Manufacturing Entities With Incomplete Information

Paulo Sousa, Carlos Ramos

Departamento de Engenharia Informatica

Instituto Superior de Engenharia do Porto (ISEP/IPP)
Rua Sdo Tomé, s/n,

4200 Porto

PORTUGAL

E-mails: {psousa, csr}@dei.isep.ipp.pt

José Neves

Departamento de Informética
Universidade do Minho
Largo do Pago

4719 Braga Codex
PORTUGAL

E-mail: jneves@di.uminho.pt

Abstract: In the 80’s, Computer Integrated Manufacturing
(CIM) concept was adopted as a solution to all the problems
in manufacturing However, it was soon realized that the
evolving demands for manufacturing systems were not
handled by CIM. New altematives rise, and especially
Agent-Based Manufacturing and Holonic Manufacturing
Systems, for coping with today’s manufacturing systems
requirements. From an informational point of view (i.e. their
database), manufacturing systems are very complex. Thus
special attention is given to the representation and handling
of incomplete information. From a developer’s point of
view, the ability to reuse code (i.e. functionality) across
several emtities greatly reduces developing efforts. Thus,
inheritance of behaviours is proposed as a way to achieving
code reuse. This paper presents a framework for the
development of intelligent manufacturing systems, which
allows the modelling of incomplete mformation and
inheritance into each agent/holon. A prototype for an
already described system for dynamic scheduling of
manufacturing orders is also presented.

Paulo Sousa studied Computer Science at Instifuto
Politécnico do Porto (Polytechnic Institute of Porto,
Portugal) - ISEP/IPP from 1990 through 1995 with a
specialisation in Industrial Informatics. In 1998, he
successfully concluded a post-graduation on "Distributed
Systems, Computer Architectures and Computer
Communications" at Universidade do Minho (University of
Minho, Portugal), and started his PhD on Holonic
Manufacturing Systems. Paulo Sousa worked for 3 years as
an application developer for a Portuguese software house in
the field of electronic archives, database retrievals and
component building, In 1996 he became Assistant Professor
at ISEP/[PP. His main research interests are Computer
Graphics and Distribuled Intelligent Systems. URL:
http://www.dei.isep.ipp.pt/~psousa

Carlos Ramos is Coordinator Professor at the Institute of
Engineering - Polytechnic of Porto (ISEP/IPP). He got his
Ph.D from University of Porto in 1993. He is responsible for
a research group involving 30 researchers and covering such
areas as Planning & Scheduling, Knowledge-based Systems,
Intelligent Agents and Knowledge Discovery. This group
has published more than 150 papers in Scientific Joumals
and Conferences over the last 6 years. He is also Director of
the Computer Integrated Manufacturing Centre of ISEP/IPP.

José Neves is Cathedratic Professor of Computer Science at
the University of Minho, Portugal (UM). He got his Ph. D in
Computer Science from Harriet Watt University, Edinburgh,
Scotland in 1984. His current research activities span the
fields of Extended Logic Programming Knowledge
Representation and Reasoning systems and Multi-agent

Studies m Informatics and Control, Vol. 9, No. 2, June 2000

Systems, and he has more than 100 published papers in
international journals, conferences, workshops and
symposiums. He is the Director of the Research Group on
Artificial Intelligence of UM.

1. Introduction

Manufacturing has changed a lot since its
beginning, especially for the last decades. These
changes are not only technology-related, but
also concern the way customers interact with
the manufacturing system, the environment that
must be preserved, the shorter product’s life-
cycle, etc.

Until a few years ago, the CIM (Computer
Integrated Manufacturing) concept was
considered satisfactory enough for treating
enterprise/manufacturing requirements.
However, taking into account a new set of
organisational and economic concepts, it
becomes clear that the centralised CIM
approach is not the answer. On the contrary, the
requirements for today’s and future
manufacturing systems suggest autonomy,
distribution, and flexibility, while stressing the
need for co-ordination amongst production
units[1]. It is expected that rigid, static and
hierarchical manufacturing systems will give
way to systems that are more adaptable to rapid
change [2].

It is at this point that agent technology is
adequate. An agent is an autonomous entity,
maybe intelligent, that pursuits its own goals
and, eventually, it may cater for the user's ones
[3]. Some authors would like to augment this
definition in order to incorporate social
ability[4], mental behaviour (e.g. knowledge,
beliefs, desires, and intentions)[5], and learning
[6].

79

A Multi-Agent System (MAS) is a population of
agents that exhibit social behaviour and are
capable of interacting with each other in a co-
operative fashion [7], while simultancously each
agent may pursue individual objectives[8]. This
interaction assumes some kind of communication
language (e.g. KQML [9]) and perception of the
surrounding environment. The use of a multi-agent
architecture will make the decisions be taken in a
decentralised way[10].

Agent-based systems are “best suited for
applications that are modular, decentralised,
changeable, ill-structured and complex”[11],
and with a “great number of interactions among
components”[10].

On the other hand, a manufacturing system may

be characterized by:

e Iisfimctions (e.g production planning, production
scheduling, inventory, efc.), which can be seen as
maodules.

e As it was already referred, the traditional CIM
centralised architecture is not satisfactory for
today’s mamufacturing requirements; new
manmufacturing systems must be decentralised
manufacturing systems,

o Physically, a mamufacturing system is based on
resources (e.g. mimeric control machines, robots,
AGVs, conveyors) The mumber and
configuration of these resources may change
during the system’s life time.

e Since the manufacturing process is a dynamic one
(e.g suppliers and consumers in a supply chain
may change marty times) it is impossible to know
the exact structure or topology of the system, thus
being ill-structured.

e The mumber of products and orders, as well as
different alternative production routes, count for
the highly complex nature of the manufacturing
Systems,

Therefore, it seems that a framework based on
the principles which the Distributed Artificial
Intelligence (DAI) and Multi-Agent Systems
(MAS) paradigms were built on, appears as the
most natural solution for the new generation of
manufacturing systems [12]. This methodology
will allow the modelling of a system as a set of
intelligent, autonomous and co-operative
elements in order to achieve reconfigurable and
extensible architectures [13].

80

On the manufacturing arena, these two
paradigms (DAI and MAS) are best represented
by the concept of Holonic Manufacturing
Systems (HMSs). The idea behind HMSs is to
providle a dynamic and decentralised
manufacturing process, in which humans are
effectively integrated, so that changes can be
made dynamically and continuously.

As Agent-based Manufacturing relies on the
notion of agent, HMSs are based on the notion
of Holon [14]. Arthur Koestler coined the term
‘Holon’ from a combination of Greek holos
(whole) with the suffix on which, as in proton or
neutron, suggests a particle or part. A Holon
means simultaneously a whole (to their
subordinated parts) and a dependent part when
seen from the inverse direction. Thus, a Holon
can be made up of other holons.

This aggregation of holons inside other holons
is called holarchy. An HMS is a holarchy that
integrates the entire range of manufacturing
activities from order booking through design,
production, and marketing to achieve the agile
manufacturing enterprise.

Although there is no consensus in the research
community about agents and holons, as far as
the scope of this paper, the two words can be
used as synonyms for autonomous and
intelligent entities able to co-operate with each
other.

The paper is organised as follows. Section 2
presents the basic architecture for each
individua! agent. Section 3 introduces the issue
of handling incomplete and negative
information in manufacturing systems. This
Section also presents the types of null values
used and how to implement them. Section 4
states the problem of scheduling in
manufacturing and briefly presents the proposed
system’s architecture. A prototype of an
application for the dynamic scheduling of
manufacturing orders is also presented. In
Section 5 we look at future work, and present
the conclusions.

2. The Holon’s Archetype

Figure 1 shows a holonic manufacturing system
with seven (7) holons of three different types —
resources, tasks and products.

Studies in Informatics and Control, Vol. 9, Ne. 2, June 2000

Resource #24

Product N - / Product
I3 HIAE2
‘ / ~
/ 2
] e - H
I = .
— .) Rasource #7
4
sl ey Task #6

Figure 1. A Holonic Manufacturing System

Lines connecting holons represent confidence
relations (or any kind of relationship, e.g.
temporary clustering) between two holons.
Different lines (e.g solid, dotted) represent
different relations. These relations are

the semantics of a relation and its value are

holon-dependent and not imposed by the
system.

Figure 2 shows the archetype of a holon with its

unidirectional and their value’s meaning is main building plock
entirely within the holon’s responsibility, i.e.
)
.‘l‘f‘!ﬁ I"!.\I\‘a.
U | \
.Ff A \ \ !
AN ! \ Interface J Knowtedge

\ .‘

|
| | 'ﬁ
i Sensor

="

‘ | Obligations | | Intentions | 1_ Types |

j | bility ‘ 1 i \
= 4 | Desires |] Beliefee—l | Relatons |)
- | J
i r -
.~ Environment |
e e P | Actuator ; T"_"
e ‘ =
{&{.f ; Reasoning ‘
7/ \A f Protocol Execution Knowledge || Inference
| Protocol !—J Aquistion | | Exelanations Engine |
i | Instance T ']
|
| |
| Tometes Omoote |

L"‘“———-_—-_"‘J

Figure 2. Functional View of A Holon

The interface block means both Human-
Computer Interaction and the ability to interact
with other holons via an agent communication
language. The Protocol Execution block is
responsible for handling conversations, for
receiving messages from the environment (e.g.
from other agents, or physical sensors), looking
for the appropriate protocol script and executing
it through passing the information to the
teasoning module.

Studies in Informatics and Control, Vol. 9, No. 2, June 2000

The holon’s knowledge is defined by its beliefs,
desires, intentions, obligations, etc. It also has
its own objectives; therefore, the goal's
contradiction must be avoided. The productions
below state the mental model of holon
Resource#24, as given in Figure 2, stating its
goals (e.g to earn a profit of 100 or more cash
units), and capabilities (e.g. mill).

81

name(resource#34)

type(resource#34, milling machine)

goal(state(stable), handle goal 1)

handle_goal 1 <-state(initializing) A
peer(D) A
name(MySelf) A

send(msg(error), D, MySelf) A

update(state, [stable])

handle goal 1

goal((profit(X), X > 100); handle goal 2)

handle_goal 2

state(stable)

profit(30)
location(‘thor.cim.isep.ipp.pt’)

mill(Speed, Dur, Tool, ToolPath)

<«set_speed(Speed) A
load_tool(Tool) A
execute(Duration, ToolPath) A
increment_profit(25)
cfg(Filename) « update(state,
[initialising]) A
read_cfg(Filename) A
update(state, [stable]) A
mcrement_profit(10)
increment_profit(l) «profit(A) A

N s A + I A
update(profit, [N])

Each holon belongs to one or more classes (i.c.
a fype) that define its basic abilities and
knowledge by a mechanism of inheritance
similar to the one found in the object-oriented
paradigm to computing, and in [15]. The type
can also be viewed as a role that the holon plays
in the system (e.g. resource, task, order).

The relations block identifies and quantifies the

relationships a holon has with other holons in
the system (e.g. the confidence value in the

82

results of some other holon). This block can be
seen as a set of tuples according to the template:

(Holonld, RelationName, Holonld, Value,
Parameters)

For some of agents in Figure 1, those relations
could be implemented as:

relation(task#34, confidence, res#24,
90,[op1])

relation(task#34, confidence, res#24,
100,[op2])

relation(task#34, confidence, res#53,
100,[op1,0p3])

relation(task#34, make, product#23, _, [])

relation(res#24, capability, product#23,

_lopl])
relation(product#23, operation, res#24, 1,

[op1])

The holonic concept of holarchy is implemented
in the Part/Whole block as follows:

holarchy(Holonld, HolarchyName,
PartsList, WholeList)

where Name is the name of the holarchy (since
a holon can belong to several holarchies at the
same time) and PartsList and WholeList are lists
containing the identification of holons related to
this one in that holarchy. For example:

holarchy(cell 1, sched holarchy, [res 234,
res 7], [scheduling])

The holon’s reasoning abilities make it draw
conclusions in the face of its knowledge, give
explanations about its conclusions, and acquire
new knowledge from the user, the environment,
or other holons. It is also responsible for the
holon’s behaviour. A possible and simple
solution for the previous example can be:

on_read < name(MySelf) A
read(msg(Q, R), Me, Sender) A
assert(peer(Sender)) A
((demo_afQuestion) A
send(msg(R), Sender, Me) A
handle goals
) v
handle_goals
A
retract(peer())

handle_goals « goal(G, E) A

Studies in Informatics and Control, Vol. 9, No. 2, June 2000

notG—>En
fail
handle_goals

where the predicate on read is called inside a
loop, and stops when a termination criterion is
reached (¢.g. maximum profit, user shut-down).
In event -driven systems, it can be attached to
the message-arrival event-handler.

The predicate demo_a(P) handles any event
within the holon’s boundaries, or tries to solve it
by inheritance (ie. looking at the holon’s
classes for a specific ability upon request). For
example:

demo a(P)« P
demo_a(P) «— name(MySelf) A

type(MySelf, MyType) A
demo_1(MyType, P)

demo_t(milling machine, load _execute(P))
« load_CNC _code(P) A
execute_ CNC_code()

demo o(T, P) « type(T, T2) A
demo_t(T2, P)-

In a scenario like the one where a user’s holon
(called, for instance, User#2) wants to execute a
certam Computer Numeric Control (CNC)
program in resource Resource#24, it proceeds
on sending a request to holon Resource#34, in
the following way:

send(msg(load execute('partl’), R),
user#2, rest24) A

read(msg(R), res#24, usert2)

Obtaining the result in R. Although holon
Resourcett 24 does not know how to answer to
load_execute(P), that ability is inherited from
its class milling machine. The inheritance is not
limited to two levels, as shown by the predicate

demo

3. Incomplete and Negative
Information

In this Section, the applicability of extended
logic programming to the representation of
partial information is investigated.

Studies n Informatics and Control, Vol. 9, No. 2, June 2000

3.1 Introduction

Considering the Logic Programming
framework, a question ”P to the database can
be proved or not (thus being frue or false).
However, classical logic programming is based
on some assumptions that impose limitations to
the kind of information processing necessary in
order to handle incomplete data. Some of these
assumptions are:

e Closed World - every data item missing from the
database is considered false;

e Closed Domain — every object in the universe of
disoourse is represented in the database.

Real systems, however, do not work on these
assumptions, and can largely benefit from
approaches that turn around these limitations.
Partial information commonly occurs in
knowledge bases and negotiation
procedures[16,17,18] .

The proposed object language for one’s system
is of familiar logic programming Ie. it contains
a two -place one-direction connective that forms
rules out of literals, which endorse two kinds of
negation, weak (also called negation as failure)
and strong (also called classical or explicit
negation). A strong literal is an atomic first-
order formula preceded by strong negation ‘—’.
A weak literal is a literal of the form not L,
where L is a strong literal. Informally, rot L
reads as there is no evidence that L is the case,
while —/ is to be interpreted as L is definitely
not the case.

In other words, instead of relying on the closed-
world assumption (i.e. everything not known is
false), the knowledge of something being false
must explicitly be represented in the Knowledge
Base (KB). Thus, the KB has two parts of
knowledge: what is known to be true, and what
is known to be false. Everything else is
unknown.

In Logic Programming this can be seen as:

demo(P, true) « P
demo(P, faise) « =P
demo(P, unknown)

where P is the goal to be proven and — stands
for “explicit negation’.

However, there are cases where the Closed-
World Assumption (CWA) makes sense, e.g. an
Order Management program can assume that if
an order is not in the system, then it does not

83

exist (i.e. it is false and not unknown). In that
case, the CWA is represented as:

—P « not P

which stands for P is false if it is not possible to
prove P.

By adding the ability to handle incomplete
information, a system’s database can better
describe the real world. In the manufacturing
case, there are several situations where the
whole information needed by the system is
unavailable, e.g. a customer’s order does not
completely state the product’s attributes (colour,
etc.). Instead of considering this as a malformed
input and of ignoring it, the system can use it to
guide its decision given the fact the information
available is of confidence. Le. in the previous
example of an incomplete customer order, the
customer really wanted to place the order and
would define the colour and other missing
attributes later on.

Although this information is not completely
defined, and thus it is impossible to really use it,
its existence can be of more use than if it were
not there. In a scenario of manufacturing
scheduling, it is not possible to allocate the task
and the complete list of materials for an
incomplete order. However, it is possible to
make a “low-commitment™ reservation for that
task and materials based on average duration
and statistical data, of which materials are used
more often.

3.2 Adding Incomplete Information
Handling

This Subsection gives examples of three types
of null values following the approach described
in [19]. Consider the knowledge base of a
manufacturing system presented by the
following productions.

order (100, manuel, [detail(300, meter,
shirt_ref350)])

order(101, carlos, [detail(10, unit,
pants_refl04)])

—order(Number, Customer, Details) <

not order(Number, Customer,
Details)

The last production states that if an order is not
represented in the knowledge base then it is
considered false. .e. closed-world assumption.

84

3.2.1 Null Values

A null value represents some missing data item.
An example is an order that was placed but the
operator did not know which customer had done it.

order(202, someone, [detail(20, unit,
sweater ref304)/)

null(someone)
exception_null(order(Number, _, Detail))
“— order(Number, Customer, Detail) A

null{Customer)

The first clause identifies the new knowledge.
The second clause actually states that someone
is a null value. The third one is the mechanism
for handling with null values for clauses of type
order/3.

If the query ?order(202, manuel, [detail(20,
unit, sweater ref304)J) is posed to the
database, the answer will be unknown instead of
false.

3.2.2 Null Values of A Possible Set

Another kind of null value represents
information of an enumerated sct. For example,
an order which the customer has not decided yet
the colour of the product for.

exception_set(order(303, josé,
[detail(10,meter, shirt_refl0a)]))
exception_setforder(303, jose,
[detail(10,meter, shirt_refl0b)]))

This type of null value implements the logical
exclusive or operator.

3.2.3 Prohibited Values

These kinds of null values specify situations not
allowed in the database. An example can be the
fact that orders are not accepted from
“Papolians” customers (from a fictional country
called “Papolia™).

null n_allowed(customer(Name, papolia))

3.3 Modifications in the Holon’s
Inference Engine

This Subsection presents the modifications
needed in the inference engine of the Holon in
order to accommodate and handle the kind of
incomplete information presented in the
previous Section. The predicate demo_a needs
be modified as follows:

Studies in Informatics and Control, Vol. 9, No. 2, June 2000

demo_a(P, true) <— P A not exception_null(P)
demo_a(P, unknown) < exception_null(P)
demo P, unknown) « exception_set(P)
demo_a(P, not_allowed)«null_n_allowed(P)
demo_a(P, false) «— —P A not exception_sel(P)
demo (P, T) « name(MySelf) A

type(MySelf, MyType) A

demo_tMyTvpe, P, T)

demo_ofP, unknown)

Obviously, the call to demo_o also needs be
changed and the answer sent back to other
agents should now contain the frue-value
returned by demo_a.

on_read < name(MySelf) A
read(msg(Q, R), Me, Sender) A
assert(peer(Sender)) A
((demo_a(Question, T) A
send(msg(R, T), Sender, Me) A
handle goals
) v
handle goals
) A
retract(peer(_))

The agent who requested the information
(Sender) must know to act accordingly to the
true value T that he received for his question.

3.4 Sample Questions

Some questions that can be posed to the system
and the respective answers are presented next.

?-demo_aforder(100, manuel,), T)
T =true

?- demo_aforder(105, miguel,), T)
T = false

The previous example shows the normal
functioning of the system, the order 100 is for
customer manuel, so it is frue. The second
situation shows the CWA at work, since that
order is not present in the KB, it is considered
Jalse.

?-demo_aforder(202, miguel,), T)
T = unknown

The next example is a situation where a null
value was declared. so the answer would be
unknown.

?- demo_aforder(303, josé, [detail(10,
meter, shirt_refl0Oa)]), T)

Studies in Informatics and Control, Vol. 9, No. 2, June 2000

T = unknown

?-demo_aforder(303, josé, [detail(10),
meter, shirt ref47X))), T)

T = false

The second question in the previous example
shows that the answer will be false if the
question is not one of the multiple choices that
had been declared.

?- demo_af(customer(pappee, papolia), T)
T = not_allowed

In this last example, a not allowed value is
returned when trying to prove for a “papolian”
customer.

4. Case Application:
Manufacturing Scheduling

Scheduling of manufacturing tasks is concerned
with the allocation of task’s operations to
resources in order to complete a task within
specified constraints. These constraints include
delivery date, quality degree, ctc.

The scheduling procedure must take into
account things like duplicate functionality (i.e.
several resources are able to perform the $ame
operation), load balancing, production policies
(e.g. JIT, make to stock, etc.), and the dynamics
of the shop-floor (e.g tool set-up times,
resource unavailability — due to break-down or
maintenance).

4.1 Proposed System Architecture

This Subection briefly describes a system
architecture for the dynamic scheduling of
manufacturing orders (a2 very detailed
description is given in [13, 20] and is not the
objective of this paper). The Fabricare system
(http://www.dei.isep.ipp.pt/~psousa/fabricare/),

as it is called, uses a scheduling procedure
adapted from a centralised method described in
[21], and an adaptation[22] of the Contract Net
Protocol [23] .

The user interacts with the system via a special
agent called Task Manager that is responsible
for launching new Task Agents. For the
scheduling of operations, a Task Agent will
negotiate with Resource Agents, and establish a
contract. The Resource Agents will then use
constraint propagation in order to guarantee the
relationships among the different operations that
aim at the same task (Figure 3).

85

#329

| A ;\I | Manager

Py B -
Loy - | '\\

User P .

//‘ ‘ \
| e
&i/,,ﬁ —_—— 4___
| Resource #12¢————— Resource 4—-#-————.1‘ Resource #76 .

!

| | |

Figure 3. System Operation

A first implementation[24] of this architecture
was used to test a framework for Holonic
Manufacturing Systems. In that work, a C++
framework was built with classes representing
agents’ generic behaviour and application
specific classes were used for particular agents
(e.g. a resource, or a specific resource). This
paper addresses a new approach to be described
in the next Section.

soza {Landafine.

4.2 Prototype Application

The prototype application (Figure 4), called
Fabricare, was built using SICStus Prolog for
the agent’s part of the system, and Visual Basic
for the user interface.

Figure 4. The Prototype’s GUI

At this stage, communication is donc using
SICStus’s implementation of the Linda co-
ordination technology [15] that handles all
aspects of communications, by implementing a
shared tuple-space (i.e. there are no directed
communications between agents). The use of
the Linda has significantly improved the
prototype’s development, but it may become a
severe bottleneck [26], since it introduces a
centralised element into the system.

Since the development is at an early stage, the
prototype is very simple, and has been used

86

mainly to test the correctness of the distributed
version of the scheduling procedure. At this
moment, Task Agents always choose the earliest
time interval available from the several solutions
bided by resources, and only consider the first
resource bid for each operation (ie. it does not
take advantage of different production paths).

Although the ability of handling incomplete
information is incorporated in the system, the
decision process is not yet guided by that
knowledge. However, the database can be
quenied regarding incomplete and negative

Studies in Informatics and Control, Vol. 9, No. 2, June 2000

information. Resource Holons will use this
information to generate low -commitment
schedules into their agendas.

Exchanged messages between task and resources
are Prolog clauses writien to and read from the
Linda tuple-space. Each clause has identifiers which
indicate the origin and the destination agent, as well
as a tag that makes it possible for each party to
identify related messages.

Each agent usecs the relation block of the agent
archetype (Figure 2), to maintain confidence
information about other agents. This
information can be used by the Task Agents to
select among different Resource Agents, those
that bided the same operation.

5. Conclusions and Future
Work

Future work will include the support for an agent
communication language (e.g. KOQML [9]) for
directed communication between agents, and the
mechanisms to avoid the bottlenecks that may
exist with the use of the Linda.

Some kind of a directory service is also
necessary for each agent to locate other agents
and advertise its own abilities.

Future Work also includes running the system
with some publicly available benchmarks for a
better comparison with other distributed and
centralised systems.

An architecture was proposed and presented, to
allow the modelling of intelligent agents with
inheritance. This architecture was used to build
a prototype of a manufacturing system.

The proposed architecture also allows the
modelling of incomplete information in the
system. Incomplete information can be used to
help the decision process thus providing an
added value to system instead of being treated
as erroneous data.

An important aspect that allowed for a reduced
development time and code-size (when compared
to the C++ version) was the use of the Prolog
language, due to its symbolic processing nature,

The use of a programming language more
specific to the Artificial Intelligence field (i.c.
Prolog) makes it possible to quickly use the
existing body of research in such matters as
rationality, decision support, etc.

Studies in Informatics and Control, Vol. 9, No. 2, June 2000

Acknowledgment

This work has been partially supported by
ESPRIT project 21955 — Intelligent
Manufacturing Systems Working Group. The
first author would also like to express his
gratitude to the Scientific Council of ISEP/IPP
for their financial support.

REFERENCES

1. SOLBERG, J. and KASHYAP, R .
Research in Intelligent Manufacturing
Systems, Proceedings of the IEEE, Vol.
81(1), January 1993.

2. VALCKENAERS, P, BONNEVILLE, F., VAN
BRUSSEL, H, BONGAERTS, L. and WYNS,
J. Results of the Holonic Control System
Benchmark at K.U. Leuven, Proceedings of the
Rensselaer's 4th International Conference on
Computer Infegrated Manufactring and
Automation Technology, 1994.

3. GREEN, S., HURST, L., NANGLE, B,
CUNNINGHAM, P., SOMERS, F. and
EVANS, R, Software Agents: A Review,
Intelligent Agents Group Report, 1997.

4. GENESERETH, M. and KETCHPEL, S.,
Software Agents, COMMUNICATIONS
OF THE ACM, 37(7), 1994, pp.48-53.

5. SHOHAM, Y. Agent-Oriented
Programming, ARTIFICIAL
INTELLIGENCE, 60(1), 1993, pp.51-92.

6. SCHAERF, A, SHOHAM, Y. and
TENNENHOLTZ, M., Adaptive Load
Balancing: A Study in Multi-agent
Learning, JOURNAL OF ARTIFICIAL
INTELLIGENCE RESEARCH, Vol 2,
MORGAN KAUFMANN PUBLISHERS,
1995, pp. 475-500.

7. DURFEE, E. and ROSENSCHEIN, J,
Distributed Problem Solving and Multi-
agent Systems: Comparisons and
Examples, Proceedings of the 13%
International Distributed Artificial
Intelligence Workshop, 1994, pp. 94-104.

8. FERBER, J., Modéle de systémes multi-
agents: du réactif au cognitive,
Proceedings of INFAUTOM'93, Toulouse,
18-19 February 1993, pp. 26-56.

87

10.

11

12.

13.

14.

15;

16.

17.

18.

88

FINN, T., LABROU, Y. and MAYFIELD,
J. , KQML As An Agent Communication
Language, in J. Bradshaw (Ed.) Software
Agents, AAAT PRESS/MIT PRESS, 1997.

KOUISS, K., PIERREVAL, H. and
MEBARKI, N., Using Multi-Agent
Architecture in FMS for Dynamic
Scheduling, JOURNAL OF
INTELLIGENT MANUFACTURING,
Vol. 8, Chapman & Hall,1997, pp. 41-47.

PARUNAK, H. , What Can Agents Do in
Industry and Why?, Proceedings of the
2 International Conference on
Cooperative Information Agents (CIA'98),
Paris, 3-8 July 1998.

SOUSA, P. and RAMOS, C., Proposal of
A Scheduling Holon for Manufacturing,
Proceedings of the 2™ International
Conference on the Practical Application of
Agents and Multi-Agents Technologies
(PAAM’97), London, 21-23 April 1997,
pp. 255-268.

SOUSA, P. and RAMOS, C., A Dynamic
Scheduling Agent for Manufacturing
Orders, JOURNAL OF INTELLIGENT
MANUFACTURING - Special Issue on
Agent Based Manufactuning, Vol 9(2),
Chapman & Hall, 1998, pp. 107-112.

KOESTLER, A, The Ghost in the Machine,
HUTCHINSON & CO, London, 1967.

ANALIDE, C. and NEVES, J., Estruturas
Hierirquicas com Heranga. Unidade de
Ensino. Departamento de Informatica.
Universidade do Minho, Braga, Portugal,
Janeiro 1997.

NEVES, J, A Logic Interpreter To
Handle Time and Negotiation in Logic
Databases, Proceedings of the ACM 1984
Anmual Conference, San Francisco, CA,
1984.

TRAYLOR, B. and GELFOND, M,
Representing Null Values in Logic
Programming, i of the
International Logic Symposium (ILPS’93),
Vancouver, British Columbia, Canada, 1993.

NEVES, J., MACHADO, J., ANALIDE, C,,
NOVAIS, P. and ABELHA, A, Extended
Logic Programming Applied to the
Specification of Multi-Agent Systems and
Their Computing Environment,
Proceedings of the 1997 IEEE International

19.

20.

21.

22,

23.

24.

25,

26.

Conference on Intelligent
Systems, Beijing, 1997.

Processing

ANALIDE, C. and NEVES, L
Representagio de Informagdo Incompleta,
Unidade de Ensino, Departamento de
Informética. Universidade do Minho, Braga,
Portugal, Novembro 1996.

SOUSA, P., RAMOS, C. and NEVES, J.,
Contracting Tasks Between Autonomous
Resources — An Application to Dynamic
Scheduling of Manufacturing Orders,
Proceedings of the 4" International
Conference on the Practical Application of
Agents and Multi-Agent Technologies
(PAAM’99), London, 19-21 April 1999,
pp. 345-362.

RAMOS, C., ALMEIDA, A and VALE,
Z., Scheduling Manufacturing Tasks
Considering Due Dates: A New Method
Based On Behaviours and Agendas,
International. Conference on Industrial and
Engineering Applications of Artificial
Intelligence and Expert Systems,
Melbourne, 1995.

SOUSA, P. and RAMOS, C. A
Distributed Architecture and Negotiation
Protocol for Scheduling in
Manufacturing Systems, COMPUTERS
IN INDUSTRY - Special Issue on Life
Cycle Approaches to Production Systems:
Management, Control and Supervision,
Vol. 38(2), ELSEVIER, March 1999,
pp.103-113.

DAVIS, R. and SMITH, R., Negotiation
As A Metaphor for Distributed Problem
Solving, ARTIFICIAL INTELLIGENCE.
Vol. 20(1), 1983, pp. 63-109.

SILVA, N, SOUSA, P. and RAMOS, C., A

Holenic Manufacturing System
Implementation, Proceedings of the
Advanced Summer Institute (ASI'98).

Bremen, 14-17 July 1998.

BJORNSON, R, CARRIERO, N,
GELERNTER, D. and LEICHTER, I,
Linda, the Portable Parallel, Technical
Report 520, Yale University Department of
Computer Science, January 1998.

NWANA, H., LEE, L. and JENNINGS, N,
Coordination in Software Agent Systems,
BT TECHNOLOGY JOURNAL, 14 (4),
1996, pp. 79-88.

Studies in Informatics and Control, Vol. 9, No. 2, June 2000

