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1. Introduction

One of the nonlinear optimization issues is the 
Optimal Power Flow (OPF), where it has a specific 
objective to be optimized taking into consideration 
the electric physical constraints (El-Sehiemy 
et al., 2014). The total fuel cost, the pollutant 
emission level of power system components, 
and the active losses are the main pillars of the 
OPF issue (Mohamed et al., 2017). Its main goal 
is searching for the best operation and economic 
settings of generator voltages, transformer taps, 
power generation and reactive power outputs from 
both capacitors and reactors (Ramesh Kumar & 
Premalatha, 2015). For hybrid AC/DC power 
systems, the fuel cost minimization is enhanced 
with emissions minimization as mentioned 
in (Abdul-hamied et al., 2020). Economical 
operation of power systems is an important issue 
for minimizing the production costs as mentioned 
in (Ravichandran & Subramanian, 2020), (El-
Sehiemy et al., 2021). In the previous studies, 
the power system operators aimed at working at 
the level of economical operations as well as at 
providing high quality and reliable services at a 
lower cost.

Besides, the control variables are adjusted 
with consideration of operational equality and 
inequality constraints of the power flow balance 
(El-Ela et al., 2021).

Earlier, numerous traditional optimizers have 
been implemented to solve the OPF such as the 
simplex method, Newton-based method (Pulluri 
et al., 2018). Despite the excellent convergence 
characteristics of some of these techniques, they 
suffer from some deficiencies. As they are not able 
to guarantee global optimality, some theoretical 
assumptions are considered for them  such as 
differentiability, convexity, and continuity, which 
are not vital to OPF conditions (Duman, 2017). 
On contrary, in the last few recent years, diverse 
optimization algorithms have been implemented 
to handle the OPF such as Evolutionary Algorithm 
(EA) (Surender Reddy et al., 2014), Genetic 
Algorithm (GA) (Zhang et al., 2019), adaptive 
GA with adjusting population (AGAPOP) (Attia 
et al., 2012), Chaotic Self-Adaptive Differential 
Harmony Search Algorithm (CSDHSA) (Arul 
et al., 2013), Black-Hole-Based Optimization 
Approach (BHBOA) (Bouchekara, 2014), 
Improved Electromagnetism-like Optimization 
Algorithm (IEOA) (Jeddi et al., 2017), Modified 
DE algorithm (MDE) (Shaheen et al., 2016), heap-
based optimizer (Ginidi et al., 2021), Imperialist 
Competitive Algorithm (ICA) (Ghanizadeh et al., 
2011), Crow Search Optimizer (CSO) (Shaheen et 
al., 2021a), Novel Bat Algorithm (NBA) (Yang, 
2013), coyote algorithm (Abou El-Ela et al., 
2021) the renewable energy has been occupied a 
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lot of attention around the world since it presents 
cheap and sustainable energy. Consequently, its 
presence in power systems becomes a fact that 
had to deal with. Hence, load frequency control 
(LFC, Modified Crow Search Optimizer (MCSO) 
(Shaheen et al., 2021b), Improved Moth‐Flame 
Algorithm (IMFA) (Taher et al., 2019), multi-
verse optimizer (Shaheen, 2019), multi-objective 
marine predator optimizer (Alharthi et al., 2021), 
(Shaheen et al., 2021d), and modified Teaching-
Learning Algorithm (TLA) (Shabanpour-Haghighi 
et al., 2014). 

The aim of this article is to solve the OPF issue 
using the proposed QRJFO algorithm. JFO has 
been proposed by Chou and Truong (2021) and it 
is inspired by the jellyfish movements. A Quasi-
reflection learning is emerged into the standard 
JFO to deal with population diversity, the local 
search capability, and convergence speed. The 
JFO and the proposed QRJFO are implemented, 
with and without the effects of shunt Volt-Ampere-
Reactive (VAR) compensation to get the optimal 
solution of fuel costs, losses, and emissions of 
OPF issue. 

This paper is organized in 5 sections. The 
OPF issue problem formulation is described 
in Section 2. Next, the JFO and the proposed 
QRJFO algorithms are illustrated in Section 3. 
The establishment of the outcomes is depicted 
in Section 4. Section 5 denotes the conclusion 
of this work.

2. Problem Formulation

The OPF issue representation can be 
mathematically written (Elsayed et al., 2021)
fuzzy decision making is employed to select the 
best compromise operating point for the hybrid 
AC/HVDC power systems. In these systems, the 
active and reactive power controllability of the 
voltage source converters (VSCs as depicted in 
equation (1):

Min FF(x,y)  
subjected to: f(x,y) 0=  and g(x,y) 0≤                     (1)

where FF represents a certain objective function, 
while x and y are the states and control variables. 
Additionally, f and g denote the equality and 
inequality system constraints.

2.1 Problem Objectives

The quadratic equation of the fuel generation cost 
(FF1) is formulated as follows:

gN
2

i i i i i
i 1

FF1 a Pg b Pg c
=

= + +∑
                                     

(2)

where Ng is the number of generators; Pgi denotes 
the active output power (MW) for each generator 
i, while the cost coefficients are illustrated by (ai, 
bi, and ci).

Another objective function which involves the 
total ton/hr emissions (FF2) discharged from the 
fossil-fuel generators in electrical systems can be 
expressed as follows:

g

i i
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FF2 (Ea Pg Eb Pg Ec )/100 Ed e
=

= + + +∑
          

(3)

where the coefficients (Eai, Ebi, Eci, Edi, and Eei) 
demonstrate the atmospheric pollutants emission.

Another objective function which minimizes the 
power losses of the transmission network can be 
formulated as follows:

NB NB

i i i
i 1 i 1

FF3 P Pg Pd
= =

= = −∑ ∑
                                       

(4)

where Pdi expresses the active power demand at 
each bus i. Nb establishes the number of buses.

2.2 System Constraints

The load flow balance equations (equality 
constraints) are the following:

Pg PL V V (G cos ¸ B sin ¸ ) 0,  i 1, . . . Ni i i j

j 1

N

ij ij ij ij

b

� � � � �
�
� bb slack�
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Qg QL Qc V V (G sin¸ B cos¸ ) 0, i 1,2, . . i i i i j
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N
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b
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�
� .. NPQ

  (6)

The active and reactive power demands are 
specified by PL and QL respectively, whereas the 
mutual conductance and susceptance between bus 
i and j are expressed by Gij and Bij, respectively. 
Qgi is the VAR injected at bus i; Vi refers to the 
voltage at bus i; Qci indicates the reactive power 
injection of switched capacitors at bus i; slack and 
NPQ illustrate the slack bus and the number of 
load buses, respectively.

The operational variables and their corresponding 
constraints, denoted by the superscripts (max) and 
(min) bounds are expressed as follows:

1) The generator voltages:
Vg Vg Vg ,  i 1 , 2 , . . . . . . . Ng

i i i

min max� � �             (7)



	 51

ICI Bucharest © Copyright 2012-2022. All rights reserved

Quasi-Reflection Jellyfish Optimizer for Optimal Power Flow in Electrical Power Systems

2) The active generators’ power outputs:
Pg Pg Pg ,  i 1 , 2 , . . . . . . . Ng

i i i

min max� � �               (8)
3) Generator reactive power outputs:
Pg Pg Pg ,  i 1 , 2 , . . . . . . . Ng

i i i

min max� � �             (9)
4) The transformer tap settings:

Nt . . . . . . . , 2 , 1k  ,TapTapTap max
kk

min
k =≤≤    (10)

5) Load bus voltage magnitudes:
V V V ,  i 1 , 2 , . . . . . . . NPQL

min

L L

max

i i i
� � �             (11)

6) The switched (capacitors and reactors) reactive 
power injection:
Qc Qc Qc ,  q 1 , 2 , . . . . . . . Nqq

max

q q

max� � �             (12)
7) Transmission line loadings:

max
F FS S ,  L 1 , 2 , . . . . . . . NF≤ =                     (13)

where Nq and Nt define the number of the VAR 
sources and the number of on-load tap changing 
transformers, respectively, while NF illustrates 
the number of transmission lines. SF refers to 
the power flow through line F which may have 
a negative value which indicates that the flow is 
reversed. Therefore, the absolute symbol is used 
in equation (13). SFmax indicates the transmission 
line loading.  

3. Proposed QRJFO optimization 

In the beginning, the population of jellyfishes (Xi) 
is created using chaotic logistic mapping. In JFO, 
the motions of jellyfishes can be inside the swarm 
or in the direction of the ocean currents. The 
transition between such two modes is regulated 
by the process of time regulation (TR). 

Inside the swarm, two types of behaviours are 
modelled: active (Form A) and passive (Form 
B). In Form A, the jellyfishes move towards the 
positions that are rich in food. Equation (14) 
illustrates the new location of the jellyfish. 

i j i i j
i

i i j i j

X (t) R (X (t) X (t)) if f (X ) f (X )
X (t 1)

X (t) R (X (t) X (t)) if f (X ) f (X )
+ × ≥



−+ =  + × < −   
(14)

where f is the objective value related to each 
jellyfish location and R is a random number 
that is changing at each instant, using uniform 
distribution, within the range [0-1]. In Form B, 
the position of every jellyfish shall be changed 
around its existed position as follows:

bi b iX (t 1) 0.1 R (U ) X (t)L +× −+ = ×                     (15)

where Lb and Ub indicate the lower and upper 
limits in the considered problem, respectively.

On the contrary, the motions of jellyfishes can be 
in the direction of the ocean currents where their 
directions (trends) are estimated based on the average 
of all the positions of the jellyfishes. Thereby, the 
updated position of every jellyfish is represented as: 

*
i iX (t 1) R (X ) X (t)3 R× µ +×+ = × −                    (16)

where μ is the mean of the positions of the 
jellyfishes and X∗ is the currently best jellyfish 
position in the swarm. 

If the jellyfish passes past the restricted search 
field, the jellyfish will return to the boundary. This 
can be represented as depicted in equation (17): 

i,d

i ,d

i,d b,d b i,d b,d

i,d b,d b i,d b,d

X (X U ) L (d) if X U

X (X L ) U (d) if X L

′ = − + >


′ = − + <           

(17)

where Xi refers to ith jellyfish position and d refers 
to each dimension of the control variables. 

Each jellyfish chooses between the motions inside 
the swarm (forms A or B) or in the direction of 
ocean currents using the time regulation (TR) 
process. This process is based on a regulating 
function c(t) that is described in equation (18):

iter

tc(t) 1 (2 rand(0,1) 1)
Max

 
= × ×


− −

                
(18)

where Maxiter indicates the maximum number 
of iterations and t is the current iteration. When 
the value of the regulating function c(t) exceeds 
a chosen coefficient (Co), each jellyfish takes 
the direction of the ocean current. Otherwise, 
it follows the motions inside the swarm. In this 
mode, a number inside the range [0-1] is randomly 
created, using uniform distribution, and if it 
exceeds the value (1 − c(t)), the jellyfish exhibits 
form A motion. Else, it follows form B. 

In the standard JFO, the variation of c(t) in (18) 
depends on Maxiter. In the beginning of iterations, 
c(t) will be inside (-1,1), but with a decreasing 
tendency in a long run; near Maxiter the values 
will be close to zero. Based on that, the jellyfishes 
have higher tendency to move inside the swarm, 
in active and passive forms.

To improve the JFO’s performance, a quasi-
reflection JFO (QRJFO) variant is suggested. 
Two improvements are introduced in the typical 
JFO method. At first, the JFO calculates, in 
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every iteration, the average of all the entities in 
the swarm. In the suggested variant, a cluster is 
arbitrarily chosen from the swarm population 
for every jellyfish. Each cluster has a variable 
scale that represents a shared network which 
exchanges knowledge inside the swarm cluster 
that is distinctive from each other.

Added to that, a learning strategy of quasi-
oppositional method is developed from the 
JFO algorithm to improve the discovery feature 
(Bentouati et al., 2020) planning and energy 
management of power systems. OPF analysis 
aims to find the optimal solution of system 
nonlinear algebraic equations with satisfying 
operational constraints. Economic, environmental 
and technical objectives are considered for multi-
dimensions efficient energy management. These 
objectives involve the reduction of the production 
costs, reduction of the environmental emissions, 
improving the voltage profile, reducing the power 
losses and enhancing the system stability. This 
paper presents a new high-efficiency technology 
that proposes a multi-objective version of the 
recently proposed moth swarm algorithm (MSA). 
If y is a particular value inside [Lb, Ub], its quasi-
opposite value (yq) will be as follows:

b
q b

b
b yUy rand , (U )L L

2
  =   + −


+
                   

(19)

By using the concept of quasi-oppositional points, 
the reflected points are created and the locations 
of jellyfishes are  replaced. Then, the quasi-
oppositional concept is assessed only to preserve 
the same number of objective evaluations. Figure 1 
displays the suggested QRJFO flowchart algorithm.

4. Simulation Results

In this section, the proposed QRJFO and JFO are 
implemented on the standard IEEE 30 bus to solve 
the OPF issue. Ten simulation runs are completed 
for the proposed QRJFO and JFO with a maximum 
iterations number of 300 whereas the population 
size is 50. This system involves 4 on-load tap 
changing transformers, 30 buses, 6 generators, 
41 lines, and 9 capacitive sources. The data for 
buses, the limits of reactive power generations, 
and transmission lines are taken from (Liu et al., 
2017). The generator voltages have a maximum 
and a minimum value of 1.1 and 0.95 p.u., 
respectively. Two scenarios are considered in this 
study. In the first scenario, the effects of the shunt 

Figure 1. Flowchart of the proposed QRJFO optimization algorithm
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VAR compensation and transformer tap settings 
are ignored. Thus, the control variables are active 
power outputs and voltages of the generation units. 
On the contrary, in the second scenario, the effects 
of the transformer tap settings and shunt VAR 
compensation are involved. For each scenario, three 
cases are studied as illustrated below:

Case 1: The Quadratic Fuel Costs  
(QFC) Minimization

Case 2: The Pollutant Emissions  
(PE) Minimization

Case 3: The Power Losses (PL) Minimization

4.1 Application for Scenario 1

Table 1 denotes the cost coefficients, while 
Table 2 describes the IEEE 30-bus test system 
emission coefficients. For the previously 
illustrated three cases studied, the JFO and 
the suggested QRJFO version are applied and 
their obtained outputs are recorded in Table 3. 
For the first case, the minimum QFC obtained 
by the suggested QRJFO is reduced from 
901.96 $/hr to 800.2502 $/hr with respect to the 
initial case, however, the JFO minimizes the 
QFC to 800.254 $/hr. For the second case, the 
minimization of the PE is successfully achieved 
using both JFO and QRJFO. As shown, the 
PEs are minimized to 0.2047859 ton/hr and 
to 0.2047833 ton/hr using the JFO and the 

suggested QRJFO, respectively. The third case 
illustrates the minimization of System Power 
Losses (SPL) by applying the proposed JFO 
and QRJFO. Their acquired values of SPL are 
3.173287 and 3.172604 MW, respectively. Also, 
the convergence characteristics of the JFO and 
QRJFO algorithms for minimizing the QFC, PE 
and PL are displayed in Figures 2-4, respectively. 
These figures illustrate the higher capability of 
the proposed QRJFO when compared to JFO in 
improving the best solution, particularly during 
the early stages of the 100 iterations. 

Table 1. Cost coefficients for IEEE 30-bus system

Bus a b c
1 3.75E-3 2.00 0.0
2 1.75 E-2 1.75 0.0
5 6.25 E-2 1.00 0.0
8 8.3 E-3 3.25 0.0
11 2.5 E-2 3.00 0.0
13 2.5 E-2 3.00 0.0

Table 2. Emission coefficients for  
IEEE 30-bus system

Bus Ea Eb Ec Ed Ee
1 4.0910 -5.5540 6.490 2 E-4 2.857
2 2.5430 -6.0470 5.638 5 E-4 3.333
5 4.2580 -5.0940 4.586 1 E-6 8.000
8 5.3260 -3.5500 3.380 2 E-3 2.000
11 4.2580 -5.0940 4.586 1 E-6 8.000
13 6.1310 -5.5550 5.151 1 E-5 6.667

Table 3. Optimal results of JFO and the proposed QRJFO for Cases 1-3, Scenario 1

	 Variables Initial
Case 1 (U1 ($/hr)) Case 2 (U2 (ton/hr)) Case 3 (U3 MW))

JFO QRJFO JFO QRJFO JFO QRJFO
Vg1 1.050 1.0999980 1.1000 1.09990 1.09990 1.099990 1.10000
Vg2 1.040 1.088680 1.089290 1.095020 1.097450 1.098410 1.099190
Vg5 1.010 1.063390 1.06470 1.077810 1.081470 1.0823080 1.083120
Vg8 1.010 1.072590 1.073690 1.087380 1.090030 1.090370 1.0914090
Vg11 1.050 1.099410 1.099990 1.095790 1.099940 1.099220 1.099990
Vg13 1.050 1.054060 1.056210 1.056140 1.061090 1.060860 1.062350
Pg 1 99.240 177.15 177.144 64.08580 64.10260 51.57950 51.57260
Pg 2 80.00 48.844 48.741 67.6254 67.6013 79.9976 79.99900
Pg 5 50.00 21.309 21.313 49.9989 49.999 49.9993 49.99900
Pg 8 20.00 20.947 21.218 34.999 34.999 34.9989 34.99900
Pg 11 20.00 11.877 11.943 29.9996 29.999 29.9992 29.99900
Pg 13 20.00 12.003 12.00 39.9995 39.999 39.9986 39.99900

Cost_Pg 901.96 800.254 800.2502 944.65 944.6074 967.8221 967.83570
Losses 0.23909633 8.959052 8.960326 3.30896 3.30395 3.173287 3.172604

Emissions 5.8324 1.176231 1.179199 0.2047859 0.2047833 0.207215861 0.207215686
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Figure 2. Convergence curves of JFO and QRJFO 
for Case 1, Scenario 1

Figure 3. Convergence curves of JFO and QRJFO 
for Case 2, Scenario 1

Figure 4. Convergence curves of JFO and QRJFO 
for Case 3, Scenario 1

4.1.1 JFO versus QRJFO: Robustness 
Analysis for Scenario 1

To evaluate the robustness analysis, the obtained 
minimum QFC, PE and PL of the 10-runs of JFO 
and of the proposed QRJFO are recorded. Their 
spread and centres for Cases 1-3 are displayed in 
Figure 5 via Box and Whiskers plot. As shown, 
the suggested QRJFO still follows the maximum, 
average and minimum values relative to the JFO 

for all the cases studied.  Otherwise, the QRJFO 
provides the smallest standard deviations of QFC, 
PE and PL of 0.00084, 1.47E-05, and 0.0076, 
respectively relative to the JFO of 0.00066, 
9.74161E-06, and 0.00266, respectively. 

a - case 1

b - case 2

c - case 3

Figure 5. Box and Whiskers plot of JFO and QRJFO 
for Cases 1-3, Scenario 1

4.2 Application for Scenario 2

In this scenario, the effects of the transformer 
tap settings and shunt VAR compensation are 
involved. The tap changing transformer have a 
maximum and a minimum voltage of 1.05 and 
0.95 p.u., respectively. However, the limitations 
of VAR injections for the capacitive sources are 5 
MVA. The JFO and the suggested QRJFO version 
are applied for the three cases studied and their 
outputs are tabulated in Table 4.
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For the first case, Table 4 illustrates that the 
minimum QFC obtained by the proposed QRJFO 
is reduced from 901.96 $/hr to 799.1065 $/hr, with 
respect to the initial case. Added to that, Table 5 
illustrates comparative results for minimizing the 
fuel costs (Case 1) with several other algorithms 
which are Developed Grey Wolf Algorithm 
(DGWA) (Abdo et al., 2018), AGAPOP (Attia 
et al., 2012), EA (Surender Reddy et al., 2014), 
Symbiotic Organisms Search (SOS) (Duman, 
2017), Moth Swarm Algorithm (MSA) (Mohamed 
et al., 2017), IMFA (Taher et al., 2019), Genetic 
Algorithm (GA) (Zhang et al., 2019), adapted GA 
(Attia et al., 2012), BHBOA (Bouchekara, 2014), 
DHSA (Arul et al., 2013), ICA (Ghanizadeh et 
al., 2011), Improved Electromagnetism-like 
Optimization Algorithm (IEOA) (Jeddi et al., 
2017), CSO (Shaheen et al., 2021a), NBA (Yang, 
2013), MCSO (Shaheen et al., 2021b). 

Table 5. Comparison for Case 1-Scenario 2

Method U1 ($/hr) Method U1 ($/hr)
Proposed QRJFO 799.1065 IMFA 800.3848

JFO 799.1481 TLA 800.4212
DGWA 800.433 SOS 801.5733

AGAPOP 799.8441 ICA 801.843
BHBOA 799.9217 DHSA 802.2966

MSA 800.5099 GA 802.1962
IEOA 799.688 CSO 799.8266

EA 800.0831
MCSO 799.3332

NBA 799.7516

As shown, the JFO and the suggested QRJFO 
obtain the minimum QFC of 799.1481 $/hr 
and 799.1065 $/hr, respectively among other 
techniques. For the second case, the minimization 
of the PEs is obtained by the JFO and the proposed 
QRJFO as reflected in Table 4. As shown, the PE 
values are 0.204719 ton/hr and 0.204688 ton/hr, 

Table 4. Optimal results of JFO and the proposed QRJFO for Cases 1-3, Scenario 2

Variables Initial
Case (1) (U1 ($/hr)) Case (2) (U2 (ton/hr)) Case (3) (U3 MW))

JFO QRJFO JFO QRJFO JFO QRJFO

Vg1 1.0500 1.099980 1.0999990 1.0845460 1.0998840 1.0801280 1.0780150

Vg2 1.0400 1.0856540 1.0886010 1.0811380 1.093460 1.0755390 1.07140

Vg5 1.0100 1.0592020 1.0631540 1.0586270 1.0754470 1.0583810 1.05370

Vg8 1.0100 1.0668530 1.0708280 1.0666110 1.0830010 1.0657750 1.0618780

Vg11 1.0500 1.0997750 1.0997330 1.0816360 1.099880 1.0042520 1.059870

Vg13 1.0500 1.0996350 1.0999680 1.0998370 1.0999950 1.0471360 1.0975430

Tap 6-9 1.0780 1.0407690 1.0245130 1.0336910 1.0296590 1.0621880 1.0130880

Tap 6-10 1.0690 0.9229740 0.9540090 0.9327810 0.9287530 1.0339520 0.9568230

Tap 4-12 1.0320 1.0028280 1.0036740 1.0179250 0.9841930 1.0615350 0.975850

Tap 28-27 1.0680 0.9726790 0.9769710 0.9864080 0.9746240 1.0369820 0.9577440

Qc 10 0 4.788078 4.952751 2.408265 3.242106 6.438482 12.18364

Qc 12 0 4.867021 4.893209 2.813026 2.460361 10.97369 9.498888

Qc 15 0 4.277636 4.787421 3.60315 2.640415 1.97545 4.859643

Qc 17 0 4.546313 4.984962 4.649712 4.937444 12.95008 8.960677

Qc 20 0 3.767055 4.386394 4.185922 4.481168 6.789432 3.552127

Qc 21 0 4.95365 4.898369 4.715191 4.997294 11.03702 12.95475

Qc 23 0 4.329351 2.674182 3.855241 3.606487 0.542298 1.247224

Qc 24 0 3.460546 4.984997 4.740595 4.99374 8.934137 6.984928

Qc 29 0 2.566404 2.844773 2.65091 2.631657 4.068645 2.272029

Pg 1 99.24 177.1974 177.0987 63.98755 63.94707 63.95811 63.83592

Pg 2 80 48.69343 48.69635 67.51098 67.45145 67.66739 67.6271

Pg 5 50 21.4438 21.29614 49.99908 49.99997 49.99674 49.99989

Pg 8 20 20.74069 21.04201 34.99943 34.9999 34.99611 34.9997

Pg 11 20 11.97215 11.89693 29.99918 30 29.99762 29.9999

Pg 13 20 12.00618 12.00758 39.99981 39.99893 39.99707 39.9999

Cost_Pg 901.96 799.1481 799.1065

Losses 0.23909633 2.890692 2.856711

Emissions 5.8324 0.204719 0.204688



https://www.sic.ici.ro

56 Ragab El-Sehiemy, Abdullah Shaheen, Ahmed Ginidi, Sherif Ghoneim, Mosleh Alharthi, Abdallah Elsayed

respectively. Table 6 shows a comparison with 
other optimizers. 

Table 6. Comparison for Case 3-Scenario 2

Algorithm PE Algorithm PE 
QRJFO 0.204688 AGO 0.20484

JFO 0.204719 GO 0.20492
Stud KHA 0.2048 modified TLA 0.20493

ARBO 0.2048 IMRFO 0.204754
KHA 0.2049 NBA 0.2052063
CSO 0.2051355 MCSO 0.2048911

As the suggested ORJFO attains the minimum PE 
objective, it outperforms the other metaheuristics 
of Krill Herd Algorithm (KHA), Stud KHA (Pulluri 
et al., 2018), Adaptive Real Coded Biogeography-
Based Optimization (ARBO) (Ramesh Kumar & 
Premalatha, 2015), modified TLA (Shabanpour-
Haghighi et al., 2014), (Shaheen et al., 2021c). 
NBA, CSO, MCSO (Shaheen et al., 2021b). For the 
third case, the minimization of SPL is considered. 
From Table 4, the suggested QRJFO outperforms 
the standard JFO where it finds a lower SPL value 
of 2.85 MW compared to 2.89 MW for the JFO. 
Moreover, the convergence characteristics of the 
JFO and QRJFO algorithms are displayed for the 
three cases studied in Figures 6-8, respectively. 

Figure 6. Convergence curves of JFO and QRJFO 
for Case 1, Scenario 2

Figure 7. Convergence curves of JFO and QRJFO 
for Case 2, Scenario 2

Figure 8. Convergence curves of JFO and QRJFO 
for Case 3, Scenario 2

These figures indicate the greater efficiency of 
the suggested QRJFO relative to JFO to provide 
a better solution, especially in the early stages of 
100 iterations.  

4.2.1 JFO versus QRJFO: Robustness 
Analysis for Scenario 2

To evaluate the robustness analysis, the obtained 
minimum QFC, PE and PL of JFO and proposed 
QRJFO are displayed in Figure 9 via Box and 
Whiskers plot. The suggested QRJFO provides 
better robustness statistics relative to the JFO 
for all the cases studied. In case 1, the QRJFO 
provides the smallest maximum, average and 
minimum values of 799.204, 799.156 and 
799.106$/hr with a smaller standard deviation 
of 0.0225 opposed to JFO of 0.0295. In case 
2, the QRJFO acquires the smallest minimum 
and average PE values of 0.20468 and 0.20473, 
respectively. In case 3, QRJFO finds the smallest 
maximum, average and minimum values of 
2.94, 2.895 and 2.856 MW whereas JFO finds 
the minimum, average and maximum values of 
2.964, 2.93 and 2.891 MW, respectively.

a- case 1
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b- case 2

c- case 3

Figure 9. Box and Whiskers plot of JFO and QRJFO 
for Cases 1-3, Scenario 2

5. Conclusion

This paper suggests and develops an improved 
Quasi-Reflection Jellyfish Optimizer integrated for 
solving the OPF problem. The QRJFO enhances 
the intensification and diversification features 
of the standard JFO. Both JFO and QRJFO are 
effectively implemented on two scenarios based 
on the  IEEE 30 bus-system. The simulation 
outputs display the solution effectiveness and 
applicability of the suggested QRJFO relative to 
JFO. Also, the suggested QRJFO provides a great 
improvement in the convergence characteristics 
of the standard JFO, particularly during the early 
stages of the 100 iterations. Besides, the suggested 
QRJFO provides a great improvement in the 
degree of robustness of the standard JFO when 
achieving the optimal results and solution quality. 
Thus, the QRJFO shows superiority in comparison 
to several optimization algorithms with various 
objective functions reported in the literature.
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