Aspects Of Co-operation in Distributed Manufacturing
Systems

Paulo Sousa, Nuno Silva

Instituto Superior de Engenharia do Instituto Politécnico do Porto

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

PORTUGAL

E-mail: {psousa | nsilva}(@dei.isep.ipp.pt

Martin Kollingbaum
University of Cambridge
UNITED KINGDOM

E-mail: mjk27(@eng.cam.ac.uk

Abstract: It is current practice in manufacturing enterprises
the policy of directly controlling all the phases of business
processes, leading to an overwhelming amount of
knowledge and competencies to maintain. From the
Information System’s point of view, these corporations had
monolithic software architectures (e.g. Computer Integrated
Manufacturing) with rigid control structures.

Some recent trends in business in peneral, and
manufacturing in particular, lead to new approaches
regarding the organisation and software architecture, mainly
through adopting distributed solutions. The paper presents
several issues related to this new concept of Distributed
Manufacturing Systems, its properties (e.g. autonomy) and
behaviours (e.g. co-operation), as well as three different
organisational models: Bionic Manufacturing, Fractal
Factories, and Holonic Manufacturing Systems. A survey of
existing work is presented and compared.

Paulo Sousa studied Computer Science at Instituto
Politécnico do Porto (Polytechnic Institute of Porto,
Portugal) - ISEP/IPP from 1990 through 1995 with a
specialisation in Industrial Informatics. In 1998, he
successfully concluded a post-graduation on "Distributed
Systems, Computer Architectures and Computer
Communications" at Universidade do Minho (University of
Minho, Portugal), and started his Ph.D on Holonic
Manufacturing Systems. Paulo Sousa worked for 3 years as
an application developer for a Portuguese software house in
the field of electronic archives. database retrievals and
component building, In 1996 he became Assistant Professor
at ISEP/IPP. His main research imerests are Computer
Graphics and Distributed Intelligent Systems. URL:
http://www.del.isep.ipp.pt/~psousa

Nuno Silva studied Computer Science with a specialisation
in Industrial Informatics at Polytechnic Institute of Porto,
Portugal (ISEP/IPP). In 1998 he got his M.Sc degree from
the University of Porto regarding Holonic Manufacturing
Systems. He has been Assistant Professor at ISEP/IPP since
1995.

Dr. Tapio Heikkild received the degree of Diploma
Engineer in Control Engineering, Licentiate of Technology
in Systems and Control Engineering, and Doctor of
Technology in Computer Engineering from the University
of Oulu, Oulu, Finland in 1983, 1986 and 1991,
respectively. From 1983 to 1986 he worked as assistant and
researcher at the University of Oulu. From 1986 to 1993 he
worked at the Technical Research Centre of Finland (VTT),
m Electronics Labory as a scientist, senior scientist and the
head of Mechatronic Section. Currently he is chief research
scientist at the Autémation Institute of VTT . He has also
been a guest researcher at the Electrotechnical Laboratory in

Studies in Informatics and Control, Vol. 9, No.2, June 2000

Tapio Heikkila

VTT Automation

Oulu

FINLAND

E-mail: Tapio.Heikkila@vtt.fi

Paul Valckenaers

Katholieke Universiteit Leuven

BELGIUM

Email: Paul. Valckenaers@mech kuleuven.ac.be

Tsukuba, Japan, and at the Fraunhofer - Institute for
Manufacturing Engineering and Automation (IPA). Since
1996 he has also held a position of Docent of Systems
Engineering at the University of Oulu. Dr. Heikkila's
research interests include intelligent manufacturing systems,
intelligent robotics, mechatronic systems and multi-agent
technologies. Dr. Heikkild is a member of IEEE, of the
Robotics Society of Finland, and the Finnish Automation
Society.

Martin Kollingbaum was bomn in 1962 in Austria. In 1987
he joined the Institute of Flexible Automation, Technical
University Vienna and was involved in the development of
database technology for telecommunication facilities. After
graduating in Computer Science from the Technical
University Vienna, between 1990 and 1994 he worked in
industry as a software engineer . In 1994 he again joined the
Institute of Flexible Automation to be involved in a research
project on agent technology in industrial environments.
1997 he worked as a research scholar at the University of
South Carolina. Since October 1997 he has been research
associate at the University of Cambridge, UK.

Paul Valckenaers received the Applied Mathematics
Engineering degree in 1983, the Computer Science
Engneermg degree m 1985, and the Mechanical
Engineering Ph.D degree in 1993, all from the Katholieke
Universiteit Leuven, Belgium. Since 1986 he has been with
the Mechanical Engineering Department, division PMA, of
the Katholicke Universiteit Leuven. His main research
interests are in programming, scheduling and control of
flexible production systems and design theory for the
development of flexible and complex production systems.
His current research activities focus on Holonic
Manufacturing Systems (HMS) and multi-agent systems.

1. Introduction

Manufacturing comprises all phases needed to
provide a product or service from order booking
through design, production, and marketing. The
majority of the manufacturing enterprises had
the usual policy of directly controlling all the
phases of business processes. Furthermore,
there was also the idea that all these phases
should be done inside the enterprise with
internal staff.

89

Three common trends are observed in today's
manufacturing context [1] (from the analysis of
different opinions):

¢ Increased product variety over time,
e Increased technological complexity,
e Market globalisation.

Another observation is the current shift towards
the Customised Society [2], where the one-size-
fits-all model is replaced by the one-of-a-kind
production model. These new trends suggest the
need for different approaches, namely
concerning Workforce Flexibility, Knowledge
Supply Chains; Rapid Product/Process
Realisation; Next-Generation Manufacturing
Processes & Equipment; Pervasive Modelling &
Simulation;, Adaptive, Responsive Information
Systems; Extended Enterprise Collaboration;
Enterprise Integration[3].

Computer supported manufacturing systems
(e.g. CIM) had been characterised by monolithic
structure, centralised control, low flexibility and
adaptability, but also efficiency under intensive
and repetitive processes. However, as a shift is
being made towards the Customised Society,
these features no longer represent an added
value to the manufacturing enterprise.

It is common sense knowledge that
decentralised structures offer better flexibility
and adaptability than rigid hierarchical ones.
Distribution and decentralisation have also
proven its value in computer science fields such
as databases, file systems, etc. and become
increasingly usual with the advent of the
Internet. Therefore, it is natural that these
concepts, techniques and methodologies are
applied to manufacturing as well. A distributed
decentralised architecture is a natural way of
modelling a manufacturing enterprise since the
manufacturing system is comprised of several
entities such as resources, tasks, tools, etc.

Original Computer Integrated Manufacturing
(CIM) concept lacks features such as
distribution and decentralisation. Hence,
Distributed Manufacturing Systems (DMS) are
proposed as the next evolutionary step from
traditional CIM architectures.

The paper is organised as follows: Section 2
presents Distributed Manufacturing Systems,
and their reason of existence, characteristics and
behaviours. Section 3 introduces the field of
Agent-based computing as a technology for
building DMSs. Section 4 presents three
different approaches to model Distributed

90

Manufacturing Systems. In Section 5 some
related work is presented and compared from
the point of view of co-operation. Final remarks
can be found in Section 6.

2. Distributed Manufacturing
Systems

On today's global and highly competitive
market, enterprises must be aware of
momentary market opportunities, and quickly
and properly react to customers' demands.
Analysing the above mentioned trends,
distribution offers suitable solutions:

e Increasing product diversity over time expands
associated riskes and costs, which are sometimes
prohibitive. However, distributing responsibilitics
by multiple entities, risks and costs become
acceptable and market opportunity can be
achieved,

e Increasing technological complexity enforces
cnferprise to acquire knmowledge in
non-fundamental domains, which implies
increased time-to-market periods. However,
distributing competencics by different enterprises,
each one maintains its core competency while
achieving the market opportunity;

e Market globdlisation virtnally increases both
has to operate in the global market with globally
based enferprises supplying global products.
However, developing relations and partnerships
risks while benefiting from a wider market.

Different management approaches have been
adopted, related to different levels of
partnership, trust and dependency between
enterprises [1]:

o Supply Chain management, characterised by
rudimentary relationship between supplied and
supplier, tasks and technological competencies
distribution, but centralising strategies and risks;

o Extended Enterprise, where entities develop more
durable, coupled and mutual intervening relation,
sharing technological and strategic efforts. Yet,
supplied entity maintains a dominant position
over suppliers,

o Virtual Enterprise, is a very dynamic and
restructuring organisation, where supplier and
supplied are undifferentiated and no dominant

Although previous description relates to inter-
enterprise context, the same characteristics and

Studies in Informatics and Control, Vol. 9, No.2, June 2000

behaviours (distribution, decentralisation,
autonomy and dependency) are also suggested
in an intra-enterprise context. Intra-enterprise
workgroups emphasise self-competencies while
combining efforts for a global response to
external requirements.

DMS is an abstract concept (ie. a class of
systems) characterised by a set of common
features and behaviours, with several specific
characterisations (i.e. instantiations), named
organisational paradigms. In Section 2.1 and
Section 2.2 respectively, DMS properties and
behaviours are described and in Section 4 three
organisational paradigms are presented.

2.1 DMS Properties

DMS are characterised by several properties and
behaviours. Such features relate both to the
overall system and to each composing entity.
Basic properties include:

e _Autononty— An entity is said to be autonomous if
it has the ability to operate independently of the
rest of the system and if it possesses some kind of
control over its actions and internal state [4]. Le.
autonomy is the ability of an entity to create and
control the execution of its own plans and/or
strategies [5], instead of being commanded by
other entity (e.g. a master/slave relationship),

e Distribution — A system is said to be distributed if
different entities operate in the system,

e Decentralisation — Decentralisation means that an
operation/competency can be camied out by
multiple entities. One single system can be
simultaneously centralised and decentralised. Le.
(de) centralisation refers to operations, not to the
system itsclf;

o Dynamism - Refers to changes in the
manufacturing, system's structure and behaviour

Studies in Informatics and Control, Vol. 9, No.2, June 2000

during operation. This expresses different
competencies, rtesponsibiliics and relations
between entities;

e Reaction — An entity is said to be reactive if it
adjusts its plans according to its perceptions;

Other properties deserve a thorough description
and as such they will be presented in the
following Subsections.

2.1.1 Flexibility

Flexibility is the ability the system exhibits
during operation that allows it to change
processes easily and rapidly in a predefined set
of possibilities [I] each one specified as a
routine procedure, defined ahead of time so that
the needs to manage it are in place[3].

In manufacturing, Flexibility is related to
physical flexible machinery. Flexible is in the
sense that machines (or cells) are able to
execute several operations. In addition, they can
quickly change among different production
plans according to the part's type to manufacture
at a given point in time. The concept of Flexible
Manufacturing System (FMS) is very popular
with companies which produce small lots of
each product, mixing different lots in the
production flow. One of the main problems in
achieving flexibility is related to transportation.
Since a product will need pass through several
workstations in order to be manufactured and
different products will have different routes, the
transport links between workstations should be
as "free" as possible. Figure 1 shows the
routing of production lots according to its type
(different lines), among different workstations
of a shop floor.

91

Figure 1. Flexible Manufacturing System

2.1.2 Adaptability

Adaptability is the manufacturing system ability
10 be maintained casily and rapidly, in order to
respond to manufacturing requirements, based
on its shop floor constraints. Adaptability refers
to production facilities reconfiguration and
scalability; workforce that has the incentive and
flexibility to respond creatively to customer
needs [3] and thus requires flexibility. Ili-
specification is a well-known synonym.

A system is said to be adaptable if it can
continue to operate in the face of disturbances
changing its structure. properties and behaviours
accordingly to new situations it encounters
during its "life-time". A disturbance is any event
not previously and formerly specified (e.g.
machine breakdown or a new type of product to
manufacture). However, it is very hard to
predict every disturbance that may occur.

Figure 2 shows the expected cost for
developing., installing and running an
"adaptable" (bold line) and a "non-adaptable”

Imadenienialion fstaiatnn Expliation
5 /N £
,-"-\\ / % /'/ N .,J"
[o—
rfl’ .'
JJ,’J -
% / ‘
o r f;
o V. Y ——
/
el /
VA
Vi
/
PR
time
i— non adaptable -~ — adaptable |
Figure 2, Expected Cost/Time Plot for Adaptable and Non-adaptable Systems
92 Studies in Informatics and Control, Vol. 9, No.2, lme 2000

system (thin line} — values are empirical and
inluitive. The first sector (from the left to the
first vertical bar) represents the development
phase: here the cost of developing an adaptable
system is higher than a rigid one. The main
reason for this is that the programming effort for
fault—tolerance. reconfiguration. elc. is greater
than the one to be invested if the problem were
simplified by not adding this functionality. On
the second sector (installation). the cost of the
adaptable system is still higher than the non-
adaptable system's. The effort for configuring
all the components and extra-coding necessary
for additional information feedback from the
hardware is the main reason for this higher cost.

On the third stage (exploitation). it is expected
that the adaptable svstem will give rise to lower
costs by handling disturbances with minimum
human intervention, without stopping the
production or causing great delays and long
waiting queues. Since this is the longest phase
(the system is supposed to be "up-and-running"
for several vears), the higher costs of the initial
phases are attenuated.

Adaptability is an important issue for a
manufacturing system. especially when
considering the down-time — idle production
units — which, as in automotive industry, is
around 5,000 USD per minute [6].

Machine Breakdown

Figure 3. Adaptability needs Flexibility

An important functionality of an adaptable
system, related to maintenance and
extensibility, is some form of "plug & play”. It
should be possible to add or replace hardware
and the corresponding sofiware modules on the
flv, without stopping the system. The system
should also be able to reconfigure itself for new
replicated resources, or unavailability of
resources, by setting new routing courses for
products. This can also have a side -effect of
load balancing. In order to adapt, the system
needs flexibility. Some disturbances can be
handled without any kind of change in the
manufacturing structure (e.g. slight delay of one
lot). However, cases exist where is mandatory
to change the physical layout (or routing) of the
shop floor (e.g. a machine breakdown).

Figure 3 shows a scenario of two identical
production lines. When a machine has a
breakdown the system can only adapt to this
situation if the physical system is {lexible

Studies in Informatics and Control, Vol. 9, No.2. June 2000

enough to re-route the production flow. If this
flexibility does not exist, the system can only
adapt by not accepting anything on production
line 1 - certainly not a verv good solution.

2.1.3 Agility

Agility is understood [3] as a management
paradigm, consisting of different approaches in
multiple organisational domains. However,
Agility presumes system empowerment,
achicved by continuous observation searching
for new market opportunities. Agile
manufacturing cnterprise continually evolves to
adapt itself and to pursue strategic partnerships
in order to prosper in an extremely dynamic and
exigent economy.

Agility needs co-operation. According to |7],
“To *Bridge gaps between visible and feasible’

93

{ \ |
Observations—————»
Requiremenis—r{

e environment ,

' S
a5 e
Agility |
(| Production ;
— | i Pians |
R
i 1 !
| |
bussiness strategies plans (new/modified)
| | plans
| ! \
! i 1
i | | .
Adaptability - Flexibility
‘ f !
3 L2
disthtl)ances plan + control feedback

!
| ' |
| + i

Shop-floor

Figure 4. Agility, Adaptability and Flexibility

it is necessary to develop co-operative thinking
and working. Unpredictability has to be limited
by a mutual consulting, by mutually agreed
scenarios, by a common sense and language.”

2.1.4 Agility, Adaptability and Flexibility

Figure 4 represents the Agility, Adaptability and
Flexibility properties, specifying their purposes
and relations in the system. The three properties
relate to Change Management needed to adjust
manufacturing system, in order to solve
business disturbances.

Flexibility is the simplest approach and relates
directly to the shop floor. It allows the shop
floor to react accordingly in a predefined set of
possibilities to meet primary disturbances in
production. Feedback from the shop floor
comes mainly with the identification of the
current lot, which will serve as a basis of
decision for the download of the correct
production plan.

On the contrary, Adaptability is based on sub-
specification; i.c. the system is not completely
defined, which allows run-time specification
and change according (0 momentary
requirements. Adaptability must be able to
understand the disturbances in the shop floor,

94

generating new production plans for the current
situation if necessary.

Agility is the uppermost concept and relates to
strategic options. Perceiving its business
environment, the enterprise has to continuously
evolve, adapting internally and pursuing
external strategic partnerships that complement
its own competencies.

Adaptability also plays an important role, by
understanding the business strategies generated
by the “agility module”. Using these strategies,
new production plans or modified ones are
added to the production plans database to be
used at the shop floor. These new plans may be
alternative ways of making current products, or
plans for the production of new products.

2.2 DMS Behaviours

A Distributed Manufacturing System may
exhibit several behaviours, the most important
one, for the scope of this paper, is co-operation.
However, the goal of any system (not only in
manufacturing) is to behave coherently.
Coherence refers to how well a set of entities
behaves as a whole [8]. A coherent system will
minimise or avoid conflicting and redundant
efforts among entitics [9].

Studies in Informatics and Control, Vol. 9, No.2, June 2000

The real question is: How to achieve a coherent
state? In order to reach a coherent state, agenis
in a system may engage in one or more of the
following processes with each other:

» Co-operation —a process whereby a set of entities
develops mutually acceptable plans and executes
these plans [5]. These entities explicitly agree to
try to achieve a goal (or several goals) with the
partial contribution of each participant. The goal
needs not to be the same for each participant, but
every participant expects to benefit from the co-
operation prooess.

o Coordination — is the process of managing
mierdependencies between activities [10]. Le. "the
harmonious functioning of parts for effective
results" [11].

» Competition — is a process whereby several
entities independently try to achieve the same
goal (with or without the knowledge of the other
participants — explicit or implicit competition). Le.

“to strive consciously or unconsciously for an
objective" [12].

e Control or command — is a process where one
entity rules the actions of another (limiting its
autonomy). Bradshaw [13] defined control as:
Who (an agent) does what (task/action), where
(spatial localisation), when (temporal localisation)
and with whom (other agents).

During the system’s execution, it is-only natural
that all of these behaviours are observed. For
instance, a Distributed Problem -Solver will
exhibit both co-operation and co-ordination.
The several solvers co-operate by sharing effort
among them; they also co-ordinate their
activities’ dependencies. E.g. on a finite element
analysis, each solver operates only on a small
set of data, requiring it to exchange some data
with its neighbours. They co-ordinate their
activities so that each one’s output is valid, and
co-operate by dividing the workload.

Coherence

\\\

' o ' ‘ | : | : Control

| t H . | | | 1
| Competition Co-ordination j Co-operation I | (command) ‘

techniques techniques techniques techniques
‘) | t
1 Structural Negotiation Negotiation ' 1 Structural
Organisation ' Organisation
i Structural -

Stimulus Reaction ‘ Organisation

i i Multi-agent
| ! Planning
o

|

Game Theory

j Stimulus Reaction |

N

|
|
|

|
Structural i
Organisation |
\

\
|
|
{

& S

Multi-agent
Planning

Game Theory '

Figure 5. Relation Between Coherence, Co-ordination. Co-operation. Competition and Control

Figure 5 shows the relation among the above-
mentioned behaviours. This Figure shows that
coherence is the overall goal (i.e. whatever
actions taken in the system its state is always
coherent), thus imposing limitations to
competition, co-ordination and co-operation. It
also shows that Co-ordination may require co-
operation (as shown in the Finite Element

Studies m Informatics and Control, Vol. 9, No.2, June 2000

Analysis example above) but may also exist per
se. E.g. if a person is running towards another,
and the other gets out of his way, they have co-
ordinated their actions, however, they have not
entered into co-operation (no explicit agreement
was made).

95

Several techniques exist for each of these
behaviours, and only some are shown in Figure
5. Examples and definitions are given next:

e Stuctural organisation — exploits the a priori
organisation of the system, because the
organisation implicitly defines the agent's

ihlities, il e
control flow [9]. E.g master/slave; client/server.

o Stimulus reaction — allows an agent to changg its
plans and actions according to its perceptions.
This technique involves no comnmumication (at
least direct and explicit) between entities, instead
is based on the observations one entity makes
from the environment and other entities.

e Negotiation — is the effort made by two or more
entities to achieve an agreement benefiting them;
negotiation is a technique to achieve co-operation
and/or co-ordination.

e Multi-agent planning — avoids inconsistent or
conflicting actions and interactions, by building a
multi-agent plan that details all their (agents)
firture actions and interactions required to achieve
their goals.

o Game theory — helps to understand the
interactions of decision-makers. The basic
assumptions that underlic the theory are that
decision-makers pursue well-defined objectives
(they are rational) and take into acoount their
knowledge or expectations of other decision-
makers’ behaviour (they reason strategically)
[14]. E.g. prisoner’s dilemma.

For a detailed description of co-ordination issue
(and its relation to co-operation, as well as co-
ordination techniques) please refer to [9].

2.2.1 Co-operation

One popular technique used in many DMSs is
the Contract Net Protocol [15]. When an agent
poses a request in the system, several agents
able to provide the requested service bid their
offers, thus competing with each other. When
the consumer agent reaches an agreement with
one of the provider agents, they begin to co-
operate. In addition, refined models of the
Contract Net may allow for the proposal and
counter-proposal exchange between agents
negotiating the best deal for everybody [16].
Another refinement is the Contract Net with
Constraint Propagation [17] model where agents
compete for operations (sub-tasks), but also co-
ordinate their actions with other agents for the
fulfilment of dependencies between operations.

96

As shown above this system exhibits several
behaviours (even for a simple model as the
original Contract Net is). However, the one that
lasts longer is co-operation, hence the fact that
this kind of system is also called co-operative
system.

Co-operation in manufacturing is intuitively
proven necessary when adopting a distributed
solution [17].

e A product needs several operations, and probably
these operations are performed on several
resources. The job (ie. the mamifacturmg order)
must, in order to be executed, establish a contract
with the needed resources, thus entering a co-
operation process.

¢ The resources must co-operate to manufacture a
the dependencies between operations must be
observed

e When looking at the mmlti-enterprise level, each
company involved establishes plans accepted by
the other partners for the fulfilment of the global
objectives, They co-operate to mamufacture a
product (e.g. providing different assembled parts)
and/or to provide some kind of necessary service
(e.g. acoounting, distribution, quality testing, efc.).

The theory of neo-liberal institutionalism [18]
claims that co-operation rather than competition
becomes more advantageous in any given
scenario, following the hypothesis that the main
goal of an entity can be represented by its
individual pay-off rather than its relative gain
Under this hypothesis, provided that its pay-off
is positive, an entity does not care if another
gets a higher pay-off (implying a negative
relative gain) [19].

There are also social and political trends
towards co-operation. Through Human history,
tribes with individualist behaviour gave rise to
ancient civilisations (Romans, Egyptians) with
imperialistic motivations, which continued to
exist in the modern civilisations. Nowadays,
through international co-operation protocols,
one can usually see a richer country helping a
poorer one. The poor country's objective is to
grow its economy, while the richer country is
seeking for political advantages for future times,
as well as economic advantages for its
enterprises which decide to invest in the other
country. They have different individual
objectives, however the concerted actions of
both give then benefices and thus they have co-
operated.

Studies in Informatics and Control, Vol. 9, No.2, June 2000

However, co-operation is nothing new to the
world The old exchange mechanism used
before the invention of currency is a form of co-
operation. People traded goods they had in
excess for lacking ones. The usual commerce
people make in everyday life, buying and
selling items is a form of co-operation. There
are two participants that explicitly interact with
benefits for both, and that is the essence of co-
operation.

3. Agent Technology

Aspects of distributed manufacturing systems
have been described, which are important and
have an impact on the performance of such
systems. Overall behaviour of such distributed
systems depends on the interaction and co-
ordination of the distributed elements. Agent
technology provides means to implement such
distributed systems as a set of agents, which are
autonomously acting software entities with
capabilities to co-ordinate activities for creating
a desired overall system behaviour. Agent
technology is especially attractive to application
domains like manufacturing environments,
because “agents arc best suited for applications
that are modular, decentralised, changeable, ill-
structured, and complex.” [20].

In the following, an overview of important
aspects of this technology will be taken. For
detailed information, please refer to [21] and
[22] among many other valuable sources.
Starting with a descripion of agent
architectures, the importance of interaction and
communication abilities of agents to enable co-
ordination and co-operation is outlined.

3.1 Agent Architectures

A lot of work has been done to answer
questions about necessary architectural issues of
agents. Two main types of architectural
concepts have emerged over time,
“deliberative” and “reactive” architectures.

Agents with a deliberative architecture maintain
an internal symbolic representation of the
world, have planning and reasoning capabilities
to pursuc specific goals, and are able to
communicate and negotiate with other agents to
achieve some form of co-ordination. A famous
deliberative architecture is the so-called BDI-
architecture (Belief, Desire, Intention) [23].
This concept describes the internal processing
state and behaviour of an agent in terms of
mental categories like beliefs, desires, and

Studies in Informatics and Control, Vol, 9, No.2, June 2000

intentions. Beliefs are the agent’s current view
or expectations of the current state of the world.
Desires specify preferences or goals over future
world states or preferences for actions, which
can produce such a desired world state. An
intention represents a commitment of an agent
to perform a specific plan or course of action to
satisfy a specific desire or goal. Therefore, an
implementation of this architecture will provide
data structures, which allow to manage facts,
goals, and plans to represent beliefs, desires,
and intentions. The agent stores beliefs or facts
about the world, about other agents, and the
agent’s own state. Goals represent desires
(actually the “consistent subset of desires, that
an agent shall pursue, because — according to
the “property of realism” - an agent must
believe, that its goals are achieve-able), and
plans implement intentions to satisfy goals.

Reactive agent architectures allow to create
agents, which have a close connection of
sensors to actuators, which provides them with a
kind of “perception-driven” reactivity. Events
from the environment of such an agent trigger
pre-wired patterns of behaviour, This behaviour
is described as situation-action rules. These
agents have no shared symbolic representation
of the world and no explicit reasoning
capabilities. Brook’s concept, the “Sub-
sumption Architecture” [24], is an example of
how to implement purely reactive agent
architectures. Without any internal
representation of the world, a stimulus-response
schema works well enough to allow an agent to
act in quite complex environments. Brooks
implemented a couple of successful applications
in the robotics area, based on this architecture.

An important aspect of agent technology is the
ability of agents to co-operate in problem-
solving and to co-ordinate their activities so that
to generate co-operation in an agent application,
Co-operation is a concept of deliberative
architectures, where agents are able to maintain
beliefs about other agents and where these agent
architectures provide communication facilities
to enable a knowledge exchange between
agents. Aspects of interaction, communication,
co-ordination and implementation of negotiation
schemata are described in the following.

3.2 Agent Interaction

Multi-agent systems are distributed applications
where single agents try to achieve co-ordination
of their activities with other agents, to create an
intended overall system behaviour. Co-
ordination of activities can be achieved by a
specific form of interaction between agents.

97

Agents, which co-ordinate themselves to pursue

a specific shared or pglobal goal, are “co-
operating” in this activity.

Co-operation and co-ordinated behaviour of
agents depend on how single agents choose
their course of action. This decision process is
based on information, which is available to an
agent. It is very common to describe agents
exchanging messages and updating their
- intenal models or beliefs about the world and
other agents. However, as pointed out above,
there are different forms of agent architectures,
especially those which implement simple
reactive agents without any symbolic
represeniation of the world Such agents
respond to events with predefined responses,
triggered from state changes in the environment,
in which these agents are embedded. In
particular, the notion of “indirect interaction”
between agents resembles behaviour, which can
be found in biological systems like ant colonics.
Such systems are based on concepts like
pheromone spreading According to this
concept, agents do not interact directly, but with
their environment, posing or broadcasting
information into their environment, from where
it can be picked up by other agents. We
therefore distinguish two forms of interaction:

e Direct interaction - where agents directly
exchange some form of messages;

e Indirect interaction — where agents have no direct
commumication with each other, but somehow
interact with their environment, where, on the one
hand, they pose information without specifying a
specific recipient, and on the other hand just
collect information without knowing about the
sender.

3.2.1 Direct Agent Interaction

In terms of “direct interaction,” agents are
described as software entities, which exchange
messages to communicate statc information,
goals, elc. to maintain their models of the world.
Agents “co-operate” by co-ordinating their
activities. Using concepts of negotiation, tasks
are shared between agents to allow a concerted
problem -solving. Co-operation is an important
concept in agent systems. The process of co-
operation can be roughly described to take place
in the following three phases:

i Negotiation: agents negotiate on how to allocate
tasks to agents within an agent commumity; this
process is called “task -sharing” A famous
example for negotiation is the previously referred
Contract Net Protocol;

98

il. Execution: agents perform the assigned tasks and
share partial results; this is called “result-
sharing”;

iii. Result Reporting: agents report success/failure of
their activities to the commumnity.

The two concepts “task- sharing” and “result-
sharing” therefore determine co-operation. For
implementing task -sharing between agents, a
specific interaction schema must be established
between agents. Usually one agent will be
determined to take the role of a “master” or
“manager,” which distributes tasks or collects
results, In detail, task -sharing itself can be
implemented in the following flavours:

o Static allocation: here a specific agent is available
in the agent commumity, which knows how to
decompose a specific problem into a task
hierarchy and how to allocate these tasks to
agents,

o Predetermined dynamic allocation. this is
implemented by the Contract Net Protocol [15];

agents dynamically get the role of a master or
contractor (a contractor itself can in tum act as a

master for further sub-asking), but there is still
one top-level predetermined manager in the agent
system,

o General dmamic dlocation: no top-level
predetermined master exists, problems are posed
to all agents, each agent tries to come up with an
own sohition; the problem here is to find the
“best” solution.

The Contract Net Protocol is a well-known
interaction schema and widely accepted
implementation of negotiation between agents. As
already said, it allows task -sharing between
agents. Agents negotiate contracts for performing
specific tasks among each other. During this
negotiation process, agents can take over one of
two roles, manager or contractor. The manager
tries to create sub-tasks for his own task, and starts
the negotiation process in order to find contractors.
In particular, the contract net protocol works in the
following way:

i Ataskisassigned to an agent for execution,
ii. If the agent cannot execute this task, other agents
must be found for help, the agent is now a

manager, decomposing its unsolvable task into
sub-tasks;

iii. A negotiation process is started with other agents
to find contractors;

iv. Potential contractors send bids (expressing their
capability to manage the contract) to the manager;:
v. The manager uses the bids to choose a confractor.

Studies in Informatics and Control, Vol. 9, No.2, June 2000

3.2.2 Agent Communication

Direct interaction of agents is based on their ability
to communicate and exchange messages. Speech
Act theory [25,26,27] was originally developed to
model verbal communication between humans and
is used to describe the communication behaviour
of agents. In that sense, messages, which are
exchanged by agents, are the so-called speech acts.

A speech act is determined by three aspects
“Locution” (physical utterance), “Tllocution” (the
transfer of the intention of the sender to the receiver),
and “Per-locution” (the reaction of the receiver to the
illoation). Agent communication has to do with
these aspects. Agent communication languages like
KQML [28] have been developed which provide
message types, so-called “performatives”, to
implement speech acts These performatives
implement speech acts. The message type expresses
the “Tillocution™ or intention of the message. KQML
provides messace types like “ask” or “tell” allowing
agents to ask other agents for specific knowledge and
giving possibilities of response. KQML assumes that
each agent contains a kind of “virtual knowledge
base,” on which queries can be performed KQML
only provides message types, which express the
intention of the sender, the actual content of the
message must be formulated in a different langimee.
Here KIF (Knowledge Interchange Format) [29] is
often used

Communication between agents can only take
place if there is a common understanding
between agents about the concepts
communicated in messages’ content.

3.2.3 Agent Understanding

Ontologies are a means to create shared
understanding between communicating agents,
describing concepts and their relationships. [30]
points out that ontologies describe a common
vocabulary that models a specific application
domain. Each ontology defines mainly a set of
classes, their relationships and constraints for their
interpretation. An ontology therefore contains
descriptions of domain concepts and their
relationships. It is comparable to a data dictionary.
These concepts can be used by agents to interpret
the content of exchanged messages.

The modelling of ontologies resembles the data
modelling process known from database schema
modelling and object-oriented design. According

to that, Entity-Relationship diagrams or object- -

oriented concepts like UML [31] can be usad to
model ontologies. A special modelling language is

.

Studies m Informatics and Coatrol, Vol. 9, No.2, June 2000

described by IDEF5 [32] providing a method
determined to create ontologies.

4. DMS Organisational
Paradigms

Distributed Mamufacturing has been adopted for a
long time but its organisational structures were only
formalised and proposed as an essential solution in
recent years.

In order to achieve the above -mentioned
characteristics and behaviours, several
organisational paradigms were proposed, namely
the Fractal Factory [33, 34]. Bionic Manufacturing
Systems [35] and Holonic Manufacturing Systems
[36], which were comprised in a broader term
designated Open Hierarchical Systems. These
paradigms suggest the idea that manufacturing
systems will comtinue to need a hierarchical
structure beside the increased autonomy assigned to
individual entities. They also advise the hierarchy
needed to guaramee the inter-enfities conflict
resolution, and maintain the overall system
coherence and objectivity resulting from the
individual and autonomaus attitude of the entities.

4.1 Fractal Factory

Fractal Factory paradigm is based on the
mathematical fractal concept and the associated
theory of chaos. The fractal is characterised by
constant evolution will respect to its partners and
environment [37]. Warneke [33] defends the
factory of the future will be substantially different,
specially concerning its dynamic organisational
structure. It suggests the enterprise will abandon
the function -oriented organisation and adopt the
project- orientation management [34]. This
approach implies the organisational structure will
encapsulate the process and the technology,
therefore forming a cybernetic structure.

Thus, the factory will not have a predefined
organisation, but a more or less restricted set of
resources with static capabiliies, and a very
dynamic set of projects (tasks). Although the
resource is restricted in terms of quantity and
capabilities, combining multiple altematives, the
enterprise reacts timely and efficiently to business
requirements. In addition, the enterpriss is
naturally apt to combine its competencies with
external entities, increasing its ability to satisfy
market opportunities.

Conceptual behaviour is observed when a new
project is introduced into the system, initiating a

very dynamic process, responsible for
resource/task negotiation, leading to constant
changes 1in the enterprise structure and
organisation. Each resource notices the new
project event and concurs to the negotiation (it can
even compete) with remainder resources.
Considering those different projects requests
different competencies, resources are dynamically
associated with projects; thus, each resource may
belong to multiple projects yet maintaining its core
competencies.

This process is very dynamic and efficient, as the
resource can (well) decide on its own behaviour
and it would not rely on a higher entity to do so.

The fractal factory must be understood as a non-
lincar system [34], structurally reactive and
adaptive to the dvnamic context. Additionally, the
concept easily models different enterprise
dimension (e.g strategic, social,- cultural,
informational and technological) and thus it can
easily model enterprise reality in different
perspectives.

4. 2 Bionic Manufacturing System

Okino [35] introduced the Bionic Manufacturing
Systems and the Biological-oriented expressions, to
present the manufacturing system concept based on
structures and behaviours observed in biology. In
his analyses, Okino mentions the fact that from the
simplest through the most complex living form,
inside of certain hierarchically ordered relations, all
manifest autonomy, spontaneous behaviour and
social harmony. In biological systems, autonomy
and spontaneous behaviour concern the
responsibility for their activities and self-division
according to a genetic code named DNA'
Furthermore, consistency and goal -orientation arc
conceptually supported by the genetic inheritance,
in which the genetic code of the entity (be acell or a
complete living being) is inherited

BMS applies to mamufacturing systems the
structure and organisation behaviour of the living
beings, defining a parallelism between biological
systemns and mamifacturing systems.

The cell, organ or living being is modelled in BMS
by the modelon concept, which is composed of
other modelons, to form a hierarchical structure,
Each modelon has a very static set of propertics
and behaviours, which can be combined with
others, to form distinct entities also designated

1 The DNA is contained in chromosomes, stores the genetic
information about the individual to further transmission to
its descendants, during the cell division. Each species has
its own DNA composition and even each individual has its
own DNA composition that makes it unique.

100

modelons. The notion of DNA inhertance is
translated to mamifacturing context by the
properties and behaviours that are passed
intrinsically to developed modelons.

The information and commumication systemns in
manufacturing systems arise from the surrounding
emvironment existing in biological systems. In
addition, the notion of enzymes and its role in the
living beings is modelled in mamifacturing systems
by entities called supervisors. These entities are very
important since they are responsible for the regnlanion
and control of the system Furthermore, the
supervisors also play an organisational and structural
role, influencing the modelons relations, imposing
self-division or aggregation, in order to meet
requirements imposed by the environment. The self-
division and aggregation are specific mechanisms
implemented in BMS to fit the DMS concepunl
behaviour of co-operation.

4. 3 Holonic Manufacturing Systems

The Holonic paradigm ariscs from Herbert Simon's
and Arthur Koestler's studies about the biological
society evolution and orgamisation. Simon observed
that complex systems are hierarchical svstems
formed by mtermediate stable forms. Later, when
analysing Simon's theory and comparing it with its
own observations, Koestler percened that each
system and its intermediate forms did not exist as
self-sufficient and non-interactive elements. On the
contrary, they are simultaneously a part and a
whole, a container and a contained, a controller and
a controlled In order to represent this hybrid nature,
Koestler proposed the terms ‘Holon™ and Holarchy.
Holon is a combination of Gresk word holos
(whole) with the suffix on which, as in protor or
neutron, suggests a particle or part [38]. Holardhy is
“a hierarchy of self-regulaiing holons, in supra-
ordination to their parts, in sub-ordination to the
higher levels and I co-ordimation with
environment” [38). Additionally, the IMS — HMS
group defined a set of properties related to the
mamifacturing systems based on the holonic
paradigm:
e The holonic mamifachming system entities are
autonomous and co-operative;
e Holon has information about itself and about the
emvironment,
e Eachholon is composed of other holons and thus
each holon is also a holarchy;

e Each holon can dynamically belong to multiple
holarchies;

e The holarchy has fixed rules and directives (the
canon [37)).

Studies in Informatics and Control, Vol. 9, No.2, June 2000

In a holarchy, plans are partially specified in
nigher -level holons, travels down the holarchy
being progressively completed. Task-results travel
up the holarchy, generating control attitudes by
upper levels down to sub-ordinated holons.

The Holon is an autonomous entity including
operational features, individual goals and ability to
define its own tasks and execution plans.
However, it combines its set of competencies with
its lateral partners, with whom it co-operates in
order to achieve both individual and system goals.

4. 4 Comparison

The three paradigms have different origins, which
impose different approaches. Nevertheless,
hierarchical structure and co-operation are

cssential properties of these paradigms, forming
very dynamic systems while maintaining overall
goal- orientation and coherence.

Based in [37], Table 1 resumes the most important
structural concepts, while Table 2 refers to the
operational behaviours.

The Creation and Moulding parameters describe
respectively the principles behind the creation and
defmition of each basic unit In FF and HMS, any
fractal or Holon represents a specific resource
characterised by its competencies, capabilities and
other particular elements, thus the unit and its set is
perfectly defined at design time. In BMS on the
contrary, the modelon modkls the biological entity,
characterised by its birth, lLiving (including
reproduction) and death. At the beginming of the

Table 1. Structural Aspects of FF, BMS and HMS

FF BMS HMS
- Creation Predefined Genesis & Dynamic Predefined
5 . e : Multi-functional Physical &
Moulding Multi-dimension (DNA 1 Bletiznl
: : (DNA & enzymes)
5 (Project oriented) Predefined &
Creatjon Dy A Predeﬁne_d & Dynamic
< Dynamic
T
= Unit division &
o] Arves HEER DNA combination Regroup
Projects & Functional :
Goals Optimisation (DNA based) Funchignal
Table 2. Dynamic Properties of Fractal Factory, BMS and HMS
Fractal Factory BMS HMS
P Individual goals & | AIWer 10 changes in Limited by
HRs Vitality eI hierarchical rules
operators
. Minimal, most based on Some defined
Individoal Planning Cozr;snzﬂugf searcs;\tlfg:l reaction to environment | hierarchically, most
£ Pt and operators top-down refinement
5) . y Reactive and based
Individual Control C";ﬂ‘“é“gg“fnmn.m‘ oy Rﬂacthe“ e Clm‘mgm&f ™1 inintermediate
iy VIro stable forms
r?sﬁﬁttli:;fl g.:ihgn Hierarchical tasks, and | Bottom-up results
Hierarchical Control adjacent levels, through results injected into the and subsequent
o environment hierarchical control
negotiation
: : Environment contents & . o
. o Event Project arrival Operators commeands Functionality
g-operatio Process Negotiations through | Reproduction and DNA | Negotiation through
Tegroup combination regroup

Studies m Informatics and Control, Vol. 9, No.2, hne 2000

101

system there exists a sct of predefined modelons,
but during existence they reproduce themselves
generating child modelons and other complex
structures, constituting a very dynamic concept.

The Creation and Process parameters conceming
group structure, describe respectively the purposcs
behind the group creation and the applied
procedhres. FF grouping is project -oriented, that
means the system applies it to deal with project
challenges but no new units are generated dunng
the operation. The BMS follows the biological
approach, whereas umit respects co-ordinators
command and its division code included i DNA. In
HMS, the group creation is based on predefined
characteristics, thus it is design specific.

Concerning the Goals parameters, the FF orientates
its goals to project execution and optimisation.
Again, the BMS relates to DNA code to specify its
goals, while the HMS Holon has its goals specified
by its base and predefined functionality.

Summarising, Fractal Factory, due to its multi-
dimensional specification and project -orientation,
perfectly fits negotiaion and dynamism
requirements. The BMS approach relies on DNA
and erzymes concepts, to command division and
reproduction by DNA combination The HMS
paradigm uses a functional predefined approach,
which makes it be the most traditional, however
easily understandable and structurally adaptable
paradigms.

Table 2 resumes the dvnamics properties related to
the paradigms. The Autonomy parameter represents
the entity faculty to pursue its own goals. Fractal
entity is created and defined multi-dimensional,
including its goals and capabilities. The Fractal
Factory main singularity is Vitality, which means
the entity contimully attempts to achieve better
results. The holonic structure is characterised by
hierarchical rules called the canon, which imply a
limited autonomy in the entity a limited autonomy.
The modelon. beside the fact that it is created with
predefined goals, is highly dependent on the
environment contents and operators (enzymes)
commands.

Individual Planning is related 1o Autonomy
parameter, since the ability to define its own plans
largely depends on the Autonomy faculty. Fractal
Factory is project- oriented, that means the system
restructures itself to meet project needs. Each fractal
engages in negotiation in order to participate in
project execution and thns to improve its own goals
and performance. In the BMS approach, modelon
individual planning largely depends on environment
and operators command. In HMS, Holon individual

102

planning is hierarchy dependent, but it allows the
Holon to dvnamically refine sub-plans.

Concerning Individual control, Fractal entity, based
on vitality characteristicc, alwavs pursues
optimisation by comparing previous, momentary
and intended states. Modelon reacts to changes in
the environment. The holonic paradigm relies on
the concept of intermediate stable forms, which
settle the Holon (simple entity or a holarchy) as an
self-sufficient and auto-stable entity, reacting to
needs in the operation context.

Hierarchical Control represents the procedures
applied in order to mainfain overall system
operability, integrity and coherence. In FF,
hierarchical control uses dyvnamic and reactive
negotiations between adjacent levels. This
characteristic strongly enforces the need for
advanced state/goals representation and process. In
BMS, tasks and operation results are injected into
the ervironment, and will influence proportionalty
the rest of the entities and its tasks. In HMS, the
operation results flow bottom-up in the hierarchy,
which, in turn, will control the sub -hierarchies
based on these results.

With respect to Co~operation, two sub-parameters are
considered, the event that triggers the co-operation
and the process whereby it is accepted between
entities. In FF, since the main idea of the paradigm is
the project -orientation, as a new project arrives in the
svstern, all the entities will know the fact and engage
in negotiations to co-operate. The BMS paradigm
relies on the enviromment comtents and operators
commands in order to trigger co-operation that is
achieved by reproduction and DNA combination
between modelons. The HMS structure uses top-
down approach to define tasks and plans, thus, as
soon as the entity receives the order, its individual
characteristics and states can impose the need for
co-operation. At that moment the entity starts
negotiation for co-execute (co-operate) sub-tasks.

Resuming, the BMS paradigm suggests some
properties infimately similar to modemn enterprises,
specially relating to the emvironment: full of
information and chances to improve business, which
impose awareness and percepion However,
managing so much information may cause negative
consequences due to stabilisation and productivity, if
no co-ordination and hierarchical competencies are

The Fractal Factory paradigm is the most modem
approach, in the sense that it relies on individual
entities autonomy and vitality to maintam and
increase system dynamics and performance. Further,
it is based on mathematical formalisms , which
makes it the preferred approach to design and

Studies in Informatics and Control, Vol. 9, No.2, June 2000

specification. However, its application tends to be
complex, especially with respect to implementing
navigation and co-ordination mechanisms. The HMS
paradigm is the most traditional, due to its structure,
organisation and functional orientation. Also, it is the
most stable paradigm due to the statically defined
hierarchical rules: the carnon.

Apart from the differences between these and other
organisational paradigms, it is suggested that
conceptually different systems can (co-) operate
simultaneously, whereas the system is a complete
finctional or a single isolated entity. Ie.
characteristics and behaviours related to different
paradigms can be combined into a single entity. In
order to achieve it, entities must implement different
behaviours and interfaces, but also mould internal
coherent behaviours and states.

S. Applications and Examples of
Co-operation in Distributed
Manufacturing Systems

In this Section examples of applications of
agent -based technologies in manufacturing will
be presented. Common to all these is at least
inherent co-operation between the system
entities. At the end of this Section a short
comparison between the features and
characteristics of these systems, from the point
of view of establishing co-operation, is made.

5.1 Supply Chain Management

5.1.1 Agent -based Manufacturing Enterprise
Integration

In their MetaMorph I system, [39] provide a
framework for building an agent- based system.
MetaMorph I is a federation organisation, where
intelligent agents can link with mediator agents to
find other agents in the environment. The mediator
agents assume the role of system co-ordinators by
promoting co-operation among intelligent agents
and leaming from the agents’ behaviour. Mediator
agents are able to expand their capabilities to
include mediation behaviours, which may be
focused on high -level policies to break the decision
deadlocks (cf. the ‘staff’ agent in [40]). Mediator
agents can use brokering and recruiting
communication mechanisms to find related agents
for establishing collaborative sub-systems (‘co-
ordination clusters’ or ‘virtual clusters™; ¢f ‘co-
operation domains’ in HMS [41]).

Studies in Informatics and Control, Vol. 9, No.2, June 2000

In MetaMorph II [39] have applied MetaMorph 1
framework at the enterprise function level. A
Design Mediator does integration of design and
manufacturing, Marketing functions are integrated
by easy-to-use interfaces, to request product
information (performance, price, etc.) and material
supply and management by a material mediator
which co-ordinates material management (material
handling, stock, eic.) sub-system. In addition, there
are simulation mediators for production similation
and forecasting, and execution mediators to co-
ordinate execution of machines, AGV’s, etc.
Dynamic scheduling and rescheduling are
established by the mediation mechanism and
Contract Net bidding mechanism. The Machine
Mediator sclects a machine after having received
bids/propositions from the machines to the request.
Non-contracted machines are memorised as
alternatives for rescheduling within
failures/machine breakdowns. A prototype
implementation has been reported with four
mediators: enterprise (enterprise administration
centre), design (integrates a functional design
system), resource (co-ordinates an agent -based
manufacturing scheduling sub-system), and
marketing (integrates customer services).

5.1.2 Integration of A Group of Agented
Manufacturing Capabilities

AARIA (Autonomous Agents at Rock Island
Arsenal) by [42] aims to derive actual control
decisions from schedules, which are created in a
distributed manner by agents. Manufacturing
capabilities (people, machines, and parts) are
encapsulated as autonomous agents.

AARIA is expected to be suitable for
manufacturing control at a significant distance
from equipment control itself [43], including a
multi-site co-ordination and control. In fact,
AARIA has lately been extended to cover the
whole supply chain management from customer
to manmufacturing, especially trying to
demonstrate that this can be facilitated based on
Internet technologies. Goods will be bought
over the Internet through a direct dialog with the
distributed manufacturing capabilities needed to
make and deliver orders. This will increase the
accuracy of commitments to the customers,
rednce lead time and cost of final delivery, and
find the best compromise between the
customers’ desires and current manufacturing
capabilitiecs. AARIA provides fundamental
integrated ERP and MES functionality. The
MES functionality includes basic ‘what-if’
simulation, finite capacity scheduling and
intelligent shop floor interfaces. The ERP
functionality includes basic planning, order

103

entry, purchasing, bill-of-materials
management, inventory management, resource
management, personnel management, integrated
financials, and reporting.

Currently AARIA uses a simple protocol,
whereby a customer requests a specific product,
the manufacturing system responds with a bid
of costs vs. delivery time, and the customer
chooses a delivery time and cost that satisfy
him. Further on, each agent in the internal
supply chain makes and maintains a
commitment to perform his part of the job.
Within this scenario, later stages of production
become customers to earlier stages. When a
customer requests a product, requests for bids
propagate down the supply chain from part
broker agent to unit process agent and to
resource agents. From the resource agent the
same continues to other part broker agent, etc.
Resource broker agents and part broker agents
that sell raw -material stocks, issue bids, which
propagate up the supply chain, getting folded
with the production costs at each stage, until a
final bid is presented to the customer. After the
customer has chosen a cost and delivery date,
purchase orders propagate back down the
supply chain, establishing commitments for the
individual agents.

5.1.3 Intelligent Assistants to Manufacturing
Planners and Schedulers

RedPepper [44] originated in the 80's from the
work of Monte Zweben in NASA Ames
Research Centre in fundamental work on
'‘constraint based scheduling on Ground
Processing Scheduling System, for use in
scheduling of Shuttle Orbiter refurbishing. It is
currently the core of PeopleSoft's ERP software
identified as ‘intelligent assistants to
manufacturing planners and schedulers’.
RedPepper is based on 'Response Agent'
(Production Response Agent; Enterprise
Response Agent) technologies, which provide
real-time planning and scheduling to respond
and adapt to changes. The target is for supply
chain optimisation and real-time order
promising. RedPepper allocates, manages and
tracks cost for material, machine and labour
usage. The considered constraints include
promise dates, request dates, inventory
shortages, aggregate capacity, safety stocks,
excess stocks, and raw -material shortages. The
resulting supply chain plans and schedules are
based on up-to-the minute transactional or event
information, on a real-time 'net-change' basis.
One of the applications/functions is sequencing
and scheduling, which builds schedules and
dispatches lists for each resource. The

104

algorithmic solution is interactive (operator-
assisted) constraint satisfaction with scorecard
reports on the number of times each constraint
has been violated. In addition, a plan optimiser
improves schedules. RedPepper works on-line
for adjusting resources without disturbing on-
going operations. Change management tracks
Bill-Of-Material's, costs, prototypes, cost
simulations, the transfer of design to production,
and engineering change orders integrating these
into working applications.

RedPepper views a single model on
organisation's supply chain as one logical
model, and splits it into several physical
representations across a number of servers
which is very efficient for one production line,
but can lead to difficulties if dealing with
multiple production sites. In principle
RedPepper treats global performance by
observing production overhead and proposing
improved minor actions.

5.2 Distributed Scheduling Systems
5.2.1 Distributed Scheduler

Wishes behind the distributed scheduling
system ReDS [45] were not so interested in
optimality of schedules, but more in having
control of lot movements and some realistic
prediction on the near future (hours, weeks)
schedules. ReDS distributes scheduling criteria
over agents. In developing ReDS, it was
notified that, in order to design a complex
control system more easily, it was essential to
subdivide the problem intc independently
smaller and less complex problems; however,
by doing so one would lose some measures for
global optimality.

ReDS considers main shop floor events: new
orders entered, machine breakdowns, reworks,
lot splitting, lots on hold, and bottleneck areas.
The purpose of ReDS is to find a structure that
can be used for designing production control
systems. The proposed structure is composed of
recursively defined autonomous modules,
referred as planning agents. The architecture is
based on recursively defined autonomous
modules that have a predictive element and a
reactive element. The in-flows of an agent are
consisting of goals/tasks from higher layer;
overriding commands from ‘higher'’ agents,
events from shop floor, and guidance for
performance from statisticians. No centralised
co-ordination module exists. Out-flows are
consisting of operation instructions to the shop
floor (operators). The commands are handled

Studies in Informatics and Control, Vol. 9, No.2, June 2000

hierarchically within the layers: higher layers
overcome lower layers, and layers deal with
specific time horizon (shortening while going
down). In principle, this makes a top-down goal
decomposition mechanism, with bottom- up
disturbance handling (shock absorption'). The
agent layers are as follows: sequencing &
dispatching, detailed scheduling, feasibility
analysis for resource & material availability,
order release for minimum waiting times and a
global statistician (monitoring data, detecting
trends, interpreting events to forward to proper
listeners). Communication between agents is
done by a contract net protocol with
broadcasting,

ReDS introduces flexibility in two ways. It
treats intentional changes flexibly in a top -
down manner by goal decomposition and it
treats disturbances flexibly, in a locally reactive
manner by bottom -up 'shock absorption'.
Although it does not provide a global optimum,
it treats global performance by the statistician.

5.2.2 Micro-opportunistic Scheduling

MICRO-BOSS micro-opportunistic - scheduling
system |[46] treats scheduling problem as a
constraint satisfaction problem. Each job has an
carliest start time and due time, and identification
of the need for backtracking quickly is done by
aggregated demand profiles. Although in principal
it targets to find feasible schedules, it is possible to
define due dates and make decisions so that the
tardiness is minimised. MICRO-BOSS defines
aggregate demand profiles for each resource.
Using probabilistic models as a resource
inspiration, it is possible to identify which
machines are most bottlenecked in which time
periods, and for which operations. Once the
decision to be made is identified (‘the variable
ordering is done’ or “the operation to be scheduled
is chosen’), the value evaluation is to be done (‘the
variable instantiated”’). One could then look at the
(local) ‘optimal’ value for that variable (greedy
heuristics), but Sadeh also looks at the
survivability of these decisions, i.e. the chance the
decision will not have to be backtracked.

In the CORTES project [47)], Sycara extends the
concept of micro-opportunistic scheduling to
distributed scheduling. Agents construct aggregate
demand profiles, maintain them and exchange
updates of them on a regular basis. As agents make
scheduling decisions, new constraints are added
Different agents solve sub-problems of the
scheduling problem, for a subset of the orders and a
subset of the resources. Agents exchange the
demand profiles to represent the agents’ intended

Studies in Informatics and Control, Vol. 9, No.2, June 2000

resource usage for different time intervals. This
means agents have information about the behaviour
of other agents, but this is incomplete. Although the
demand profiles are changing during the
optimisation process, and even though there may be
considerable communication lags, the problem has
turned out to be not so big The demand profiles
provide fairly accurate predictions of the agents’
behaviour, if communicated at the beginning and if
the constraints do not change externally. The
compromise between greedy and altruistic value
ordering heuristics may have to be chosen more to
the safe side (altruistic) for a distributed
implementation.

5.2.3 Scheduling by An Asynchronous Team
of Agents

A-Team (Asynchronous Team) was developed
at Carnegie Mellon University [48]. An A-Team
is a network of software agents collaborating
and exchanging information over shared
memory areas. There can be many agents and
many shared memory areas, resembling a
blackboard architecture. Agents create and
manipulate information residing in shared
memory areas.

A-Team has been applied in different application
domains. In scheduling domain it results in an
asynchronous agent-based solver for static job shop
scheduling problems based on optimisation
heuristics. It focuses on tardiness and inventory costs
and a set of agents work together to produce a
schedule. Seed agents produce initial complete non-
delay schedules employing one of the following
dispatch heuristics: shortest processing time,
weighted shortest processing time, earliest due date,
most work remaining, slack over remaining
processing time, weighted cost of time, and apparent
tardiness costs. Modification agents swap start times
of two adjacent orders or sequences on a machine to
produce better scheduling solutions. Transfer agents
move information among shared memories, the
deconstruction agent creates partial schedules, and
the reconstruction agent rebuilds a full schedule.
Destroyer agents remove weak schedules.

5.3 Agent -based Manufacturing
Control

5.3.1 Integrated Flow Control Framework

The integrated flow control framework of Lin and
Solberg [49] follows the data flow model of Lewis'
[50, 51]. Under the data flow model, machines

select jobs according to a simple dispatching rule

105

(first-in-first-out), jobs are routed to the first
machine available to complete the next task to be
performed on them. No supervisory control is
applied. The integrated flow control framework
was established to address highly uncertain and
changing computer controlled manufacturing
environment. [t employs a market-like system
model, where a generic bid construction
mechanism based on a combination of price and
objective mechanism is used, and the negotiation
obeys a multiple-way and multiple step
negotiation metaphor, It is part-centred, and tries
to find critical resources based on a dynamic
resource unification scheme.

5.3.2 Holonic Assembly System

Holonic Assembly System [52, 53] provides
scheduling & resource allocation to assembly
tasks through negotiation. The system is
composed of different basic entities: Task
Manager, Task, Resource and Product. Each of
these is potentially composed of multiple
entities of its own type. Additionally, these
entities arc aggregated in functional entities,
like the scheduling or the process planning
system. The holonic approach is used, which
implies a hierarchical organisation while
maintaining individual entity autonomy.

As a new task arrives to the system, the Task
Manager launches a new Task Holon that will
be responsible for between resource negotiation
and choosing process. The tasks/resources
negotiation protocols are fixed and based on
constraint propagation. During negotiation a
market-based ‘approach is used in order to
facilitate and ameliorate the choosing process.
The system provides infrastructures for
establishing and instantiating a co-operative
assembly system and for running it flexibly,
namely blackboard, broker and pooling service.

5.3.3 Holonic Shot Blasting System

A Holonic Shot Blasting System [41,54]
specifies a multi-robot application for surface
treatment applications, mainly for shot blasting.
It is based on autonomous and co-operative
units, i.e. shot blasting robot holons, which are
integrated into product models. The planning
activities of the robots are supported by product
models. Task- sharing for the robots is carried
out through blackboard or contract net based
negotiation, including task allocation, detailed
motion planning (in time and space) to prevent
collision, and sensing planning for accurate
location of the work pieces. The robots are

106

supporting each other by providing sensor
information to locate work pieces and by
sharing the workspace to gradually construct the
motion plans for the shot blasting paths. Human
integration is considered of key importance, i.e.
human prepares the ‘missing elements’ to
product models; corrects or fine tunes the
product models or even the instantiated task
descriptions, i.e. paths of the robots motions.
The system also supports instantiation and
maintenance of the system by flexible
management of the system resources (creating
and maintaining co-operation domains, holons,
etc.).

5.3.4 Handling Production Change and
Disturbances

Mascada [43] is heading to production systems that
are robust against changes and disturbances in
production as well as in production systems. The
goals of Mascada include building mamufacturing
control systems out of agents having expertise only
on what they are and let functionality emerge, and,
on the other hand, safeguard performance, e.g
throughput, when disturbances nullify the properties
of ordinary schedules.

In the Mascada approach co-operation is achieved
by emergent behaviour. The system is constructed
of different types of agents (Product, Order,
Resource, Staff, PROSA-architecture [40]). The
agents spread information (cf. pheromones) and
communicate through the environment. The agents
act based on this local information. Actions and
decision -making are based on flexible rules of the
agents, which make them run co-operatively and
in a co-ordinated fashion. The rules and the
information spreading mechanism focus on certain
criteria for the production system, e.g. throughput
or lead time.

5.4 Comparison From the Point of
View of Communication, Negotiation,
Co-ordination and Co-operation

Table 3 compares the applications within their
characteristics relevant to establishing collaboration.
For this there are used ‘Principal subject & topology
of communication®, ‘Principle of co-ordination °,
and *Strategy for co-operation’.

There are two extreme approaches conceming the
similarity of agents in a multi-agent system, and these

are also represented in the cases of Table 3. Some
concluding remarks are given in the following,

Studies in Informatics and Control, Vol. 9, No.2, June 2000

The system may be composed of homogeneous
agents communicating directly with each other. The
agents represent typically the manufacturing
resources (cells, stations, robots, AGVs, etc.).

in the communication link between the agents. In
this case both the structures of the agents and the co-
ordination protocols can be very simple. The
drawback lies in that there appears to be more
failure points in the system.

Table 3. Comparison of Related Work

APPLICATION Principal subject & Principle of Strategy for
topology of co-ordination co-operation
communication
MetaMorph II orders, goals; Contract negotiation Finding feasible
agent <> mediator Iesources
AARIA orders, goals; Contract negotiation Market-based with cost
agent <> broker profiles
RedPepper order constraints; Constraint propagation | Finding feasible
agent <> user resources
ReDS goals, status; Contract negotiation Statistics for decision
agent <> agent support
MICRO-BOSS, CORTES load profiles; Constraint propagation | Local load balance w/
agent <> agent global consequences
A-Team (revised) schedule; Blackboard Gradual improvement
agent <> agent by specialised agents
Integrated flow control orders; Contract negotiation Simple (dispatching)
framework agent <> agent heuristics
Holonic Assembly System goals; Hierarchy, Negotiation | Constraint propagation
agent <> agent and Contract and market based
Holonic Shot Blasting System | goals, tasks; Contract negotiation or | Gradual composition of
agent <> coop. domain | blackboard mutual plans
Mascada Pheromones; Distributed blackboard | Emergent social
Agent <> environment behaviour

In principle the system can be very robust against
device failures and changes in the agent system,
because there are (depending on the communication
protocols) no single-point-of-faihwes in the
communication links. However, the agents tend to
be then rather complicated (the agents need to do
‘everything), unless the application is focusing on a
limited area, like scheduling Communication is
typically carried out following the Speech-Act
techniques, for example with varants of the
Contract Net protocol. In addition, the
communication load may become a burden because
of wide acquaintances between the agents.

The other approach is represented by systems of
heterogeneous agents, with a set of specialized
agent types. This streamlines and simplifies the
internal agent structures. A nice example from this
category is the PROSA architecture by van Brussel
et al, where agents are specialized to product,
resource, order and staff agents. More extreme
examples have further specialization of agents for
co-ordination purposes, like mediators, brokers, or
co-operation domains, which form an essential part

Studies in Informatics and Control, Vol. 9, No.2, June 2000

Co-ordination and co-operation are closely related
to the high -level communication protocol. With
contract net a market-based approach is typically
applied, based on satisfying cost constraints, or to
some extent, on optimising global or local costs. In
the case of behavioural agents, like in Mascada, the
communication follows a blackboard principle,
either directly, in an agent-to-agent manner, or even
indirectly, via the environment. Again, the agents
can be simple, and the system can react quickly to
changes and disturbances, because the robustness is
an in-built feature. However, the optimisation can
be a hard problem, and a better performance goal is
then to maintain the performance at an acceptable
level rather than try to optimise it.

6. Summary

Current practices and newly observed trends lead
to the development of new ways of thinking

managmg and organising in corporations, where
autonomy, decentralisation and distribution are

107

some of the buzzwords. In manufacturing, a new
class of software architectures, and organisational
models appeared to give form to the Distributed
Manufacturing System concepit.

As its name says, a DMS has several entities, which
must interact with each other to become a system.
DMSs were characterised and their behaviour was
explained in what concerns the whole system and
each of its components (i.e. entity). DMS’s basic
properties (e autonomy, distribution,
decentralisation, dynamism, and reaction) as well as
more complex ones (i.e. flexibility, adaptability and
agility) were presented, explained, and correlated
with each other.

From a behaviowal point of view, a DMS can
engage in several processes (ie. co-operation,
competition, co-ordination, and command) in order
to reach a coherent state, a state where conflicts and
redundant efforts are avoided.

However, DMSs are abstract, and the above-
mentioned properties and behaviours were also
somewhat “abstractly” mentioned Three specific
classcs of DMSs were presented and compared.
These classes (i.e. Fractal Factory, Bionic
Mamifacturing and Holonic Manufacturing
Systems) present organisational models for the
corporation as well as guidelines for the
development of the system regarding its
implementation and expected behaviours.

Agent Technology has proven successful over
the last decade in a wide range of applications.
The desired properties for an agent are the same
as those listed for an entity in a Distributed
Manufacturing System, thus Agent Technology
is suitable for building DMSs.

A survey of existing work in Distributed
Manufacturing Systems was presented. Several
areas of manufacturing are represented in the
selected literature especially Supply Chain
Management, Scheduling and Control. A
comparison from the co-ordination and co-
operation perspective was presented.

Acknowledgment

The first two authors would like to cxpress their
gratitude to Professor Carlos Ramos for his
valuable review and comments. This work has
been supported by ESPRIT project no. 21955 —
Intelligent Manufacturing Systems -Working
Group (IMS-WG).

108

REFERENCES

1. SILVA, N., Sistemas Holonicos de
Producio - Especificagdo e
Implementagdo; Dissertacdo de Mestrado,
Faculdade de Engenharia da Universidade
do Porto, September 1998.

2. COX, W. and ALM, R., The Right Stuff:
America’s Move to Mass Customization,
Federal Reserve Bank of Dallas, Annual
Report, 1998.

3. http://www.agilityforum.com

4. CASTELFRANCHI, C., Guarantees for
Autonomy in Cognitive Agent
Architecture, in M. Wooldridge and N.
Jennings (Eds.) Intelligent Agents:
Theories, Architectures, and Languages,
Lecture Notes in Artificial Intelligence,
Vol. 890, SPRINGER-VERLAG,
Heidelberg, 1995, pp. 56-70.

5. VALCKENAERS, P., VAN BRUSSEL,
H., BONNEVILLE, F., BONGAERTS, L.
and WYNS, J., IMS Test Case 5: Holonic
Manufacturing Systems, Proceedings of
the IMS Workshop at IFAC'94, Vienna,
June 13-15, 1994.

6. PARUNAK, H., Agents While You Wait,
A Tutorial presented at the 4™ International
Conference on the Practical Application of
Intelligent Agents and Multi Agent
Technology, London, April 1999.

7. hitp://www.agility-forum de/eaf aim.html

8. SYCARA, K., Multi-Agent Compromise
via Negotiation, in L. Gasser and M. Huhns
(Eds.) Distributed Artificial Intelligence 2,
MORGAN KAUFMANN, 1989.

9. NWANA, H., LEE, L. and JENNINGS, N.,
Coordination in Software Agent Systems,
BT TECHNOLOGY JOURNAL, 14(4).
October 1996, pp.79-83.

10. MALONE, T. and CROWSTON, K., The
Interdisciplinary Study of Co-ordination,
ACM COMPUTING SURVEYS, Vol
26(1), March 1994, pp. 87-119.

11. MERRIAN-WEBSTER (URLa),
Coordinating Merrian-Webster Online
Dictionary. http://www.m-w.com/cgi-
bin/dictionary?coordinating

Studies in Informatics and Control, Vol. 9, No.2, June 2000

12:

13.

14.

15.

16.

17.

138.

19.

20.

21

22.

MERRIAN-WEBSTER (URLb). Competing
Merrian-Webster ~ Online Dictionary.
http://www.m-w.com/cgi
bin/dictionary?competing

BRADSHAW, J, Software Agents: The
Next Generation, a tutorial presented at the 2™
Intemational Conference and Exhibition on the
Practical Application of Intelligent Agents and
Multi-Agent Technology (PAAM'97), London,
21-23 April 1997.

OSBORNE, M. and RUBINSTEIN, A, A
Course in Game Theory, MIT PRESS,
1994.

DAVIS, R. and SMITH, R., Negotiation
As A Metaphor for Distributed Problem
Solving, ARTIFICIAL INTELLIGENCE,
Vol. 20(1), 1983, pp. 63-109.

SYCARA, K., Negotiation Planning: An
Al Appreach, EUROPEAN JOURNAL
OF OPERATIONAL RESEARCH, Vol.
46, 1990, pp. 216-234.

SOUSA, P. and RAMOS, C, A
Distributed Architecture and Negotiation
Protocol for Scheduling in
Manufacturing Systems, COMPUTERS
IN INDUSTRY - Special Issue on Life
Cycle Approaches to Production Systems:
Management, Control and Supervision,
Vol. 38(2), ELSEVIER, March 1999,
pp.103-113.

AXELROD, R., The Evolution of
Cooperation, New York, 1984.

PONTRANDOLFO, P. and OKOGBAA,
O., Global Manufacturing: A Review and
A Framework for Planning in A Global
Corporation, INTERNATIONAL
JOURNAL OF PRODUCTION
RESEARCH, Vol. 37(1). 1999, pp.1-19.

PARUNAK, H., What Can Agents Do in
Industry, and Why? An Overview of
Industrially-Oriented R&D at CEC,
Industrial Technology Institute, CIA'98,
1998.

WOOLDRIDGE, M. and JENNINGS, N.,
Agent Theories, Architecture and
Languages: A Survey, Lecture Notes in
Artificial Intelligence, Vol. 890, SPRINGER-
VERLAG, 1995.

NWANA, H,
Overview,

Software Agents: An
KNOWLEDGE

Studies in Informatics and Control, Vol. 9, No.2, June 2000

23.

24.

25.

26.

27.

28.

29.

30.

31.

52,

33.

34.

ENGINEERING REVIEW, Vol
October/November 1996.

11(3),

RAO, A. and GEORGEFF, M., BDI Agents:
From Theory to Practice, Technical Report
56, Australian Artificial Intelligence Institute,
Melbourne, April 1995.

BROOKS, R. A, A Robust Layered
Control System for A Mobile Robot,
IEEE JOURNAL QOF ROBOTICS AND
AUTOMATION, 2(1), 1986, pp. 14-23

AUSTIN, J, How To Do Things With
Words, OXFORD UNIVERSITY PRESS,
NY, 1962.

COHEN, P. and PERRAULT, C., Elements of
A Plan-Based Theory of Speech Acts, in A
H. Bond and L. Gasser (Eds.) Readings in
Distributed Artificial Intelligence, MORGAN
KAUFMANN PUBLISHERS, San Mateo,
CA, 1988. pp. 169-186.

SEARLE, J., Speech Acts: An Essay in
the Philosophy of Language,
CAMBRIDGE UNIVERSITY PRESS,
Cambridge, 1969.

FINN, T., LABROU, Y. and MAYFIELD,
J., KQML As An Agent Communication
Language, in J. Bradshaw (Ed.) Software
Agents, AAAT PRESS/MIT PRESS, 1997.

GENESERETH, M. and FIKES, R,
Knowledge Interchange Format Version
3.0 Reference Manual, Technical Report
Logic-92-1, Computer Science Department,
Stanford University , CA, 1992.

GRUBER, T., A Translation Approach to
Portable Ontologies, KNOWLEDGE
ACQUISITION, 5(2), 1993, pp. 199-220.

POOLEY, R. and STEVENS, P., Using
UML, Software Engineering With
Objects and Components, ADDISON-
WESLEY, 1999.

http://www.idef.com

WARNEKE, H.], The Fractal Company,
SPRINGER-VERLAG, 1993.

SIHN, W. The Fractal Factory: A
Practical Approach to Agility in
Manufacturing, Proceedings of the 2™
World Congress on Intelligent
Manufacturing Processes and Systems,
Budapest, June 10-13, 1997, pp. 617-621.

109

335

36.

37

38.

39.

40.

41.

42.

43.

110

OKINO., N., Bionic Manufacturing
System, in J. Peklenik (Ed.) CIRP, Flexible
Manufacturing Systems: Past-Present-
Future, 1993, pp. 73-95.

IMS- A Program for International
Cooperation in Advanced
Manufacturing, Final Report of the
International Steering Committee, adopted
at ISC6, Hawaii, January 24-26, 1994.
http://www.ims.org;

THARUMARAJAH, WELLES, J. and
NEMES, E. , Comparison of the Bionic,
Fractal and Holonic Manufacturing System
Concepts, INTERNATIONAL JOURNAL OF
COMPUTER INTEGRATED
MANUFACTURING, Vol. 9(3), 1996, pp.
217-226.

KOESTLER, A, The Ghost in the Machine,
HUTCHINSON & CO, London, 1967.

SHEN, W. and NORRIE, D., A Hybrid
Agent-Oriented Infrastructure for
Moeodelling Manufacturing Enterprises.
http://ksi.cpsc.ucalgary.ca/KAW/K AW98/s
hen/index.html

VAN BRUSSEL, H., WYNS,],
VALCKENAERS, P., BONGAERTS, L.
and PEETERS, P Reference
Architecture for Holonic Manufacturing
Systems: PROSA, COMPUTERS IN
INDUSTRY, Vol. 37, 1998, pp. 255-274.

RANNANJARVI, L. and HEIKKILA, T.,
Software Development for Holonic
Manufacturing Systems, COMPUTERS
IN INDUSTRY, 37, 1998, pp. 233 - 253.

PARUNAK, H., BAKER, A. and CLARK,
S., The AARTA Agent Architecture: An
Example of Requirements Driven Agent
Based System Design, 1998.

MASCADA (URL), Manufacturing
Systems Capable of Handling Production
Changes and Disturbances, Esprit LTR
22728

http://www.mech kuleuven.ac.be/pma/proje
ct/mascada htm

PEOPLESOFT INC. (URL) Optimizing the
Assets of the Supply Chain: Today's
Manufacturing Challenge
hitp://www peoplesoft.com/products_and serv
ices/enterprise_solutions/redpepper.html

45.

46.

47,

48.

49,

50.

51.

52.

53.

54.

HADAVI, K., ReDS: A Real Time
Production Scheduling System, in M.
Zweben and M. Fox (Eds.) Intelligent
Scheduling, MORGAN KAUFMANN
PUBLISHERS, 1994, pp. 581 - 604.

SADEH, N, Micro-Opportunistic
Scheduling: The Micro-Boss Factory
Scheduler, in M. Zweben and M. Fox
(Eds.) Imtelligent Scheduling, MORGAN
KAUFMANN PUBLISHERS, 1994

SYCARA, K., ROTH, S., SADEH, N. and
FOX, M., Coordinating Resource
Allocation in Distributed Factory
Scheduling, [EEE EXPERT, Vol 6(1),

February 1991, pp.29-40.

CHEN, S. Y., TALUKDAR, S. N. and
SADEH, N. M., Job Shop Scheduling By
An Asynchronous Team of Optimization
Agents, Camnegie -Mellon University, 1997

LIN and SOLBERG, J., Integrated Shop
Floor Control Using Autonomous Agents,
[EE TRANSACTIONS, Vol. 24(3), July 1992.

LEWIS, W., Data Flow Architectures for
Distributed Control of Computer Operated
Manufacturing Systems, Ph. D Thesis,
School of Industrial Engineering, Purdue
University, West Lafayette, IN, May 1981.

LEWIS, W., BARASH, M. and SOLBERG,
J, Computer Integrated Manufacturing
System Control: A Dataflow Approach,
JOURNAL OF MANUFACTURING
SYSTEMS, Vol. 2, 1987.

SILVA, N, SOUSA, P. and RAMOS, C,
Proposal for A Dynamic Scheduling
Architecture and Method Using A Holonic
Approach, Proceedings of Intelligent
Manufacturing Systems '98, Gramado-RS,
Brazil, 10-12 November 1998.

SILVA, N. and RAMOS, C., Holenic
Dynamic Scheduling Architecture and
Services, Proceedings of International
Conference on Enterprise Information
Systems "99 (ICEIS 99), Setubal, 1999.

HEIKKILA, T., AGOSTINO, N.,
RANNANJARVI, L. and SALONEN, P,
Feature-Based Product Modelling for
Holonic Shot Blasting Systems, Proceedings
of the IEEE/IMACS CCSC Multiconference,
Athens, 4-8 July 1999.

Studies in Informatics and Control, Vol. 9, No.2, June 2000

