Some Algebraic Properties of Non-commutative Fuzzy Structures

Laurențiu Leuștean

National Institute for Research and Development in Informatics 8-10 Averescu Avenue, 71316 Bucharest ROMANIA E-mail: leo@u3.ici.ro

Abstract: Pseudo-BL algebras[2, 5] are non-commutative generalizations of BL-algebras, algebraic structures for Basic Logic, the fuzzy logic introduced by Hájek [7]. In this paper we study some algebraic properties concerning co-annihilators and minimal prime filters on pseudo-BL algebras, extending part of the results obtained in [1] to distributive lattices.

Keywords: Non-commutative fuzzy logic, pseudo-BL algebra, co-annihilators, minimal prime filters

1 Introduction

BL-algebras are the algebraic structures for Hájek's Basic Logic [7]. The main example of a BL-algebra is the interval [0, 1] endowed with the structure induced by a t-norm. MV-algebras, the Gödel algebras and product algebras are the most known classes of BL-algebras. Recent investigations have been concerned with non-commutative generalizations for these structures.

In [2, 5], pseudo-BL algebras were defined as non-commutative generalizations of BL-algebras. In [4], there was introduced a notion of pseudo-t-norm, in order to recapture some of the properties of pseudo-BL algebras. For the interval [0,1], this notion induces more general algebras named weak

pseudo-BL algebras.

Davey [1] studied the interrelation between minimal prime ideals conditions and annihilators conditions on distributive lattices. In this paper we extend some of Davey's results to pseudo-BL algebras. The same results hold in BL-algebras too, since they are a particular case.

2 Definitions and First Properties

A pseudo-BL algebra ([2, 5]) is an algebra $\mathbf{A} = (A, \land, \lor, \odot, \leadsto, \rightarrow, 0, 1)$ with five binary operations $\land, \lor, \odot, \leadsto, \rightarrow$ and two constants 0, 1 such that:

(A1) $(A, \land, \lor, 0, 1)$ is a bounded lattice;

(A2) $(A, \odot, 1)$ is a monoid;

(A3) $a \odot b \le c$ iff $a \le b \leadsto c$ iff $b \le a \to c$;

(A4) $a \wedge b = (a \leadsto b) \odot a = a \odot (a \to b);$

(A5) $(a \leadsto b) \lor (b \leadsto a) = 1;$

 $(a \rightarrow b) \lor (b \rightarrow a) = 1.$

In the sequel, we shall agree that the operations \land, \lor, \odot have priority to the operations \sim, \rightarrow . Sometimes, for the sake of clearness, we shall put parantheses even if superfluous.

It is proved in [2] that commutative pseudo-BL algebras are BL-algebras. For details on BL-algebras see [7, 8].

A pseudo-BL algebra A is non-trivial iff

 $0 \neq 1$. For any pseudo-BL algebra **A**, the reduct $L(A) = (A, \land, \lor, 0, 1)$ is a bounded distributive lattice. A pseudo-BL chain is a linear pseudo-BL algebra, i.e. a pseudo-BL algebra such that its lattice order is total. For any $a \in A$, we define $a^{\sim} = a \rightsquigarrow 0$ and $a^{-} = a \rightarrow 0$. We shall write a^{\approx} instead of $(a^{\sim})^{\sim}$ and $a^{=}$ instead of $(a^{-})^{-}$.

The set of natural numbers is denoted by ω . We define $a^0=1$ and $a^n=a^{n-1}\odot a$ for $n\in\omega-\{0\}$. The order of $a\in A$, in symbols ord(a), is the smallest $n\in\omega$ such that $a^n=0$. If no such n exists, then $ord(a)=\infty$.

The following properties hold in any pseudo-BL algebra **A** and will be used in the sequel. See [2] for details.

- (1) $a \odot b \le a, b$;
- (2) $a \le b$ implies $a \odot c \le b \odot c$ and $c \odot a \le c \odot b$;
- (3) $a \odot b < a \wedge b$;
- $(4) (a \lor b) \odot (a \lor c) \le a \lor (b \odot c)$

Let **A** be a pseudo-BL algebra. According to [2], a *filter* of **A** is a non-empty subset F of A such that for all $a, b \in A$,

- (i) if $a, b \in F$, then $a \odot b \in F$;
- (ii) if $a \in F$ and $a \le b$, then $b \in F$.

By (3), it is obvious that any filter of **A** is also a filter of the lattice L(A).

A filter F of \mathbf{A} is proper if $F \neq A$. A proper filter P of \mathbf{A} is prime if for all $a, b \in A$, $a \lor b \in P$ implies $a \in P$ or $b \in P$. Spec(A) will denote the set of prime filters of the pseudo-BL algebra \mathbf{A} .

A proper filter U of \mathbf{A} is an ultrafilter (or a maximal filter) if no other proper filter contains it. We shall denote by $\mathcal{M}(A)$ the intersection of all ultrafilters of \mathbf{A} . Obviously, $\mathcal{M}(A)$ is a proper filter of \mathbf{A} .

Some properties of filters, to be used in the sequel, are reminded.

Proposition 2.1 ([2], Theorem 3.25) Let F be a filter of the pseudo-BL algebra \mathbf{A} and let S be a \vee -closed subset of A (i.e. if $a,b\in S$, then $a\vee b\in S$) such that $F\cap S=\emptyset$. Then there exists a prime filter P of \mathbf{A} such that $F\subseteq P$ and $P\cap S=\emptyset$. Proposition 2.2 Any proper filter of A can be extended to a prime filter.

Proof: By [2], Corollary 3.26. \square

Proposition 2.3 ([2], Corollary 3.32) Any ultrafilter of **A** is a prime filter of **A**.

Proposition 2.4 ([2], Remark 3.33) Any proper filter of **A** can be extended to an ultrafilter.

Let $X \subseteq A$. The filter of \mathbf{A} generated by X will be denoted by < X >. Given $< \emptyset > = \{1\}$ and $< X > = \{a \in A \mid x_1 \odot \cdots \odot x_n \leq a \}$ for some $n \in \omega - \{0\}$ and some $x_1, \cdots, x_n \in X\}$ if $\emptyset \neq X \subseteq A$. For any $a \in A$, $< a > \emptyset$ denotes the principal filter of \mathbf{A} generated by $\{a\}$. It follows that $< a > = \{b \in A \mid a^n \leq b \text{ for some } n \in \omega - \{0\}\}$.

Proposition 2.5 ([2], Lemma 3.11) For any $a, b \in A$, $\langle a \lor b \rangle = \langle a \rangle \cap \langle b \rangle$.

Let us denote by $\mathcal{F}(\mathcal{A})$ the set of all filters of A. Then

Proposition 2.6 ([2], Proposition 3.8) $(\mathcal{F}(\mathcal{A}), \subseteq)$ is a complete lattice. For every family $\{F_i\}_{i\in I}$ of filters of A, we have that $\bigwedge_{i\in I} F_i = \bigcap_{i\in I} F_i$ and $\bigvee_{i\in I} F_i = \bigcup_{i\in I} F_i > \bigcup_{i\in I} F_i$

3 Co-annihilators and Co-annihilator Filters

Let **A** be a pseudo-BL algebra, F be a filter of **A** and $a \in A$. The co-annihilator of a relative to F is the set $(F, a) = \{x \in A \mid x \lor a \in F\}$. To indicate the relevant pseudo-BL algebra, sometimes (F, a) is written as $(F, a)_A$. The co-annihilator (< b >, a) is abbreviated to (b, a).

Proposition 3.1 Let F be a filter of A and $a \in A$. Then (F, a) is a filter of A.

Proof: Given $a \vee 1 = 1 \in F$, hence $1 \in (F, a)$. If $x \leq y$ and $x \in (F, a)$, then $x \vee a \in F$ and $x \vee a \leq y \vee a$, so $y \vee a \in F$, that is $y \in (F, a)$. Suppose now that $x, y \in (F, a)$, i.e. $x \vee a, y \vee a \in F$. It follows that $(x \vee a) \odot (y \vee a) \in F$. But, by (4), it follows that $(x \vee a) \odot (y \vee a) \leq (x \odot y) \vee a$. Hence, $(x \odot y) \vee a \in F$, so $x \vee y \in (F, a)$. \square

Proposition 3.2 Let F,G be filters of **A** and $a,b \in A$. Then

- (i) $F \subseteq (F, a)$;
- (ii) $a \leq b$ implies $(F, a) \subseteq (F, b)$;
- (iii) $F \subseteq G$ implies $(F, a) \subseteq (G, a)$;
- (iv) (F, a) = A iff $a \in F$;
- (v) $(F, a \wedge b) = (F, a) \cap (F, b);$
- (vi) $(F \cap G, a) = (F, a) \cap (G, a)$;
- (vii) $(b, a) = (b, a \land b) = (a \lor b, a) = (b, a \odot b).$

Proof: (i) Let $x \in F$. Then $x \lor a \ge x \in F$, hence $x \lor a \in F$. That is, $x \in (F, a)$.

- (ii) Let $x \in (F, a)$. Then $x \vee a \in F$ and $x \vee a \leq x \vee b$, since $a \leq b$. It follows that $x \vee b \in F$, that is $x \in (F, b)$.
- (iii) Let $x \in (F, a)$. Then $x \vee a \in F \subseteq G$, hence $x \in (G, a)$.
- (iv) If (F, a) = A, then $0 \in (F, a)$, hence $a = a \lor 0 \in F$. Conversely, if $a \in F$, then for any $x \in A$, $a \le x \lor a$, so $x \lor a \in F$. That is, for any $x \in A$, $x \in (F, a)$.
- (v) Since $a \wedge b \leq a, b$, by (ii), it follows that $(F, a \wedge b) \subseteq (F, a) \cap (F, b)$. Conversely, let $x \in (F, a) \cap (F, b)$, i.e. $x \vee a \in F$ and $x \vee b \in F$. Since F is also a filter of the distributive lattice L(A), it results that $x \vee (a \wedge b) = (x \vee a) \wedge (x \vee b) \in F$. That is, $x \in (F, a \wedge b)$. (vi) Applying (iii) and the fact that $F \cap G \subseteq F$, G, it follows that $(F \cap G, a) \subseteq (F, a) \cap (G, a)$. The converse inclusion is obvious.
- (vii) Since $a \odot b \leq a \wedge b \leq a$, by (ii), it comes that $(b, a \odot b) \subseteq (b, a \wedge b) \subseteq (b, a)$. We shall prove now that $(b, a) \subseteq (b, a \odot b)$. Let $x \in (b, a)$, so $x \vee a \in \langle b \rangle$. Then, there is $n \in \omega \{0\}$ such that $b^n \leq x \vee a$. Twice applying (2) and (4), it follows that $b^{n+1} \leq (x \vee a) \odot b \leq (x \vee a) \odot (x \vee b) \leq x \vee (a \odot b)$. Hence, $x \vee (a \odot b) \in \langle b \rangle$, that is $x \in (b, a \odot b)$. Thus, we have proved that $(b, a) = (b, a \wedge b) = (b, a \odot b)$. Applying

Proposition 2.5, (v) and (iv), it comes that $(a \lor b, a) = (< a \lor b >, a) = (< a > \cap < b >, a) = (< a >, a) \cap (< b >, a) = A \cap (b, a) = (b, a)$. \Box

If X is a non-empty subset of A, then ${}^{\perp}X = \{a \in A \mid x \vee a = 1 \text{ for any } x \in X\}$ is a filter of A called the *co-annihilator filter* of X (see [2]). It is easy to see that for any $a \in A$, ${}^{\perp}a = (\{1\}, a) = \{x \in A \mid x \vee a = 1\}$.

Proposition 3.3 ([2], Proposition 3.37) Let $\emptyset \neq X, Y \subseteq A$. Then,

- (i) If $X \subseteq Y$, then $^{\perp}Y \subseteq ^{\perp}X$;
- (ii) $X \subseteq {}^{\perp \perp}X$;
- (iii) $^{\perp}X = ^{\perp\perp\perp}X$;
- (iv) $^{\perp}X = ^{\perp} < X >$;
- $(v) < X > \cap^{\perp} X = \{1\}.$

Now, let us recall some facts from the lattice theory (see [6]). Let $(L, \vee, \wedge, 0)$ be a lattice with 0. An element $a^* \in L$ is a pseudocomplement of $a \in L$ iff $a \wedge a^* = 0$ and $a \wedge x = 0$ implies that $x \leq a^*$. The lattice L is called pseudocomplemented iff every element has a pseudocomplement.

Proposition 3.4 Let **A** be a pseudo-BL algebra. Then the lattice $\mathcal{F}(A)$ is pseudo-complemented. For any filter F, its pseudo-complement is $^{\perp}F$.

Proof: By Proposition 3.3(v), we have that $F \cap {}^{\perp}F = \{1\}$. Let G be a filter of A such that $F \cap G = \{1\}$. We shall prove that $G \subseteq {}^{\perp}F$. Let $a \in G$. For any $x \in F$, we have that $x \vee a \in F \cap G = \{1\}$, since $x \vee a \geq x \in F$ and $a \vee x \geq a \in G$. Hence, $x \vee a = 1$ for any $x \in F$, so $a \in {}^{\perp}F$. It follows that ${}^{\perp}F$ is the pseudocomplement of F. \square

Let $Co - An(A) = \{^{\perp}X \mid X \subseteq A\}$ be the set of co-annihilator filters of A. Applying Proposition 3.3(iv), we get that $Co - An(A) = \{^{\perp}F \mid F \in \mathcal{F}(A)\}$. Hence, Co - An(A) is the set of pseudocomplements of the pseudocomplemented lattice $\mathcal{F}(A)$. Applying known results from the lattice theory, the following proposition follows.

Proposition 3.5 Let **a** be a pseudo-BL algebra and F, G filters of **A**. Then

(i) $^{\perp}1 = A$ and $^{\perp}A = \{1\};$

(ii) $\{1\}, A \in Co - An(A);$

(iii) $F \in Co - An(A)$ iff $^{\perp \perp}F = F$;

(iv) if $F, G \in Co - An(A)$, then $F \cap G \in Co - An(A)$;

(v) if $F, G \in Co - An(A)$, then

 $F \vee_{Co-An(A)} G = {}^{\perp}({}^{\perp}F \cap {}^{\perp}G);$

(vi) $(Co-An(A), \cap, \vee_{Co-An(A)}, \perp, \{1\}, A)$ is a Boolean algebra;

(vii) $^{\perp\perp}(F \cap G) = {}^{\perp\perp}F \cap {}^{\perp\perp}G.$

Proof: See [6], Theorem 6.4, p. 58 and Theorem 15.1, p. 166 \square

Proposition 3.6 Let $a, b \in A$. Then

(i) $a \leq b$ implies $^{\perp}a \subseteq {}^{\perp}b$ and $^{\perp\perp}b \subseteq {}^{\perp\perp}a$;

(ii) $^{\perp \perp}a = \{x \in A \mid x \vee y = 1 \text{ for any } y \in A \text{ such that } y \vee a = 1\};$

(iii) $a \in {}^{\perp \perp}a;$

(iv) $^{\perp\perp}a \cap ^{\perp\perp}b = ^{\perp\perp}(a \vee b)$.

Proof: (i) $a \leq b$ implies $\langle b \rangle \subseteq \langle a \rangle$. Hence, applying Proposition 3.3(v), (ii), we have that $^{\perp}a = ^{\perp} \langle a \rangle \subseteq ^{\perp} \langle b \rangle = ^{\perp}b$. Applying again Proposition 3.3(ii), we get $^{\perp\perp}b \subseteq ^{\perp\perp}a$.

(ii) By definition.

(iii) It follows from (ii).

(iv) Applying Proposition 3.3(iv), Proposition 3.5(vii) and Proposition 2.5 we get that $^{\perp\perp}a\cap^{\perp\perp}b=^{\perp\perp}< a>\cap^{\perp\perp}< b>=^{\perp\perp}(< a>\cap< b>)=^{\perp\perp}(a\vee b).$

4 Minimal Prime Filters Belonging to A Filter F

A prime filter M which is minimal in the poset of prime filters containing a filter F is called a minimal prime filter belonging to F. A minimal prime filter belonging to $\{1\}$ is simply called a minimal prime filter. Hence, a minimal prime filter of \mathbf{A} is a minimal element of the poset $(Spec(A), \subseteq)$.

In the sequel, we shall present some results concerning minimal prime filters belonging to a filter. All these propositions are inspired by [1].

Proposition 4.1 If S is \vee -closed and F is a proper filter of A, then there is a minimal prime filter M belonging to F and disjoint from S.

Proof: If F is a proper filter, then the set $\{P \in Spec(A) \mid F \subseteq P \text{ and } F \cap S = \emptyset\}$ is non-empty, by Proposition 2.1. Apply Zorn's Lemma to get a minimal element of this set. \square

Proposition 4.2 Let F be a filter of A and M be a prime filter including F. The following are equivalent:

(i) M is a minimal prime filter belonging to F:

(ii) for all $a \in M$, there is $b \notin M$ such that $a \lor b \in F$.

Proof: (i) \Rightarrow (ii) Let $a \in M$ and let S = $\{a \lor b \mid b \in A - M\}$. If $a \lor b_1, a \lor b_2 \in S$, then $(a \lor b_1) \lor (a \lor b_2) = a \lor (b_1 \lor b_2) \in S$, since A-M is \vee -closed, so $b_1,b_2\in A-M$ implies $b_1 \vee b_2 \in A - M$. Hence, S is V-closed. Let us suppose that $F \cap S = \emptyset$. Applying Proposition 2.1, there exists a prime filter P such that $F \subseteq P$ and $P \cap S = \emptyset$. Since $a = a \lor 0$ and $0 \in A - M$, it comes that $a \in S$, so $a \in P$. It follows that $M \neq P$, since $a \in M$ and $a \notin P$. If there is $x \in P$ such that $x \notin M$, then $x \in A - M$, so $a \vee x \in S$. But $x \leq a \vee x$ and $x \in P$, hence $a \vee x \in$ P. We have got that $a \vee x \in P \cap S = \emptyset$, that is a contradiction. Hence, $P \subseteq M$ and $P \neq M$, which contradicts the fact that M is a minimal prime filter belonging to F. It follows that $F \cap S \neq \emptyset$. Hence, there is $b \in A - M$ such that $a \vee b \in F$.

(ii) \Rightarrow (i) Let P be a prime filter of \mathbf{A} such that $F \subseteq P \subseteq M$. We shall prove that $M \subseteq P$ too. Let $a \in M$. Then there is $b \notin M$ such that $a \lor b \in F \subseteq P$. Since P is a prime filter of \mathbf{A} , from $a \lor b \in P$ it follows that $a \in P$ or $b \in P$. But $b \notin M$ and $P \subseteq M$,

so $b \notin P$. We get that $a \in P$. \square

A simple induction gives the following corollary for $n \in \omega - \{0\}$.

Corollary 4.3 Let F be a filter of A and $M_0, \dots M_n$ be n+1 distinct minimal prime filters belonging to F. Then, there are $a_0, \dots a_n \in A$ such that $a_i \vee a_j \in F$ $(i \neq j)$ and $a_i \notin M_i$ $(i = 0, \dots, n)$.

Proof: If n = 1, let $x_0 \in M_1 - M_0$ and $x_1 \in M_0 - M_1$. From the above proposition, it follows that there is $y_1 \in M_0$ such that $x_1 \vee y_1 \in F$. Since M_0 is prime, from $x_0 \notin M_0$ and $y_1 \notin M_0$, we get that $x_0 \vee y_1 \notin M_0$. It follows that $a_0 = x_0 \vee y_1$ and $a_1 = x_1$ are the required elements. Assume the result is true for n = k and let us prove it for n = k+1. Let $M_0, \cdots M_{k+1}$ be k+2 distinct minimal prime filters belonging to F. Let x_i $(i = 0, \dots, k)$ satisfy $x_i \lor x_j \in F \ (i \neq j)$ and $x_i \notin M_i \ (i = 0, \dots, k)$. For any $i = 0, \dots k$, there is $y_i \in M_{k+1}$ such that $y_i \notin M_i$. If we take $y = y_1 \wedge \cdots \wedge y_k$, then $y \in M_{k+1}$ – $\bigcup_{i=0}^k M_i$. Applying Proposition 4.2, we get $z \notin M_{k+1}$ such that $y \vee z \in F$. It follows that $a_i = x_i \vee y \ (i = 0, \dots k)$ and $a_{k+1} = z$ establish the result. \Box

From now on all indexed joins and meets range from 0 to n, where $n \in \omega - \{0\}$, and all joins of filters are taken in the lattice $\mathcal{F}(A)$ of filters of \mathbf{A} . A family of filters is comaximal if its join is A.

Proposition 4.4 Let F be a filter of A. Then for $n \in \omega - \{0\}$ the following are equivalent:

- (i) any n + 1 distinct minimal prime filters belonging to F are comaximal;
- (ii) any prime filter containing F contains at most n distinct minimal prime filters belonging to F;
- (iii) if $a_0, \dots, a_n \in A$ with $a_i \vee a_j \in F$ $(i \neq j)$, then $\bigvee_i (F, a_i) = A$;
- (iv) $(F, \vee_j a_j) = \bigvee_i (F, \vee_{j \neq i} a_j)$ holds identically in **A**.

Proof: (i) \Leftrightarrow (ii) Trivial. (ii) \Rightarrow (iii) Let $a_0, \dots, a_n \in A$ such that $a_i \vee$

 $a_i \in F \ (i \neq j) \text{ and } \bigvee_i (F, a_i) \neq A.$ It follows that $(F, a_i) \neq A$ for all $i = 0, \dots, n$ and, by Proposition 3.2(iv), we get that $a_i \notin F$ for all i. Since $\bigvee_i(F,a_i)$ is a proper filter of A, applying Proposition 2.2 we obtain a prime filter P of A such that $\bigvee_i(F,a_i)\subseteq P$. For $i = 0, \dots, n$, let $S_i = \{x \vee y \mid x \leq a_i, y \notin P\}$. If $x_1 \vee y_1, x_2 \vee y_2 \in S_i$, then $x_1 \leq a_i, x_2 \leq a_i$ and $y_1, y_2 \in P$. Hence $x_1 \vee x_2 \leq a_i$ and $y_1 \vee y_2 \notin P$, since P is prime. It follows that $(x_1 \lor y_1) \lor (x_2 \lor y_2) = (x_1 \lor x_2) \lor (y_1 \lor y_2) \in S_i.$ Hence, S_i is \vee -closed. If $F \cap S_i \neq \emptyset$, then there are $x \leq a_i$ and $y \in /P$ such that $x \vee y \in F$. It follows that $a_i \vee y \in F$, hence $y \in (F, a_i)$. But $y \notin P$, so $(F, a_i) \not\subseteq P$, which is a contradiction. Hence $F \cap S_i = \emptyset$ for all i. Applying Proposition 4.1, for each i there is M_i a minimal prime filter belonging to F such that $M_i \cap S_i = \emptyset$. Suppose that $M_i \not\subseteq P$, so there is $x \in M_i$ such that $x \notin P$. Then $x = x \lor 0 \in S_i$, hence $x \in M_i \cap S_i = \emptyset$, that is a contradiction. Hence $M_i \subseteq P$ for all i, so $\bigvee_i M_i \subseteq P \neq A$. Since $a_i \notin P$, we get that $a_i \notin M_i$ for any i. But, $a_i \vee a_j \in F \subseteq M_i$ $(i \neq j)$ and M_i is prime, hence $a_i \in M_i$ $(i \neq j)$. It follows that $M_i \neq M_i$ $(i \neq j)$. Thus, we have obtained n+1 minimal prime filters belonging to F such that their join is not A, that is a contradiction with (ii). (iii)⇒(iv) Applying Proposition 3.2(ii) it follows that $\bigvee_i (F, \vee_{i \neq i} a_i) \subseteq (F, \vee_i a_i)$. Thus, it is still to prove that $(F, \vee_i a_i) \subseteq$ $\bigvee_i (F, \bigvee_{j \neq i} a_j)$. Let $x \in (F, \bigvee_i a_i)$, i.e. $x \vee i$ $\forall_i a_i \in F$. For any i, let $b_i = x \vee \bigvee_{j \neq i} a_j$. Then, $b_i \vee b_j = x \vee \vee_j a_j \in F$ for all $j \neq i$, hence, by (iii), we get that $\bigvee_i (F, b_i) = A$. From $x \in \bigvee_i (F, b_i)$, we get $k \in \omega - \{0\}$ and $y_1^0, \dots, y_k^0 \in (F, b_0), \dots, y_1^n, \dots, y_k^n \in$ (F, b_n) such that $y_1^0 \odot \cdots \odot y_1^n \odot \cdots \odot y_k^0 \odot$ $\cdots \odot y_k^n \le x$. Letting $t_p^i = x \vee y_p^i$ (i = $0, \dots, n$, and $p = 1, \dots, k$, we have that $x \leq t_p^i$ and $t_p^i \in (F, b_i)$, since $y_p^i \leq t_p^i$ and $y_p^i \in (F, b_i)$. Since $x \leq t_p^i$, we have that $t_p^i \vee \vee_{j \neq i} a_j = t_p^i \vee x \vee \vee_{j \neq i} a_j = t_p^i \vee b_i \in F,$ because $t_p^i \in (\hat{F}, b_i)$. Hence, $t_p^i \in (F, \vee_{j \neq i} a_j)$ $(i = 0, \dots, n, p = 1, \dots, k)$. Applying (4), we get that $(t_1^0 \odot \cdots \odot t_1^n \odot \cdots \odot t_k^0 \odot \cdots \odot t_k^n) =$ $(x \vee y_1^0) \odot \cdots \odot (x \vee y_1^n) \odot \cdots \odot (x \vee y_k^0) \odot \cdots \odot (x \vee y_k^n) \odot (x \vee$

 $y_k^n \le x \lor (y_1^0 \odot \cdots \odot y_1^n \odot \cdots \odot y_k^0 \odot \cdots \odot y_k^n) =$ x. Thus, we have got that $x \in \bigvee_i (F, \bigvee_{j \neq i} a_j)$ (iv) \Rightarrow (i) Let $M_0, \dots M_n$ be n+1 distinct prime filters belonging to F. Then, by Corrolary 4.3 there are $a_0, \dots a_n \in A$ such that $a_i \vee a_i \in F \ (i \neq j) \text{ and } a_i \notin M_i \ (i = 0, \dots, n).$ We have that for $n \in \omega - \{0\}$, $\forall_j (\land_{k \neq j} a_k) = \land_{j < k} (a_j \lor a_k)$ is an identity in the class of distributive lattices, hence in the class of pseudo-BL algebras. We shall denote this identity by (I). Applying (I), it follows that $\bigvee_{j\neq i} (\bigwedge_{k\neq j} a_k) = \bigvee_{j\neq i} (a_i \wedge (\bigwedge (a_k)))$ $k \notin \{i, j\}))) =$ $a_i \wedge (\vee_{j \neq i} (\wedge (a_k \mid k \notin \{i, j\}))) = a_i \wedge (\wedge (a_j \vee a_j))$ $a_k \mid j < k, i \in \{j, k\})$. But $\land (a_j \lor a_k \mid j \lor a_k)$ $j < k, i \notin \{j, k\}$) $\in F$, hence, by Proposition 3.2(iv) we get that $(F, \land (a_i \lor a_k \mid j <$ $k, i \in \{j, k\}) = A$. Applying Proposition 3.2(v), it follows that $(F, \bigvee_{j\neq i} (\land_{k\neq j} a_k)) =$ $(F, a_i \land (\land (a_j \lor a_k \mid j < k, i \not\in \{j, k\}))) =$ $(F, a_i) \cap (F, \land (a_i \lor a_k \mid j < k, i \notin \{j, k\})) =$ $(F,a_i) \cap A = (F,a_i)$. If $x \in (F,a_i)$, then $x \vee a_i \in F \subseteq M_i$. Since M_i is a prime filter and $a_i \notin M_i$, we get that $x \in M_i$. Hence, $M_i \supseteq (F, a_i)$ for all $i = 0, \dots, n$. It follows that $\bigvee_i M_i \supseteq \bigvee_i (F, a_i) =$ $\bigvee_{i}(F, \vee_{j\neq i}(\wedge_{k\neq j} a_k)) = (F, \vee_{j}(\wedge_{k\neq j} a_k)), \text{ by }$ (iv). But, applying (I), we obtain that $\forall_i (\land_{k \neq i} a_k) = \land_{i < k} (a_i \lor a_k) \in F$, so, by Proposition 3.2(iv), $(F, \vee_j (\wedge_{k \neq j} a_k)) = A$. It follows that $\bigvee_i M_i \supseteq A$, that is $\bigvee_i M_i =$ A, as required. \square

Corollary 4.5 Let $n \in \omega - \{0\}$. The following are equivalent:

- (i) any n + 1 distinct minimal prime filters are comaximal;
- (ii) any prime filter contains at most n distinct minimal prime filters;
- (iii) if $a_0, \dots, a_n \in A$ such that $a_i \vee a_j = 1$ $(i \neq j)$, then $\bigvee_i {}^{\perp} a_i = A$;
- (iv) $^{\perp}(\vee_j a_j) = \bigvee_i ^{\perp}(\vee_{j\neq i} a_j)$ holds identically in **A**.

References

- [1] DAVEY, B. A., Some Annihilator Conditions on Distributive Lattices, ALGEBRA UNIVERSALIS, 4, 1974, pp. 316-322.
- [2] DI NOLA, A., GEORGESCU, G. and IORGULESCU, A., Pseudo-BL Algebras: Part I.
- [3] DI NOLA, A., GEORGESCU, G. and IORGULESCU, A., Pseudo-BL Algebras: Part II.
- [4] FLONDOR, P., GEORGESCU, G. and IORGULESCU, A., Pseudo t-norms and Pseudo-BL Algebras.
- [5] GEORGESCU, G.and IORGULESCU, A., Pseudo-BL Algebras: A Noncommutative Extension of BL-Algebras, 5th International Conference FSTA 2000 on Fuzzy Sets Theory and Its Application, February 2000, pp.90-92.
- [6] GRÄTZER, G., Lattice Theory. First Concepts and Distributive Lattices, W. H. FREEMAN AND COMPANY, San Francisco, CA, 1972.
- [7] P. HÁJEK, Metamathematics of Fuzzy Logic, KLUWER ACADEMIC PUBLISHERS, Dordrecht, 1998.
- [8] TURUNEN, E., Mathematics Behind Fuzzy Logic, PHYSICA-VERLAG, Heidelberg, 1999.

Proof: Take $F = \{1\}$ in Proposition 4.4.