Common adaptation is related to 
the fact that the SI algorithms were originally 
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made for real search space while some CNN 
hyperparameters are integers. Depending on 
the chosen subset of hyperparameters that 
should be tuned, the SI algorithms may need an 
adjustment for integer solutions. An adjustment 
for the integer search space can be simple if the 
integers are from a large interval. In that case, 
the SI algorithm can be used as before with the 
addition of rounding the obtained real values to 
the nearest integer. The problem is if the integers 
are from the small interval, i.e., there are a small 
number of possible values for a certain variable. 
In that case, a slight change in the solution can 
lead to a drastic change in fitness function value 
and by that the whole search mechanism in the 
SI algorithm is compromised. Thus, changes in 
solution representation and/or fitness function 
should be introduced. 

Another adaptation that is usually necessary is 
related to the fact that the fitness function calculation 
is time-consuming. Training a convolutional neural 
network takes much more time than most fitness 
functions, so the fitness function evaluation number 
is significantly reduced. In order to find a solution 
in such a small number of iterations, sometimes it 
is necessary to add constraints or to improve and 
modify the exploration and exploitation operators 
of the SI algorithm.

4. Adjusted Bare Bones Fireworks 
Algorithm for CNN Hyper-
Parameters Tuning

The fireworks algorithm was initially proposed by 
Tan and Zhu (2010). The algorithm was widely 
used which resulted in numerous modifications 
and enhancements. The improved versions were 
presented periodically and one of the recent 
versions is the bare bones fireworks algorithm 
(BBFWA). The BBFWA was proposed by Li and 
Tan (2018). 

Unlike other FWA versions, the BBFWA, has a 
fixed number of solutions that are generated at 
each iteration. At each iteration, n solutions are 
generated around the current best solution. Among 
all the solutions in one iteration, the best one is 
saved for the next iteration. Exploration and 
exploitation are controlled by the size of the space 
around the current best solution where the new 
solutions will be generated. If the best solution is 
found among the newly generated solutions, i.e., 

the best solution has changed, it can be considered 
that the search space is still not well explored thus 
the size of the space around the best solution where 
the new solutions will be generated is increased. 
However, if the best solution remains the same 
then the potentially good area of the search space 
is found and it should be exploited carefully. This 
is implemented by narrowing the search space 
around the best solution.

To implement the BBFWA, two parameters were 
introduced, Ca and Cr, the factor of increasing 
and the factor of decreasing the search space 
around the current best solution, respectively. In 
the beginning, the whole search space should be 
covered so the size of the space around the best 
solution, A, is set to A=Ub-Lb, where Ub and Lb 
are the upper and the lower bounds of the search 
space, respectively. The other parameter of the 
BBFWA is the number of solutions (n) that are 
generated in each iteration around the current 
best solutions. The stopping criterium is usually 
the maximal number of iterations, the number 
of fitness function evaluations, the number of 
successive iterations where the best solution 
remains the same, etc. 

The quality of the solution is defined by the fitness 
function. For the CNN hyperparameter tuning, 
commonly loss function or classification accuracy 
are used as the fitness function. In literature, some 
papers such the research work of Lee, Park and 
Sim (2018), used the value of the loss function 
after one epoch as the fitness function. To define 
the fitness function, an experiment was conducted 
in the present work to check if one epoch is 
enough to determine the quality of the solution. 
Random solutions were generated and the CNN 
was trained through 25 epochs. The classification 
accuracy was checked after each epoch. The graph 
that represents the classification accuracy after 
each epoch is presented in Figure 1. The accuracy 
on the CIFAR-10 dataset is presented in Figure 
1a and the results on the MNIST dataset are in 
Figure 1b.

Based on the results, it was determined that the 
quality of the solution cannot be defined by the 
classification accuracy or the loss function after 
just one epoch since there are a lot of oscillations 
in the later epochs. After 10 or more epochs, 
solutions that were among the worst ones at 
the beginning could end up as the best ones. 
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Considering this, classification accuracy was 
used after the number of epochs as the fitness 
function. From the graph presented in Figure 1, 
it can be empirically concluded that after the first 
20 epochs the best solutions are stabilized and 
discovered. Thus, to minimize the fitness function 
evaluation time, while having a proper solution 
rating, the epoch number in the fitness function 
was set to 20. In this paper, for the fitness function 
the classification accuracy was used instead of the 
loss function. 

Algorithm 1. Pseudo-code of the proposed method
Initialization 
Randomly generate one candidate solution x, a vector of 
hyperparameter values.
Round the solution values to the nearest integers and 
evaluate that solution. 
Save solution x as the current best solution.
A=Ub-Lb
repeat
   Generate n candidate solutions (si, i=1, 2, …, n) within 
the range [x-A, x+A].
   Round all solutions to the nearest integers.
   Evaluate the generated solutions si, i=1, 2, …, n, i.e., 
train the CNN with the generated hyperparameter values 
and return the classification accuracy as the quality of the 
solution.
   if min(f(si))<f(x)
      x = si
     A = Ca*A
   else
     A = Cr*A
   end if
until stopping criteria is reached.  
return candidate solution x
Train the CNN with the hyperparameter values as in a 
candidate solution x and test the CNN on the test set
return classification accuracy on the test set

5. Experimental Results

The proposed BBFWA method for CNN 
hyperparameter optimization was implemented in 
Python 3.8 where the PyTorch package was used 
for the CNN implementation. The experiments 
were done on the platform with Intel © Core™ 
i7-11700K CPU at 5GHz, 16GB RAM, NVIDIA 
RTX 2060 graphic card, and Windows 11 
Professional OS. 

The proposed method was tested on two standard 
benchmark datasets, MNIST (LeCun, Cortes 
& Burges, 1998) and CIFAR-10 (Krizhevsky 
& Hinton, 2009). In order to test the quality of 
the proposed method, it was compared with the 
modified harmony search algorithm (HS) named 
parameter-setting-free HS (PSF-HS) (Lee, Park & 
Sim, 2018) and two well-known and commonly 
used CNN for comparison, LeNet-5 for the MNIST 
dataset and CifarNet for the CIFAR-10 dataset. 
The HS parameters that control exploration and 
exploitation were set automatically based on the 
quality of the results obtained in each iteration. 
The PFS-HS algorithm was used for finding 
optimal kernel size, the number of channels, 
padding and stride in each layer. 

5.1 Experimental Setup

The MNIST dataset (LeCun, Cortes & Burges, 
1998) is a widely used benchmark dataset for 
image classification. The dataset contains images 
of handwritten digits of size 28x28x1. In total, 

(a) (b)

 Figure 1. Selecting time-efficient fitness function based on the classification accuracy of the BBFWA 
candidate solution through 25 epochs on a) CIFAR-10 and b) MNIST datasets
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there are 70,000 images of 10 classes where 
60,000 are in the training set, while the remaining 
10,000 are used for testing.

In the paper used for comparison (Lee, Park & 
Sim, 2018), the architecture of the convolutional 
neural network for the MNIST dataset was based 
on the LeNet-5 network (LeCun et al., 1998). 

This network contains two convolutional layers, 
each one followed by a pooling layer. At the 
end, there are two fully connected layers and 
the output layer. The number of neurons in fully 
connected layers are 120 and 84, respectively, and 
10 neurons, one for each class, are in the output 
layer. Since the input size of the LeNet-5 network 
is 32x32x1, the original images from the MNIST 
were resized by adding zero paddings which was 
also done in (Lee, Park & Sim, 2018). 

Lee, Park & Sim (2018) compared their PSF-HS 
approach with the original LeNet-5 network. To 
ensure a fair comparison, they included constraints 
on the complexity of the network. The number 
of weights and biases that should be learned in 
the network was constrained by the number of 
learnable parameters in the LeNet-5. This number 
can be calculated based on the number of weights 
in each convolutional and fully connected layer as:

( )( )_   1x yconv param k k d c= ⋅ + ⋅⋅
        

(1)

( )_   _ _ 1FC param fc c fc p= ⋅ +            (2)

where conv_param is the number of learnable 
parameters in the convolutional layer with the 
kernel size of kxxky, d input channels, and c 
output channels. The FC_param is the number 
of weights in the fully connected layer with fc_c 
output channels and fc_p input channels. The total 
number of learnable channels is:

_   
_   _

learnable param
conv param FC param

=

+∑ ∑               
(3)

The LeNet-5 has 61,706 learnable parameters. 

The second dataset was the CIFAR-10 
(Krizhevsky & Hinton, 2009), another widely 
used benchmark dataset for image classification. 
It contains 60,000 color images of size 32x32x3. 
Images were divided into training and testing set 
with 50,000 and 10,000 samples, respectively. 

Each class contains the same number of images, 
i.e., 5000 images of each class in the training set 
and 1000 images of each class in the testing set. 
CIFAR-10 consists of images of the airplanes, 
automobiles, birds, cats, deer, dogs, frogs, horses, 
sheep, and trucks.

The architecture of the CNN used for the 
classification of the CIFAR-10 dataset was based 
on the CifarNet (Krizhevsky & Hinton, 2009). 

The CifarNet has three convolutional layers, each 
of them followed by a pooling layer. In the end, 
there is a fully connected layer with 64 neurons 
and the output layer with a neuron for each class. 

The PSF-HS algorithm (Lee, Park & Sim, 2018) 
was used for finding the values of each of the 
following CNN hyperparameters: for each 
convolutional layer in the network, kernel size, 
number of feature map channels, padding, and 
stride, for the pooling layer, the padding and stride. 
The dimension of the optimization problem was:

  4 2d NoConv NoPool= +                          (4)

where NoConv is the number of convolutional 
layers in the CNN while the NoPool is the number 
of pooling layers. To fairly compare the proposed 
method with the PSF-HS algorithm, the same 
constraints for the kernel sizes were set: the size of 
the convolutional kernel should be an odd positive 
integer while the size of the pooling kernel was 
larger or equal to 2. The loss function was a cross-
entropy loss.

The other hyperparameters of the CNN were not 
reported in (Lee, Park & Sim, 2018) thus, they 
were set as follows: the pooling layers were max 
pooling, the optimization algorithm was set to be 
a stochastic gradient descent (SGD), activation 
function was ReLU. 

In this paper, the learning rate was set empirically. 
It has been observed that the model tends to start 
overfitting, i.e., the loss function is decreasing 
along with the classification accuracy obtained on 
the testing set. Based on the initial experiments, 
the learning rate was initially set to 0.003 and 
gradually decreased to 0.0005 based on the epoch 
number. The rest of the hyperparameters were 
not explicitly set but the default values from the 
PyTorch package have been used.



https://www.sic.ici.ro

32 Ira Tuba, Mladen Veinovic, Eva Tuba, Romana Capor Hrosik, Milan Tuba

The parameters of the BBFWA, Ca and Cr, 
were set empirically. The tests on both datasets 
were run with different values for Ca and Cr, 
and it was established that the best results were 
obtained when Ca was 0.5 and Cr was 1.3. For 
the MNIST dataset, the number of fitness function 
evaluations was set to 41, where 5 new solutions 
were generated in each of 8 generations. For the 
CIFAR-10 dataset, the number of fitness function 
evaluations was set to 22 and 3 new solutions 
were generated in each of 7 generations. 

5.2 BBFWA-CNN for the MNIST 

Lee, Park & Sim (2018) did not specify the upper 
bound of the search space so in this paper the 
upper bounds for each considered hyperparameter 
were set empirically. The lower and the upper 
bounds for hyperparameters of the CNN for the 
MNIST dataset were set as presented in Table 1. 

Table 1. The lower and the upper bounds for 
hyperparameters of the MNIST dataset

Layer Parameter Lb Ub
Convolutional 
layer 1

Kernel size (k1) 5 13
Number of feature 
maps (c1)

4 14

Padding (p1) 2 8
Pooling layer 1 Kernel size (k2) 2 8
Convolutional 
layer 2

Kernel size (k3) 11 25
Number of feature 
maps (c2)

5 12

Padding (p2) 0 4
Pooling layer 2 Kernel size (k4) 4 10

In this paper, solutions generated by the BBFWA 
that build a more complex network than LeNet-5 
(with more learnable parameters) were rejected 
and replaced by a new one.

To reduce the training time, it was empirically 
established that if the solution achieves an 
accuracy which is lower than 98.8% after 
5 epochs, the solution will not achieve the 
desired accuracy so training is stopped and the 
accuracy after 5 epochs is returned as the fitness 
function value. For other solutions, the network 
was trained for 20 epochs. Most of the time 
in one run of the BBFWA is spent for fitness 
function evaluation, hence reducing time for 
one evaluation is important. After the BBFWA 
finishes, the CNN was trained with the obtained 

hyperparameter values through 40 epochs as in 
(Lee, Park & Sim, 2018). 

It should be mentioned that the PSF-
HS proposed in (Lee, Park & Sim, 2018) 
involved approximately 19,000 iterations 
with a population size of 10, which means 
190,000 fitness function evaluations, which is 
significantly more efficient when compared to 
the present approach that took only 40 fitness 
function evaluations. Since the proposed fitness 
function evaluation includes 20 epochs, it is 
equivalent to 800 fitness function evaluations of 
the PSF-HS method. The stopping criterium for 
the PSF-HS method was a convergence of all the 
ten solutions into one, which is why there were 
so many iterations. The classification accuracy 
through iterations was not reported, so it is not 
known if the reported result was achieved in the 
earlier stages of the algorithm.   

Table 2 illustrates the classification accuracy 
obtained by the original LeNet-5 network, the 
PSF-HS method proposed by Lee, Park & Sim 
(2018) and the BBFWA method proposed in this 
paper. The proposed BBFWA method achieved 
the highest accuracy compared to the LeNet-5 and 
PSF-HS methods. The optimal hyperparameters 
that were used are presented in Table 3.

Table 2. Classification accuracy on the test set of the 
MNIST data

Method Accuracy (%)
LeNet-5 98.94
PSF-HS 99.25
BBFWA 99.34

Table 3. CNN hyperparameters of the MNIST dataset

Layer Hyperparameters
Conv1 k1=13, c1=13, 

s1=1, p1=5 
Pooling 1 k2=7, s2=1
Conv2 k3=17, c2=12, 

s3=1, p2=4
Pooling 2 k4=9, s4=4

The total number of learnable parameters 
(weights and biases) was 60,308, while the CNN 
obtained by PSF-HS had 60,552 and LeNet-5 
had 61,706. This limitation of the number of 
learnable parameters is rather artificial and it had 
been included for ensuring a fair comparison, but 
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removing the limitation could produce a CNN 
with higher classification accuracy. The average 
execution time for one run was 3332.61 seconds.

5.3 BBFWA-CNN for the CIFAR-10 
Data Set

The CNN’s architecture for the CIFAR-10 dataset 
was based on the CifarNet (Krizhevsky & Hinton, 
2009). The lower and the upper bounds for each 
of the considered hyperparameters are presented 
in Table 4.

Table 4. The lower and the upper bounds for hyper-
parameters of the CIFAR-10 dataset

Layer Parameter Lb Ub
Convolutional 
layer 1

Kernel size (k1) 3 10
Number of feature 
maps (c1)

16 51

Padding (p1) 1 4
Pooling layer 1 Kernel size (k2) 2 5
Convolutional 
layer 2

Kernel size (k3) 3 10
Number of feature 
maps (c2)

16 51

Padding (p2) 1 4
Pooling layer 2 Kernel size (k4) 2 5
Convolutional 
layer 3

Kernel size (k5) 5 12
Number of feature 
maps (c3)

10 31

Padding (p3) 1 4
Pooling layer 3 Kernel size (k6) 2 5

The limitation for the number of learnable 
parameters (weights and biases) was based on the 
CifarNet and it is 120,042. When the generated 
model contained more parameters, it was rejected 
and a new model was proposed.

To reduce the execution time of one run, if the 
accuracy after 5 epochs is not greater than 70%, 
the training process is stopped and, so far, the 
found accuracy was returned as the fitness function 
value. The PSF-HS method proposed in (Lee, Park 
& Sim, 2018) found the CNN hyperparameters 
after approximately 16,000 iterations. Since 
the population size of the PFS-HS was 20, this 
involved 320,000 fitness function evaluations 
or CNN epochs. The proposed BBFWA method 
has 22 fitness function evaluations and, in each 
evaluation, there is a maximal 20 epoch, which 
represents a total of 440 epochs, a number 
significantly lower than 320,000 used in (Lee, 
Park & Sim, 2018).

The results obtained by the original CifarNet 
(Krizhevsky & Hinton, 2009), the PSF-HS (Lee, 
Park & Sim, 2018) and the proposed BBFWA 
are presented in Table 5. The obtained values of 
hyperparameters are presented in Table 6.

Table 5. Classification accuracy of the  
CIFAR-10 test dataset

Method Accuracy (%)
CifarNet 73.32
PSF-HS 74.76
BBFWA 75.51

Table 6. CNN hyperparameters of CIFAR-10

Layer Hyperparameters
Conv1 k1=9, c1=42, s1=1, 

p1=2
Pooling 1 k2=3, s2=2
Conv2 k3=5, c2, s3=1, 

p2=2
Pooling 2 k4=4, s4=1
Conv3 k5=11, c3=24, 

s5=1, p3=2
Pooling 3 k6=3, s6=1

The number of CNN learnable parameters is 
107,322 which is smaller compared to both, 
CifarNet (120,042) and PSF-HA CNN (114,794). 
The average execution time for one run was 
3515.42 seconds.

6. Conclusion

The work of this paper proposes an adjusted bare 
bones firework algorithm for finding a selected 
subset of CNN’s hyperparameters and tests it on 
the MNIST and CIFAR-10 datasets. In comparison 
to the HS approach from the literature (Lee, Park 
& Sim, 2018), the proposed method increased the 
classification accuracy for both datasets, while 
reducing the network complexity. The proposed 
BBFWA approach needed significantly fewer 
fitness function evaluations. The classification 
accuracy was increased from 99.25% to 99.34% 
on the MNIST data and from 74.76% to 75.51% 
on the CIFAR-10. Future work will include more 
hyperparameters, other optimization algorithms, 
their modification and hybridization, as well as 
testing on different datasets.
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