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1. Introduction

In recent years, a lot of research has been carried 
out with regard to developing an autonomous 
car, in both academia and private corporations, 
especially car manufacturers. However, due to its 
complexity, the problem is not yet solved, even 
if some companies have developed cars with a 
certain degree of autonomy. An autonomous 
car involves a lot of components such as object 
detection, segmentation, depth estimation, 
trajectory prediction, route planning and path 
following. The most important tasks are those 
regarding scene understanding and the prediction 
of the surrounding objects, especially cars 
and people. Even if the scene understanding is 
perfect, if the system doesn’t know that the car 
from behind is going to overtake another car, 
accidents can happen. Trajectory prediction is 
also important for knowing when to brake when 
a car comes in front of the autonomous vehicle - 
the system should know if the car will go faster 
or slower. The problem of trajectory prediction 
has been tackled for many years (Payeur, Le-Huy 
& Gosselin, 1995).  Older approaches tried to 
model the velocity, direction and other physical   
parameters   into a motion model, to obtain the 
trajectory and compute future positions (Houenou 
et al., 2013).

Newer approaches use deep neural networks, 
such as LTSMs (Altché & La Fortelle, 2017), and 
avoid complex physical modelling. However, in 
recent years, a new task emerged - the prediction 
of future frames from an existing video. The video 

generation task is generally performed with neural 
networks, too, such as Generalized Adversarial 
Networks (GAN) or Variational Autoencoders 
(VAE) and has the advantage that one can easily 
obtain the future positions of the surrounding cars, 
using an object detection algorithm.

In combination with information regarding 
semantic segmentation, the prediction of the 
car position can be further improved. Because 
video prediction is more complex than trajectory 
prediction, as far as one can tell this approach 
was not applied until now. However, the 
problem with a trajectory prediction model is 
that it is harder to train, because it requires a 
certain amount of annotated data regarding the 
surrounding cars and their trajectories, compared 
to a video prediction model, which requires only 
the frames as training data and can be trained 
with any existing driving video.

This paper proposes a trajectory prediction 
system using video generation, object detection 
and semantic segmentation and depth prediction 
was also used for validating the predicted depth 
compared to the actual depth of the position of 
a car, which is another useful information (for 
braking, for example). The remainder of this 
paper is structured as follows. Section 2 presents 
the related works regarding each of these tasks - 
trajectory prediction, video prediction, object 
detection, semantic segmentation and depth 
prediction. Section 3 analyses the architecture used 
for the experiments carried out, the models used 
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for the video generation task and the manually 
annotated dataset from University Politehnica of 
Bucharest. Section 4 describes the experiments 
and the metrics employed for analysing the 
performance of the proposed architecture for 
trajectory prediction. Section 5 presents the results 
obtained for the proposed dataset and Section 
6 includes the conclusion of this paper and the 
proposals for future work. 

2. Related Work

The proposed approach involves multiple 
components - object detection, video generation, 
semantic segmentation, depth estimation and 
trajectory prediction. This is the last paper in a 
series of autonomous driving studies applied on 
manually annotated datasets from the University 
Politehnica of Bucharest. The analysis focused on 
object detection (Iancu, Sorici & Florea, 2019), 
semantic segmentation (Iancu, Sorici & Florea, 
2020) and depth estimation (Iancu et al., 2021). 
Based on the previous results, the best performing 
network was for each of these tasks. In this 
section, the existing architectures will be briefly 
discussed for each of the aforementioned tasks. 
Also, trajectory prediction and video generation 
will be analysed.

Object detection

The object detection task consists in detecting the 
bounding boxes of the objects in each selected 
image. In a previous study by Iancu, Sorici 
& Florea (2019), the most important object 
detection architectures were analysed. There are 
three major types of object detection networks – 
two-stage detectors like Faster R-CNN (Ren et 
al., 2017) or R-FCN (Dai et al., 2016), one-stage 
detectors like YOLO (Redmon et al., 2016), 
DSSD (Fu et al., 2016), RetinaNet (Lin et al., 
2017) and anchor-free networks like Cornernet 
(Law et Deng, 2018), CenterNet (Duan et al., 
2019) or Fully Convolutional One-Stage Object 
Detection (FCOS) (Tian et al., 2019). The first 
two types of networks use predefined anchors in 
order to detect the objects but differ regarding 
the number of stages involved in the detection. 
The anchor-free networks are newer architectures 
and don’t use anchors anymore. In this paper, 
YOLO v4 (Bochkovskiy, Wang & Liao, 2020) 
was chosen.

Semantic segmentation

The semantic segmentation detects the objects 
in an image, too, but unlike the object detection 
task, which offers a bounding box for an object, 
the semantic segmentation maps each pixel in 
the image to a given label (car, person, road, 
etc). There are different types of segmentation 
depending on how they classify the objects 
and the background pixels. The semantic 
segmentation classifies each pixel in the image 
without taking into account different objects in 
the same class, for example, Fully Convolutional 
Networks (FCN) (Long, Shelhamer & Darrell, 
2015), PSPNet (Zhao et al., 2017), DeepLab 
(Chen et al., 2017), or SegNet (Badrinarayanan, 
Kendall & Cipolla, 2015). The instance 
segmentation assigns a different label to each 
object but does not take into account the 
background and generally is based on an object 
detection network, for example, Mask R-CNN 
(He et al., 2017), SDS (Hariharan et al., 2014) 
or CenterMask (Lee & Park, 2020). The panoptic 
segmentation merges the semantic segmentation 
and the instance segmentation into one single 
task, assigning different labels to different objects 
and assigning a class for each pixel, including the 
background, for example, Panoptic FPN (Kirillov 
et al., 2019), Efficient Panoptic Segmentation 
(Mohan & Valada, 2020) or DeeperLab (Yang et 
al., 2019). The study of Iancu, Sorici & Florea 
(2020) analysed the most important semantic 
segmentation networks for road detection, which 
are also used for this task, as it is explained in 
Section 3. For the experiments presented in this 
paper the FCN network was used.

Depth estimation

The depth estimation task is more difficult to 
evaluate because there are only a few sensors 
that can estimate the distance from the car to 
the other elements in the traffic. The biggest 
problem is that these sensors are very expensive 
and cheaper ones are not that precise. However, 
in this paper, depth estimation is used in order 
to obtain qualitative data rather than quantitative 
data, regarding the predicted distance to the 
surrounding cars compared to the actual distance. 
The depth estimation networks can be divided 
into monocular depth estimation networks and 
stereo depth estimation networks. Furthermore, 
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the monocular depth networks can be divided 
into supervised networks, unsupervised networks 
and semi-supervised networks. The monocular 
depth estimation networks, such as Monodepth2 
(Godard et al., 2018), Megadepth (Li & Snavely, 
2018), DORN (Fu et al., 2018) or LKVOLearner 
(Liu et al., 2015) have certain practical advantages 
and have been used in this paper. For the current 
experiments, Monodepth2 was used in order to 
evaluate the estimated distance to the predicted 
position of the surrounding cars compared to the 
real distance.

Trajectory prediction

Trajectory prediction approaches have evolved 
since the emergence of this research topic. A 
good review of the methods used can be found 
in (Leon & Gavrilescu, 2021) and at (Rudenko 
et al., 2019). The most important distinction that 
could be noticed is that older models didn’t use 
neural networks, instead, they were based on the 
physical properties of the cars and the system 
(Batz, Watson & Beyerer, 2009), on recognizing 
the manoeuvres of the vehicles (Houenou et al., 
2013) or trying to estimate the trajectory function 
of the vehicles using different techniques, such 
as hidden Markov Models (Huanget et al., 2019) 
or Gaussian Mixture models (Palmieri et al., 
2019; Wiest et al., 2012). However, the most 
interesting works are using different types of 
neural networks. The most used architectures 
are long short-term memory (LSTM) neural 
networks (Altché & La Fortelle, 2017; Ma et 
al., 2019) recurrent neural networks (RNNs) 
like (Kim et al., 2017), encoder-decoder LSTM 
(Deo & Trivedi, 2018) or even generalized 
adversarial networks (GANs) (Gupta et al., 2018) 
or encoder-decoder attention networks (Zheng et 
al., 2020). Some of the networks include social 
elements, taking into consideration that even if 
some paths are possible, they are not socially 
acceptable, for example social GAN (Gupta et 
al., 2018), social LSTM (Alahi et al., 2016; Deo 
& Trivedi, 2018). Even if some of the models 
were made for human trajectory prediction, 
the same strategies can be applied to vehicle 
trajectory prediction for the surrounding cars. 
One of the best trajectory prediction models 
is TraPHic (Chandra et al., 2019), which uses 
both LSTM and convolutional layers, and 
was used in the experiments described in this 

paper to compare a state-of-the-art trajectory 
prediction network with the proposed system 
which represents a video prediction network with 
semantic segmentation features.

Video generation

The task of video generation is harder than 
trajectory prediction because the employed 
architecture has to predict an entire frame, not just 
some trajectory, which can be inferred by taking 
into account manoeuvres, physical models, 
etc. Because of the difficulty of the task, the 
existing models are not so many as the trajectory 
prediction models and most of them work only 
for small images with limited details - a small 
number of pixels and if the case only one object 
involved. A comprehensive review of frame 
prediction can be found in (Oprea et al., 2020). 
Unlike the previous models, video generation is 
performed almost always using neural networks. 
Some examples of  architectures are LSTMs 
(Srivastava, Mansimov & Salakhutdinov, 
2015), convolutional LSTMs (Kalchbrenner et 
al., 2016; Finn, Goodfellow & Levine, 2016), 
RNNs (Oliu, Selva & Escalera, 2017) and CNNs 
(De Brabandere  et al., 2016), but in the latest 
years, the emergence of GANs has increased, 
using different approaches: two discriminators 
(Tulyakov et al., 2017), Wasserstein models (Wu 
et al., 2017, Kratzwald et al., 2017), stacked 
convolutions (Vondrick, Pirsiavash & Torralba, 
2016), a multi-scale architecture (Mathieu, 
Couprie & LeCun, 2016) and GANs have also 
been used for saliency prediction  (Pan et al., 
2017). Variational autoencoders (VAE) are also 
used for this particular task (Pan et al., 2019) 
or even a combination of VAE and GAN (Le 
et al., 2018). An important consideration when 
discussing about video generation is that some 
architectures try to generate the real future 
frames (trajectory prediction approach) while 
others don’t try to guess what will happen, but 
rather to generate some valid video sequences 
based on a certain frame and eventually an 
action that must happen (Siarohin et al., 2021). 
In the experiments carried out, PredNet was 
employed, a convolutional LSTM network with 
good results on real videos (Lotter, Kreiman 
& Kox, 2016), along with Seg2Vid (Pan et 
al., 2019), a convolutional VAE with semantic 
segmentation features, which was also tested 
on driving video sequences and Stochastic 
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Adversarial Video Prediction (SAVP) (Lee et 
al., 2018) which combines the autoencoders with 
generative models.

3. Architecture and Dataset

This section describes the architecture used in 
the experiments which were carried out, which 
involves video generation, semantic segmentation, 
object detection and depth estimation, and the 
proposed dataset which was created at University 
Politehnica of Bucharest and manually annotated.

Architecture

The first step of the proposed architecture consists 
in taking the data and putting it into a video 
generation model. As it was previously stated, 
one used three different existing architectures with 
pre-trained weights on standard driving datasets 
such as Cityscapes (Cordts et al., 2015) or KITTI 
(Geiger et al., 2013), which are bigger than the 
employed dataset and, thus, more suitable for 
training. The model used for SAVP can be found 
at the public repository of Lee et al. (2018), the 
model used for Seg2Vid can be found at the public 
repository of Pan et al. (2019) and the model used 
for PredNet can be found at the public repository 
of Lotter, Kreiman & Kox (2016).

The second step in the workflow is to detect all the 
surrounding cars from the predicted frames. This 
is done with YOLO v4, a state-of-the-art detector. 
The final step is to improve the prediction by 
using the proposed segmentation module. The 
segmentation module receives the predicted 
frames along with the predicted positions of the 
surrounding cars and the segmentation for the last 
frame before the predicted ones. 

The module computes the relative coordinates of 
the cars with regard to the road and the relative 
coordinates of the predicted position of the cars 
with regard to the estimated segmentation for 
the road and learns the best way to combine 

the two sets of relative coordinates in order 
to make a better prediction. The segmentation 
is made with FCN using the reference model 
found in (Yang & Chung, 2018). For evaluation 
purposes, the predicted frames are also included 
into a depth estimation network in order to see 
the difference between the estimated depth and 
the actual depth of the cars. The actual depth 
is considered by taking the real coordinates of 
the surrounding cars and the estimated depth is 
measured using the predicted coordinates. The 
depth is computed using Monodepth2 and the 
public reference model that can be found at 
the public repository of Godard et al. (2018), 
which also provides pretrained weights for 
KITTI. The code used for the experiments that 
were carried out and the detailed results can be 
found in (Iancu, 2021). All the experiments that 
were carried out are described in the following 
section. The proposed architecture is illustrated 
in Figure 1.

Dataset

For the experiments that were carried out, the 
dataset from the University Politehnica of 
Bucharest was used.

The dataset consists of several short videos with 
35 frames, the last 5 frames being predicted 
by each video generation model based on the 
previous ones. The data is divided into three 
categories according to the time of the day when 
the videos were recorded, following the idea in 
(Iancu, Sorici & Florea, 2019) - videos recorded 
during the day, at dusk or dawn and during the 
night. Each video was selected to contain at least 
one car in every image, especially in the last ones 
that should be predicted. 107 short videos were 
recorded during the day, 37 videos at dusk and 47 
videos during the night.

There is a double motivation behind using the 
employed dataset. The first reason is that it 
was necessary to use a dataset with a semantic 

Figure 1. The proposed architecture
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annotation of the road in order to incorporate 
features about the road into predicting the position 
of the surrounding cars and a manually annotated 
dataset created at University Politehnica of 
Bucharest was already available.

The second reason is that the research that was 
carried out is part of a series of studies regarding 
autonomous driving which were carried out at 
University Politehnica of Bucharest. Beside the 
manual annotation of each frame with regard to 
road segmentation, each car was also manually 
annotated in order to include the real positions of 
the surrounding cars. There were over 4000 cars 
annotated in the totality of frames. All the cars 
were annotated in the predicted videos, too, in 
order to have an upper bound for the prediction, 
if the object detection task worked perfectly. For 
depth estimation, all the frames were evaluated 
using Monodepth 2. 

4. Experiments and Metrics

This section describes the experiments that 
were carried out and the metrics used in order 
to evaluate the predictions made. Taking into 
account that there are no similar approaches 
and that the experiments were carried out 
based on the proposed dataset, where the road 
is segmented in all the images, the obtained 
results should be seen as being rather qualitative 
(in that they can help one compare different 
architectures) than quantitative. 

Metrics

For the experiments that were carried out, two 
relevant metrics were used. For prediction 
purposes, the Root Mean Square Error (RMSE) 
was computed for all the four predicted 
coordinates. In the following formula, N stands for 
the number of cars, xip is the x coordinate of the 
i-th predicted car, xir is the real x coordinate of the 
i-th car, yip is the y coordinate of the i-th predicted 
car and yir is the real y coordinate of the i-th car.
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The RMSE was computed in order to employ 
an evaluation metric that would be similar to 
the reference trajectory prediction model that 

was used. The RMSE was computed for all the 
experiments described in this section.
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Even if the RMSE is computed for the predicted 
coordinates of a car position, the RMSE for 
the average depth of the position of a car is a 
better qualitative metric for estimating the depth 
difference between the predicted position and 
the real position of a car. Even if, in theory, there 
could be similar places in an image at the same 
distance from the selected car, if the predicted 
distance is close to the real one the prediction 
is good enough. Furthermore, the distance from 
the car is what matters the most in the case of an 
autonomous car.

Experiments

Multiple experiments were carried out regarding 
the predicted location of a car and the predicted 
depth for that location. For all the images the 
predictions were tested against the ground 
truth, the manually annotated positions of the 
cars in the corresponding images and against 
the detected locations obtained by YOLO. 
The metrics were computed once without 
considering the segmentation module and based 
on the segmentation module. The depth of a 
car`s location was also computed regarding the 
estimated ground truth depth (the depth network 
applied on the real image) and the estimated depth 
on the predicted images. Also, as segmentation 
is concerned, the following were considered: the 
ground truth segmentation of the last frame and 
the ground truth segmentation of the predicted 
frames along with the estimated segmentation of 
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the last frame and the estimated segmentation of 
the predicted frames. To sum up, the following 
experiments were carried out: 

	- RMSE for the predicted location of a car and 
the depth of its position without segmentation

	- RMSE for the predicted location and the 
depth with ground truth segmentation

	- RMSE for the predicted location and the 
depth with estimated segmentation by FCN

For all of these experiments, the time of the day 
was considered (during the day, at dusk or during 
the night), which has not been done before for this 
task. Also, the RMSE was computed considering 
different car sizes and the prediction time.

5. Results

This section presents the most important results 
obtained from the experiments that were carried 
out. As it was mentioned in the previous section, 
two different types of measurements were made - 
the RMSE for the predicted location of a car and 
the RMSE for the depth of a car’s position. The 
results are synthesized in Table 1, Table 2, Table 3 
and Table 4. All the tables show the results obtained 
during the day, at dusk and during the night and 
the average RMSE (obtained as a weighted mean). 
In the following analysis, if the time of the day is 
not mentioned, reference is made to the average 

RMSE. A number of second frames predicted by all 
the three networks mentioned in Section 2, along 
with the real images taken during the day, at dusk 
and during the night can be seen in Figure 2.

Table 1 and Table 2 display the results regarding 
the predicted location for the surrounding cars. 
For each of the three networks tested as the 
video generation architecture, three metrics 
were included - the RMSE without the proposed 
segmentation module, the RMSE with the proposed 
segmentation module, but considering the ground 
truth segmentation (manually annotated) and 
the RMSE considering the segmentation given 
by the FCN network. In Table 1, the RMSE is 
computed considering the ground truth detection 
of the predicted position of the surrounding cars, 
manually annotated. In Table 2, the detection 
is made by means of YOLO v4. The results 
show certain interesting details. For the ground 
truth detection, the segmentation module does 
not improve the RMSE much, the results being 
almost the same, only slightly different for 
Seg2Vid. However, given that a real system does 
not include the future positions of the cars, it can 
be noticed that the segmentation module offers 
certain significant improvements, especially for 
SAVP. Nevertheless, as expected, the error is still 
higher than in the case of manually annotated cars. 
This is due to the imprecise predictions made by 
YOLO, caused by the distortion of the images 
based on some predicted frames, which could still 

Figure 2. Predicted frames for different light conditions
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be understood by humans, but much harder by a 
detection network. This is where the segmentation 
module helps in improving the quality of the 
prediction. As a reference point, Table 1 also 
includes the RMSEs for TraPHic, a state-of-the-
art prediction network, which are significantly 
smaller, the best results being obtained at dusk 
and the worst during the night.

Table 1. RMSE for location (GT detection)

Day Dusk Night Avg. 
PredNet
No segmentation 318.20 71.73 94.28 247.91
GT segmentation 317.20 71.10 93.70 247.11
FCN segmentation 317.12 71.24 93.49 247.00
SAVP
No segmentation 294.46 128.88 116.83 233.71
GT segmentation 294.12 128.84 116.34 233.41
FCN segmentation 294.12 128.85 116.15 233.41
Seg2Vid
No segmentation 321.20 148.91 115.27 265.85
GT segmentation 316.06 145.65 113.58 261.67
FCN segmentation 320.19 147.16 114.63 264.91
TraPHic 83.78 54.60 114.27 86.29

Table 2. RMSE for location (YOLO detection)

Day  Dusk Night Avg.
PredNet
No segmentation 280.01 193.69 46.45 269.98
GT segmentation 275.45 157.91 46.40 263.69
FCN segmentation 275.45 158.58 46.40 263.69
SAVP
No segmentation 615.78 568.45 543.74 561.84
GT segmentation 494.61 480.95 322.51 390.35
FCN segmentation 497.73 478.46 323.96 393.00
Seg2Vid
No segmentation 320.88 278.37 103.58 310.92
GT segmentation 306.16 191.44 98.29 287.88
FCN segmentation 306.36 196.98 102.15 289.27

Another interesting fact is that the results are 
almost identical if one considers the ground 
truth of the segmentation and the results for the 
segmentation given by the FCN network. Given 
that the segmentation is performed for the last real 
frame, the results for the segmentation network are 
very close for the ground truth segmentation, hence 
the small difference between the results obtained 
for the ground truth and the FCN. This relation is 
maintained even if the results for YOLO were used 
instead of the manually annotated positions.  

An unexpected fact is that the results obtained 
during the night are better and those obtained 
during the day are worse for both the ground 
truth and the YOLO predictions, but this is due to 
the higher number of cars and predictions made 
during the day, the average being closer to the 
results obtained during the day. From over 4000 
cars annotated in the real images, in the images 
obtained by GT detection about 3000 cars were 
detected for Seg2Vid and PredNet and 2500 
cars for SAVP, which is still much more than the 
detection made by YOLO - about 500 results for 
Seg2Vid, 170 for PredNet and only 100 for SAVP, 
the recall varying between 4% and 20%, which 
is somehow expected given that the frames are 
predicted and the quality of the image is distorted.

Another interesting result is that PredNet has the 
smallest error with regard to YOLO predictions, 
even if for ground truth predictions the results 
are slightly better for SAVP. However, PredNet 
obtained predicted frames of a higher quality and 
the cars can be better detected by YOLO. Table 3 
and Table 4 offer the same statistics for the depth 
prediction but they include two different metrics – 
one regarding the depth of the real frames and one 
regarding the depth of the predicted ones.

Table 3. RMSE for depth (GT detection)

Day Dusk Night Avg.
PredNet

No segm. 142.08 8.63 23.60 104.78
No segm. (pred.) 142.98 14.02 25.74 105.68

GT segm. 145.13 8.36 22.89 111.06
GT segm. (pred.) 145.63 13.18 24.13 111.60

FCN segm. 145.58 8.54 23.46 111.37
FCN segm. (pred.) 146.54 13.92 25.48 112.16

SAVP
No segm. 141.49 13.34 25.95 103.33

No segm. (pred.) 126.14 18.5 31.47 93.01
GT segm. 141.97 13.24 25.23 106.49

GT segm. (pred.) 126.38 17.41 31.29 95.68
FCN segm. 141.98 13.24 25.70 106.49

FCN segm. (pred.) 126.88 18.50 31.30 95.96
Seg2Vid
No segm. 134.10 18.68 27.52 103.76

No segm. (pred.) 129.25 23.52 32.47 100.62
GT segm. 138.29 18.57 27.41 110.01

GT segm. (pred.) 132.85 22.54 30.79 106.21
FCN segm. 138.28 18.66 27.41 110.01

FCN segm. (pred.) 132.84 23.36 32.23 106.20
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Table 4. RMSE for depth (YOLO detection)

 Day Dusk Night Avg.
PredNet     
No segm. 69.69 20.21 6.87 65.08
No segm. (pred.) 168.77 24.93 0.64 156.86
GT segm. 62.19 19.58 6.51 58.89
GT segm. (pred.) 165.66 16.27 0.55 154.70
FCN segm. 65.27 19.58 5.94 61.76
FCN segm. (pred.) 159.33 19.52 0.55 149.27
SAVP 
No segm. 38.66 29.47 32.69 33.45
No segm. (pred.) 81.66 69.23 44.97 57.21
GT segm. 34.76 31.80 36.41 36.09
GT segm. (pred.) 78.15 49.28 41.71 52.57
FCN segm. 34.95 31.80 36.41 36.09
FCN segm. (pred.) 70.73 48.20 42.04 52.57
Seg2Vid 
No segm. 62.51 25.72 20.26 56.57
No segm. (pred.) 137.39 40.86 19.79 122.98
GT segm. 64.13 25.91 19.60 58.77
GT segm. (pred.) 136.17 31.78 14.89 123.16
FCN segm. 64.10 25.91 19.60 58.75
FCN segm. (pred.) 134.93 32.61 19.78 122.65

Both metrics should be interpreted qualitatively, in 
order to evaluate the efficiency of the predictions. 
It can be noticed that the depth error is bigger 
for the predicted frames, but the difference is 
small. Also, the depth error is a little bigger for 
the semantic segmentation module, because the 
module took into account only the location, but 
the difference is very small.

Another unexpected result is that the depth error is 
smaller for the detections obtained by YOLO, but 
this is due to the smaller number of detected cars.

Again, the difference between the results for 
the ground truth segmentation and those for 
the segmentation obtained by FCN is almost 
unnoticeable. The depth error appears to be 
smaller for SAVP but only slightly smaller, at 
least for the ground truth detections. The results 
obtained at dusk are better for the ground truth 
detection, those obtained during the night are 
better for YOLO and the worst results were 
obtained during the day, the average being closer 
to the results obtained during the day.

The RMSE was also measured with regard to the 
predicted location for different object sizes - the 
cars were divided into 11 classes according to their 

size: between 0 and 100 pixels, 100 and 250, 250 
and 500, 500 and 750, 750 and 1000, 1000 and 
2000, 2000 and 3000, 3000 and 5000, 5000 and 
10000, 10000 and 20000 and between 20000 and 
30000 pixels. The results can be seen in Figure 
3 and they were obtained with regard to the real 
architecture, with YOLO detections and the FCN 
network. It can be noticed that even if there is no 
pattern for smaller car sizes, the error tends to be 
smaller for bigger cars. 

Figure 3. RMSE with regard to car size

The last experiment carried out was focused on the 
prediction time for the video generation networks. 
Because the video generation networks require 
a specified image size (in the contrary case the 
image is resized), the prediction time is almost the 
same for different image sizes. 5 image sizes were 
tested - 640x360, 640x480, 1280x720, 1920x1080 
and 3840x2160. he results can be seen in Figure 4. 

Figure 4. Prediction time



	 45

ICI Bucharest © Copyright 2012-2022. All rights reserved

Trajectory Prediction Using Video Generation in Autonomous Driving

Seg2Vid obtained a slightly longer prediction 
time for a bigger image, but the two other 
networks obtained almost the same prediction 
time for different image sizes. Unfortunately, the 
inference time is too long in order to use them for 
an autonomous car soon enough, for example the 
SAVP reaches 10 fps.

6. Conclusion and Future Work

This paper presents a new trajectory prediction 
algorithm for the surrounding cars based on video 
generation for predicting new frames, object 
detection in order to detect the surrounding cars 
and semantic segmentation in order to fine-tune 
the results regarding the segmentation of the road, 
an approach that has not been implemented before. 
The final architecture can be used for any dataset, 
without having to make manual annotations for 
the detection or the segmentation tasks. Also, for 
testing purposes, the estimated depth of a car’s 
position in relation to the surrounding cars is 
evaluated for the predicted frames in comparison 
with the estimated depth for the real frames. 
Three different video prediction models were 
used and the results were compared with those of 
a state-of-the-art trajectory prediction model. For 

each model, different experiments were carried 
out with regard to the time of the day for a certain 
prediction and the inclusion of the road semantic 
segmentation in the proposed architecture. The 
obtained results show that the inclusion of the 
semantic segmentation could slightly improve the 
predicted location of the cars in the future and that 
the proposed method could be used for trajectory 
prediction. The best model used was PredNet. 
The biggest advantage is that all the discussed 
video prediction models can be trained with any 
driving clip as training data, without having to 
manually annotate the respective trajectories. 
The future aim is to improve one of the video 
prediction models described in this paper by 
focusing on the trajectory prediction task, in order 
to obtain better predictions for the locations of the 
surrounding cars.
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