
59

ICI Bucharest © Copyright 2012-2022. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

According to CISCO VNI by 2022 global IP
traffic will triple and the global networked devices
and connections will reach 28.5 bilion (CISCO
Systems, 2020). Thus a major challenge for the
Internet world is the large volume of data which is
increasing daily due to the high usage of devices.
This problem is also known as the “BIG DATA”
problem. The world is “swimming” in data, and
the pool is getting deeper at an alarming rate
according to IDC which forecasts the Global
Datasphere to grow to 175 ZB by 2025 (Reinsel,
Gantz & Rydning, 2018).

A crucial problem for organizations with a large
number of locations across the globe, is to store the
data and to transfer it as fast as possible, in order
to make it available everywhere. Smart devices
like mobile phones, tablets, smartwatches and
others, have a limited amount of storage space and
bandwidth. Moreover, the recent trend of cloud
computing has changed the way people view IT
resources. More and more companies rent storage
and computing time from providers like Google
Cloud, Microsoft Azure, Amazon Web Services
and this has resulted in a more cost-effective use
of resources.

Since 1976 researchers have been trying to find
optimal models to achieve minimal costs for

files storage and transmission, by dynamically
assigning the file in a computer network (Segall,
1976; Segall & Sandell, 1979). Several years later
in order to achieve network performance and
reliability for distributed systems, files migration
algorithms were developed and the call for data
compression techniques started to be evident
(Gavish & Liu, 1990; Shu et al., 2004)

Data replication techniques and strategies have
been studied in order to reduce costs and improve
performance for the data transferred in the cloud
systems (Tos et. al., 2016; George & Edwin,
2017) or IoT based systems (Qaim & Özkasap,
2018). However, often the data that needs to be
copied is very similar to an old version of data
that already exists on the target site. In this case,
time and resources are wasted because copying
a new version of data requires copying all of the
unchanged data too. Thus data deduplication
techniques have started to became highly used in
cloud datacenters for big data backups (Bhalerao
& Pawar, 2017) or for database systems (Xu et al.,
2015, Xu et al., 2017).

Given this context, reducing both the size of the
data and the transfer time remain big challenges.
Another way to resolve these problems is to
transfer only the difference between an old version

Studies in Informatics and Control, 31(1) 59-70, March 2022

https://doi.org/10.24846/v31i1y202206

Evaluation of Remote Data Compression Methods
Romina DRUTA1*, Cristian-Filip DRUTA2, Ioan SILEA1

1 Automation and Applied Informatics Department, Faculty of Automation and Computer Science,
Politehnica University of Timișoara, 300006 Timisoara, Romania
romina.druta@student.upt.ro (*Corresponding author), ioan.silea@upt.ro
2 Applied Electronics Department, Faculty of Electronics, Telecommunications and Information Technologies,
Politehnica University of Timișoara, 300006 Timisoara, Romania
cristian-filip.druta@student.upt.ro

Abstract: The present era is one of Big Data, digitalization, Internet of Things and Internet of Everything, which imply
the daily creation of an enormous amount of useful content with a very high number of producers and consumers for
the online information. The ascending trend for Internet data, has made clear the necessity of defining and engineering
innovative solutions for coping with redundant transfers, which led to performing smart data transfers for obtaining an
increased throughput, data availability and resource utilization and implicitly to a cost reduction and to avoiding bottlenecks
and denial of service issues. Internet data employed by an Internet user must be consistent, so distributed systems are gaining
research interest with regard to concurrency control, atomic transfers, data replication and synchronization, compression
and decompression, correction or other potential problems. Two different versions of a file have a high similarity and as
synchronization is concerned, the delta between the second version and the initial version of the file applied to its initial
version will provide a better transfer throughput, thus an efficient data deduplication technique is necessary and worth
analyzing in order to minimize the cost of synchronization. This paper focuses on optimizing the bandwidth utilization for
remote data synchronization, and proposes a prototype based on three classic open-source data compression methods. The
experiments carried out show how these compression utilities along with the transfer of data perform the synchronization
of large data sets between two remote sites and how the use of compression helps to reduce the data size on storage devices
along with decreasing the network bandwidth significantly. The novelty of this paper lies in the fact that it combines two
different compression algorithms in order to provide better compression rates.

Keywords: Data replication, Delta encoding, Differential file transfer, Big Data, Network transfer, Rsync.

https://www.sic.ici.ro

60 Romina Druta, Cristian-Filip Druta, Ioan Silea

and a new version of the data, between the sites,
thereby reducing the transfer time, the data size on
the disk, and optimizing the bandwidth.

The purpose of this paper is to describe and
analyze a technique for the replication and storage
optimization with regard to the big data sets of
files, an activity which implies the analysis of
different types of files, and delta encoding of these
files, using three well-known applications: Rsync
(Tridgell, 1999), Xdelta3 (MacDonald, 2000),
Bsdiff/Bspatch (Naïve, 2013). A structural analysis
of the mentioned delta encoding algorithms is
performed in order to determine, which delta
encoder generates the smallest delta between two
versions of a data set.

This article is structured as follows. Section
2 presents the main concepts related to data
replication, focusing on delta encoding and
remote file synchronization. Section 3 outlines
the different binary diff tools and their usage,
while Section 4 describes the methods used
for the synchronization between two versions
of a software project. Section 5 introduces the
results of the tests along with an analysis of the
problems and limitations encountered and Section
6 presents the conclusion of this paper.

2. Background

In Computer Science, data replication (Charron-
Bost, Pedone & Schiper, 2010) is the process of
storing the data on multiple storage devices. One
of the main goals of this process is to increase the
availability of resources. Given the large amounts
of data that is generated every day, replicating this
data is becoming more and more challenging.

The simplest method to replicate data is to copy
all of it from one site to another. But if the data
that it is to be transferred has been only partially
changed, another way to replicate the content
on the target site is to maintain an old copy on
the target and synchronize the files and the tree
directories on both sides.

Delta encoding (Suel, 2018) is a way of storing
or transmitting data in the form of differences
between sequential data rather than complete
files; more generally this is known as data
differencing (or delta compression). The delta
compression can be explained as follows: host
C has a copy of fold and host S has copies of both
fnew and fold, where fold is the old file and fnew

is the new file. The goal for host S is to compute
a file fdelta, which is the delta difference file, of
minimum size such that host C could reconstruct
fnew from fold. If the delta between the files from
two distant sites is computed, one can speak of
remote differential compression.

Remote file synchronization is the process of
adding, changing, or deleting a file in one location,
and having the same file added, changed, or
deleted at another remote location. For example,
as it can be seen in Figure 1, if the Remote Server
has a copy of the file fold and the Local Server
has a copy of both fold and fnew, and the aim is
to generate fnew on the Remote Server, one needs
a protocol that minimizes the communication cost
between the two computers.

Figure 1. File replication using delta encoding

One method of synchronizing the files is to
compute the delta between the old version and new
version, while transferring only the differences.
To do this one can use different methods based
on remote delta encoding algorithms. Remote
differential compression (Suel & Memon, 2002)
(remote delta encoding) is an algorithm that allows
two files to have their content synchronized by
communicating only the difference between them,
in a client server configuration.

3. Methods and Related Work

This section aims to present the most common
binary diff generation algorithms and tools used
as solutions for the file synchronization process
and other methods used for files synchronization.

In computing, a diff tool is a file comparison
utility that outputs the differences between two
files. Recent versions, which offer performance
improvements and compression, also support
binary files. Delta compression tools such as
Xdelta3, Bsdiff/Bspatch and Zdelta (Trendafilov,
Memon & Suel, 2002) are generally used

	 61

ICI Bucharest © Copyright 2012-2022. All rights reserved

Evaluation of Remote Data Compression Methods

for generating differences between two files
(the old and the new version) if both files are
available on the same machine. Remote delta
compression tools (Shiala, Majhib & Phatakc,
2015), like Rsync are used for synchronizing files
between remote hosts (a source site which has
a newer version, and a target site which retains
the old version), by producing a differential file
which will be then transferred and applied on
the target site. However, Rsync can be used for
synchronizing files that are on the same machine.
Rsync is among the most popular tools for remote
delta encoding. Nonetheless, a problem which
appears when using this method is the huge
amount of time taken to transfer small chunks
of data between two sites separated by a WAN
link, the latency on the network being a factor in
this process.

Recently, research studies have been performed
in order to find solutions for web-based
synchronization methods like WebDeltaSync
(Xiao et al., 2018), or for mobile cloud
storage services QuickSync (Cui et al., 2015).
Other studies have been focusing on hybrid
synchronization like PandaSync, which proposes
a method which involves full synchronization
and delta synchronization depending on the
network performance (Wu et al., 2019). A
presentation of Xdelta3, Bsdiff and Courgette
(ProgrammerSought, 2021) shows that Bsdiff
generates 50% fewer binary patches and Courgette
has an even better compression rate, but this
analysis does not take into account the Rsync
algorithm which is still widely employed for file
updates and migration.

Rsync

Rsync is the most well-known tool for file
synchronization between two machines across the
network. What makes Rsync different from other
file transfer tools is that it detects the differences
between the source data set and target data set and
then transmits these across the network, so that
the target can apply them, resulting in a complete
file synchronization between the two hosts. Rsync
is a tool that integrates multiple functionalities
including: an algorithm which detects differences
between two files, a network transport protocol
and a data compression algorithm.

As previously noted, Rsync is employed in
order to determine changes when comparing two

versions of one file without having both versions
of the file on the same machine.

The network protocol used by Rsync can be
summarized as follows: on the computer where
the old versions of the files, are hosted, Rsync
calculates the checksums for each block of
data. These checksums are then sent to the
computer which hosts the new version of files.
After detecting the changes between blocks,
the computer that hosts the new version sends
instructions on how to create the copy of the new
version to the computer that has the old data. The
instructions include the actual new data and the
references on blocks that hadn’t been changed in
the new file.

Rsync is used for synchronizing files in
distributed client-server applications (Faiz &
Shanker, 2016), backup and restore on e-learning
platforms (Purnama et. al., 2016) and updates in
sensor networks (Qaim & Özkasap, 2018). Other
recent studies show that Rsync can be used in
emergency communication systems (Schepis et.
al., 2019), cloud based IoT applications (Kolano,
2015; Sánchez-Gallegos et al., 2020) and fog
computing platforms (Puliafito et al., 2020;
Puliafito et al., 2021).

Xdelta

Developed by Josh MacDonald, Xdelta3 is a
set of tools for reading and writing compressed
deltas. The algorithm, first used in Xdelta1,
was based on the Rsync algorithm; the main
difference is that the size of the blocks was
smaller than the block size that Rsync uses. The
new version, Xdelta3, uses the VCDIFF (Korn et
al., 2002) encoding library. The VCDIFF Generic
Differencing and Compression Data format
supports better compression and it allows the
data to be easily transported among computers.
The synchronization of files is optimized for high
speed while generating smaller deltas. Both files
involved in the synchronization process must be
available locally. Xdelta3 was used in malware
analysis by Fowler (2017), and for the study of a
VM handoff in edge computing (Ha et al., 2017).

Bsdiff/Bspatch

Bsdiff and Bspatch are tools for building
and applying patches to binary files. These

https://www.sic.ici.ro

62 Romina Druta, Cristian-Filip Druta, Ioan Silea

compression utilities are similar to Xdelta3
in that they do not provide network transport
functionality, and can produce a delta file even
smaller than the ones produced by Rsync or
Xdelta3. The algorithm used by Bsdiff/Bspatch
functions by reading the old file and indexing the
content. After that, the new file is read in order to
find the blocks that match exactly the blocks of
the old file. Unlike other binary tools which put
all these changes into a single patch file, Bsdiff
builds a patch set which contains 3 parts: a control
file, containing ADD and INSERT instructions, a
difference file containing the bytewise differences
of the approximate matches, and an extra file,
containing the bytes which were not part of an
approximate match.

One important thing to note about Bsdiff is that it
uses an algorithm highly demanding in memory
resources. It requires max(17*n,9*n+m)+O(1)
bytes of memory, where n is the size of the old
file and m is the size of the new file. This solution
is not the most appropriate to use because it needs
huge resources of memory. Bsdiff was mainly
analysed for incremental backups for sensors and
resource-constrained microcontrollers (Teraoka,
Nakahara & Kurosawa, 2016; Onuma et al., 2016;
Stolikj et al., 2013).

4. Proposed Work

The approach presented in this paper aims to
separate the remote delta encoding process from
the transfer process by computing locally the delta
difference between the files and then transferring
them by using other compression utilities over
the network.

Thus the process of synchronization that we
have been using, consists of three stages: a
preprocessing stage (obtaining the delta files
for two versions of a file which are on the same
machine), a transfer stage of the delta data and a
“postprocessing” stage which relates to applying
the delta files to the old version of the selected
files to synchronize them. For the stages of
preprocessing and postprocessing, after a careful
analysis of available delta generation tools,
three different utilities were determined to be
worth further evaluation in this paper. In order
to describe the steps for remote synchronization
using delta differencing before transferring the
files, the remote synchronization for Rsync is
analysed (see Figure 2).

Figure 2. Rsync Remote Synchronization

As previously noted, Rsync is usually used for
synchronizing remote hosts, but it can also be
employed for computing the difference between
two versions of a file in local mode. When Rsync
is used between a SOURCE SITE and a TARGET
SITE, the TARGET SITE has to send all the block
checksums for its version to the SOURCE SITE.
After comparing the block checksums with regard
to the values received and the values of the block
checksums for the new version, the SOURCE
SITE will communicate the new data that needs to
be updated and the references of the blocks where
the data needs to be applied.

Thus, in this case, the bandwidth utilization is
greater than if the delta differences were sent after
a local delta encoding run between two different
versions of a tree directory structure.

As it is shown in Figure 3, the prototype that
we have used to synchronize two remote
versions includes three steps: the preprocessing
step which supplies the delta, the transfer step
for transferring the delta over the network to
the target site and the final step, namely the
postprocessing which consists in applying the
delta to the TARGET SITE.

Figure 3. Remote Synchronization using local
delta encoding

	 63

ICI Bucharest © Copyright 2012-2022. All rights reserved

Evaluation of Remote Data Compression Methods

For each method, the steps used for obtaining the
delta difference file set are explained below; it is
also explained how this delta data was transferred
and finally which were the steps applied at the
destination in order to obtain the new version of
the data set.

Preprocessing

1. Rsync

To obtain all the differences between two versions
in one single file, Rsync was used in -only-write-
batch mode. This function allows writing all
changes to a single file, which can then be sent
and applied on the TARGET site (see Figure 4).

Figure 4. Rsync Preprocessing

The syntax used was:

Rsync -av --delete -i -8 --progress --stats –only-write-
batch=batch_delta_file --recursive --log-file=test_log
--out-format=”**** file_size: %l ---- time: %t ---- file_
name: %f ---- delta_size: %b ---- itemize_change: %i
*****” NEW_VERSION OLD_VERSION

2. Xdelta3

For Xdelta3, the preprocessing stage as it can be
seen in Figure 5 included the following parts:

a. Running Rsync and processing the output of the
process in real time:

	- Find which files need to be deleted;

	- Find which files are new in the new version;

	- Find which files need to be updated.

b. For each delta file that needs to be updated,
Xdelta3 was run against the old version and the
new version of that file, keeping the generated
delta file in a separate directory.

The syntax used for Xdelta3 in encoding mode is
the following:

Xdelta3 -A -e –s old_file_version new_file_version
delta_file
where:
-e – compress
-s – source file to copy from
- A – provide application header

c. When the directory reaches 100 delta files it is
added to a .tar archive, and a new directory will
be created for the next 100 delta files

d. All the information related to the files that need
to be deleted is stored in a log file

e. All the new files are copied in a directory, and
their name and path are written to another log file,
in order to be applied on the TARGET site in the
postprocessing stage

f. In addition, there is another log file which
keeps the information about the delta file, the path
and name of the file which was changed when
comparing its versions

All the log files, as well as the directory which
contains the new files, are added to archive; the
final archive file will be sent across the network
to be processed on the TARGET site.

Figure 5. Flow diagram for Xdelta 3 preprocessing
using Rsync

https://www.sic.ici.ro

64 Romina Druta, Cristian-Filip Druta, Ioan Silea

3. Bsdiff/Bspatch

The preprocessing stage for Bsdiff/Bspatch is the
same as for Xdelta3 the only difference being that
Bspatch is called against two versions of the file
instead of calling Xdelta3 in mode encoding.

Bsdiff old_version new_version delta_file

Transfer

To create the new data set files on the remote
target site, it is necessary to transfer the delta file
in order to apply it to the old version. In order to
do this, the time of data transfer was evaluated by
using two transfer solutions: Rsync, and BBCP
which are open source tools. Rsync can be used as
a transfer tool also, being able to transfer the small
differences between the files across the WAN.

BBCP (Hanushevsky, 2012) a point-to-point
network file copy application, is an alternative
to GridFTP (Allcock et al., 2005) for transferring
large amounts of data. This utility breaks up the
transfer into multiple streams, thereby transferring
data much faster than single-streaming utilities
such as SCP (Secure Copy Protocol) and SFTP
(Secure File Transfer Protocol).

BBCP was employed in order to transfer the batch
file obtained after using Rsync, and the .tar archive
when using Xdelta3 and Bsdiff.

Postprocessing

Once the delta files arrived at the target, the
delta was applied to the old data set files using
the decoding option for the software that was
used at the source site to encode the differences
between the two versions of the respective files.
At this step the priority is to find the time taken
by each binary diff tool when applying the delta
file to the target site. Below, it is described for
each binary tool, which were the steps applied in
order to obtain the new version of the data set on
the target site.

1. Rsync

To apply the delta modifications to the old version,
Rsync was used in read-batch file mode, as it is
shown in Figure 6.

Figure 6. Rsync postprocessing

The syntax used was:

Rsync -v --read-batch=*_batch_bin_batch_file
-v – to display the output of Rsync
--read-batch – apply changes stored in the previously
generated file *_batch_bin_batch_file”

2. Xdelta3

Knowing that the delta files previously generated
are all contained in a .tar file, the process for
Xdelta3 applying patch includes the following
steps, which are also described by the process flow
from Figure 7:

a	 Create a copy of the old version to the
new version directory, using hard links

b	 Unpacking the log files, the directories;
containing the delta files and the directory
which contains the new files that are not
at the target site;

c	 Loading into RAM the information from
the log files, including which files need
to be deleted, the new files to be created
and the delta files;

d	 Delete the files that are not in the new
version and were in the old one from the
hard-linked copy directory, using the log
which contains information regarding
the files that need to be deleted from the
new version;

e	 Copy new files to the hard-linked copy
target directory, using the log file which
contains the path and the name of the file
that needs to be copied;

f	 Apply delta files, using Xdelta3 decoder
for each file that has been modified in
the new version. This step is done based
on the log file which, for each file, lists
the path of the file and the name of
the delta file which corresponds to the
modified file.

	 65

ICI Bucharest © Copyright 2012-2022. All rights reserved

Evaluation of Remote Data Compression Methods

The syntax used was:

Xdelta3 –d –s old_file_version delta_file new_file_ver-
sion
Where
-d – decoding, decompressing

3. Bsdiff/Bspatch

The postprocessing stage for Bsdiff/Bspatch is
almost the same as for Xdelta3, the only difference
being that Bspatch is run for decoding instead of
running Xdelta3 in decoding mode.

The syntax used was:

Bspatch old_file_version delta_file new_file_version
Where
-d – decoding, decompressing

5. Experiments and Results

For the presented experiments four data sets
of files were used, which are represented by a
software project compiled on Windows and Linux
platforms. The tests were performed using two
Red Hat Enterprise Linux Servers, one located
in North America(Canada), and the other one in
Central Europe (Germany), both connected on the
same WAN (Wide Area Network) and working at
an average speed of 250 Mbps.

In order to achieve a performance comparable
to that of Rsync, parallel processes were used
both for the preprocessing and postprocessing
stages. The testing conditions were the same for
all algorithms and there were no other processes
running on the servers at the time of these tests.
The time-related results were obtained using the
time command from the Unix system. Consistent
results were obtained by carrying out tests
repeatedly for three times, small variations of
0.03% were observed.

The results of the experiments carried out will be
presented as follows: first the spectrum of data
set files will be described, then for the given data
sets the size of the selected files will be analyzed
within each data set. Afterwards the focus will be
on the delta size of those files obtained for a new
and an old version by using the three algorithms
mentioned above. Finally, the analysis will focus
on the preprocessing time in obtaining the delta
difference file, the time to transfer the delta file
and the time taken by the postprocessing step at
the target destination.

Figure 7. Flow diagram for Xdelta3 postprocessing diagram

https://www.sic.ici.ro

66 Romina Druta, Cristian-Filip Druta, Ioan Silea

Spectrum of Data Set

In this section the type of files that are within a
data set are first analyzed. Then, the size of those
files and the size of delta files will be analyzed
for two versions of a data set. For the proposed
experiments let us consider Data Set A and
Data Set B which contain the files of a software
project compiled on win64_x64 and win32_x86
platforms, and Data Set C and Data Set D with
files resulting from the compilation of the project
on linux_x86 and linux_x64 platforms.

1.	 Type of files

In order to analyze the performance of the delta
encoding tools depending on the type of the files
within a data set, the types of files by artifact
(directory) are presented, as it can be seen in
Figure 8.

Figure 8. Types of files within an artifact

2.	 Size of files

At this point, the spectrum of the data set files was
analyzed. Thus, one obtained the total number of
files and directories, the maximum depth for the
directories, and the number of files divided into
ranges by their size (e.g. files less than 1kB, files
between 1kB and 10 KB, etc…). As it can be seen
in Figure 9, most of the files of the data set are
smaller than 1kB or they have a size between 1
kB and 10 kB.

3.	 Size of delta files

In this section, the spectrum of the delta
differences between two versions of each data set
was analyzed before the compressing algorithms
were applied. As Figure 10 shows, it can be stated
that 90% of the file differences for two versions
of a data set are smaller than 1kB. Sending all
of these small differences across the network
consumes a large amount of time and bandwidth.

Figure 9. Spectrum of the Data Set Files

Figure 10. Delta Files Spectrum

When using Rsync in remote mode, these
differences must be individually transmitted over

	 67

ICI Bucharest © Copyright 2012-2022. All rights reserved

Evaluation of Remote Data Compression Methods

the network. However, creating archive files which
contain the differences results in faster transfer
rates because they can be read contiguously by
the transfer software. This also provides the ability
to buffer the data that arrives on the target site in
memory and then flush it to disk at a later time,
which provides even better transfer rates.

Size of Delta Files for the
Compression Algorithms

In this paragraph one analyzes the size of the delta
files that are generated by the three delta encoding
algorithms described in Section 4.

Looking at the size of the Delta File generated
by these utilities, in Figure 11 it can be seen that
Rsync is not very efficient when focusing on the
size of the delta difference file. The size for the
file created by Xdelta3 and Bsdiff/Bspatch is
almost the same for the Data Set A and Data Set
B. One thing that must be mentioned is that, based
on Figure 11, Xdelta3 has a file size smaller than
Rsync’s batch file if .bin files are compared (Data
Set C and Data Set D).

Figure 11. Average of delta file size by DataSet

When comparing Xdelta3 and Bsdiff, the size of
delta file in two cases is smaller for Bsdiff than for
Xdelta3, but overall the compression performance
is the same when talking about the file size
obtained from the encoding process.

Figure 12 illustrates the total size of two versions
A and B which contain all the files of the four
datasets analyzed in Section 5.

Figure 12. Total size of the entire version compared
to the total size of delta file

The size of these versions is compared with the
size of the generated delta files obtained through
the three utilities described in Section 4. One can
imagine that if it was necessary to transfer the
entire version of a project, it would have taken
much longer than transferring only the delta
encoding files.

Preprocessing time

Figure 13 illustrates the preprocessing time
obtained by the delta encoding algorithms,
showing that Bsdiff takes the highest time to
compute the delta difference.

Figure 13. Preprocessing time by artifact

https://www.sic.ici.ro

68 Romina Druta, Cristian-Filip Druta, Ioan Silea

If one compares only Rsync and Xdelta3, it can
be stated that Xdelta3 takes more time than Rsync
also, but the difference is not as significant as in
the previous case. For the Data Set C and Data Set
D which include .cab and .bin files (see Figure 8)
the performance of Xdelta3 is similar to that of
Rsync, in comparison with the Data Set A and
Data Set B where a lot of .zip files are present.

Transfer time

It is known that the smaller a file is, the faster the
transfer will be. In this case, it can be stated that
transferring the .tar archive created using the Xdelta3
method is faster than transferring the batch file
created with Rsync, as the results show in Figure 14.

Figure 14. Transfer time for the delta files

Postprocessing time

Figure 15. Postprocessing time by artifact

At the stage of postprocessing where the delta
differences are applied on the target site, in Figure
15 it can be seen that Rsync performs the fastest
out of all three methods. It can be also noticed
that Xdelta3 can be slower than Bsdiff/Bspatch at
a certain degree.

Total Synchronization time

For the total synchronization time, as it can be
seen in Figure 16, Rsync used in batch mode
performs the best. When trying to apply remote
synchronization for two versions using Rsync,
the small-size files transmitted over the network
lead to a higher synchronization time. Xdelta3
performs better than Bsdiff/Bspatch but it has a
higher synchronization time in comparison with
Rsync used in batch mode.

Figure 16. Total processing time by artifact

6. Conclusion

This paper analyzed the results obtained for the
remote delta encoding process, using Rsync,
Xdelta3 and Bsdiff. These utilities were chosen
because they are open-source and widely used.

As it can be seen in Figure 12, for a total size of
the data sets of almost 175 GB, the total size of
delta files obtained for the two proposed versions
is higher than 36 GB when using Rsync. Xdelta3
has a better compression rate but the time required
to process the data is significantly higher than in
the case of Rsync, even if parallel processing is
used. Bsdiff/Bspatch obtained comparable results
with those of Xdelta3, being faster than it at the

	 69

ICI Bucharest © Copyright 2012-2022. All rights reserved

Evaluation of Remote Data Compression Methods

postprocessing stage (Figure 15), but it consumes
a lot of resources.

It can be concluded that Rsync is the fastest
tool for performing the synchronization, but it
consumes a lot of bandwidth to transfer the delta
difference file. Xdelta3 is not as fast as Rsync,
but the delta files are almost two times smaller
than Rsync’s batch files, which leads to a lower
bandwidth consumption.

As a result of this research, it can be stated that it is
advisable to use Rsync as a compression algorithm
when the cost of the bandwidth is not a problem,
otherwise it is more favorable to use Xdelta3
or another algorithm with a good compression
rate and another utility for transferring the delta
difference across the network.

Based on the obtained results, the future aim
would be to build an optimized transfer system
for security and remote collaboration.

REFERENCES

Allcock, W., Bresnahan, J., Kettimuthu, R. & Link, M.
(2005). The Globus Striped GridFTP Framework and
Server. In ACM/IEEE SC 2005 Conference (SC’05),
(p. 54). DOI:10.1109/SC.2005.72

Bhalerao, A. & Pawar, A. (2017). A survey: On data
deduplication for efficiently utilizing cloud storage for
big data backups. In 2017 International Conference
on Trends in Electronics and Informatics (ICEI),
Tirunelveli (pp. 933-938).

Charron-Bost, B., Pedone, F. & Schiper, A. (2010).
Replication, Theory and Practice, Springer.

Cisco Systems (2020). Cisco Annual Internet
Report (2018-2023), White Paper. Available at:
<https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/
white-paper-c11-741490.html>, last accessed: 27 of
January, 2022.

Cui, Y., Lai, Z., Wang, X. & Dai, N. (2015).
QuickSync: Improving Synchronization Efficiency
for Mobile Cloud Storage Services. In Proceedings of
the 21st Annual International Conference on Mobile
Computing and Networking (MobiCom’15), Paris,
France (pp. 3513-3526).

Faiz, M. & Shanker, U. (2016). Data synchronization
in distributed client-server applications. In 2016
IEEE International Conference on Engineering and
Technology (ICETECH), Coimbatore (pp. 611-616).

Fowler, J. E. (2017). Compression of Virtual-Machine
Memory in Dynamic Malware Analysis, Journal of
Digital Forensics, Security and Law, 12(1). Available
at: <https://commons.erau.edu/jdfsl/vol12/iss1/9>. DOI:
10.15394/jdfsl.2017.1437

Gavish, B. & Liu, S. O. R. (1990). Dynamic
file migration in distributed computer systems,
Communications of the ACM, 33(2), 177-189. DOI:
10.1145/75577.75583

George, S. & Edwin, E. B. (2017). A Review on Data
Replication Strategy in Cloud Computing. In 2017
IEEE International Conference on Computational
Intelligence and Computing Research (ICCIC),
Coimbatore (pp. 1-4).

Ha, K., Abe, Y., Eiszler, T., Chen, Z., Hu, W., Amos,
B., Upadhyaya, R., Pillai, P. & Satyanarayanan,

M. (2017). You can teach elephants to dance: agile
VM handoff for edge computing. In Proceedings
of the Second ACM/IEEE Symposium on Edge
Computing (SEC ’17). Association for Computing
Machinery, New York, NY, USA (pp. 1-14). DOI:
10.1145/3132211.3134453

Hanushevsky, A. (2012). BBCP. Available at: <https://
www.slac.stanford.edu/~abh/bbcp/>, last accessed: 27
of January, 2022.

Kolano, P. Z. (2015). Automatically encapsulating
HPC best practices into data transfers. In Proceedings
of the Second International Workshop on HPC User
Support Tools (HUST ’15), Association for Computing
Machinery, New York, NY, USA, Article 1 (pp. 1-12).
DOI: 10.1145/2834996.2834997

Korn, D. G., MacDonald, J., Mogul, J. C. & Vo,
K. (2002). The VCDIFF Generic Differencing and
Compression Data Format. In Internet Engineering Task
Force (IETF), Network Working Group, RFC, 3284.
Available at: <https://tools.ietf.org/html/rfc3284>.

MacDonald, J. (2000). File system support for delta
compression, MS Thesis, UC Berkeley. Available at:
<http://xdelta.org/>.

Naïve, C. (2003). Differences of Executable Code,
Computing Lab, Oxford University. Available at:
<http://www.daemonology.net/Bsdiff/>.

Onuma, Y., Nozawa, M., Terashima, Y. & Kiyohara, R.
(2016). Improved Software Updating for Automotive
ECUs: Code Compression. In 2016 IEEE 40th Annual
Computer Software and Applications Conference
(COMPSAC), Atlanta, GA (pp. 319-324).

Programmer Sought (n. d.). Comparison of three
differential algorithms for Xdelta3 bsdiff Courgette.
Available at: <https://www.programmersought.com/
article/479736363/>, last accessed: 18 of August, 2021.

Puliafito, C., Gonçalves, D. M., Lopes, M. M.,
Martins, L. L., Madeira, E., Mingozzi, E., Rana, O. &
Bittencourt, L. F. (2020). MobFogSim: Simulation of
mobility and migration for fog computing, Simulation
Modelling Practice and Theory, 101, 102062. DOI:
10.1016/j.simpat.2019.102062

Puliafito, C., Vallati, C., Mingozzi, E., Merlino, G.
& Longo, F. (2021). Design and evaluation of a fog

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

https://www.sic.ici.ro

70 Romina Druta, Cristian-Filip Druta, Ioan Silea

platform supporting device mobility through container
migration, Pervasive and Mobile Computing, 74,
101415. DOI: 10.1016/j.pmcj.2021.101415

Purnama, F., Usagawa, T., Ijtihadie, R. M. & Linawati
(2016). Rsync and Rdiff implementation on Moodle’s
backup and restore feature for course synchronization
over the network. In 2016 IEEE Region 10 Symposium
(TENSYMP), Bali (pp. 24-29).

Qaim, W. B. & Özkasap, Ö.(2018). State-of-the-Art
Data Replication Techniques in IoT-Based Sensor
Systems. In 2018 IEEE Globecom Workshops (GC
Wkshps), Abu Dhabi, United Arab Emirates (pp. 1-6).

Reinsel, D., Gantz, J. & Rydning, J. (2018). The
Digitization of the World from Edge to Core, IDC White
Paper sponsored by Seagate. Available at: <https://
www.seagate.com/files/www-content/our-story/trends/
files/idc-seagate-dataage-whitepaper.pdf>.

Sánchez-Gallegos, D. D., Carrizales-Espinoza, D.,
Reyes-Anastacio, H. G., Gonzalez-Compean, J. L.,
Carretero, J., Morales-Sandoval, M. & Galaviz-
Mosqueda, A. (2020). From the edge to the cloud:
A continuous delivery and preparation model for
processing big IoT data, Simulation Modelling
Practice and Theory, 105, 102136. DOI: 10.1016/j.
simpat.2020.102136

Schepis, L., Cuomo, F., Petroni, A., Biagi, M., Listanti,
M. & Scarano, G. (2019). Adaptive Data Update
for Cloud-based Internet of Things applications. In
Proceedings of the ACM MobiHoc Workshop on
Pervasive Systems in the IoT Era (PERSIST-IoT’19),
Association for Computing Machinery, New York, NY,
USA (pp. 13-18). DOI: 10.1145/3331052.3332472

Segall, A. (1976). Dynamic file assignment in
a computer network, IEEE Transactions on
Automatic Control, 21(2), 161-173. DOI: 10.1109/
TAC.1976.1101193

Segall, A. & Sandell, N. (1979). Dynamic file
assignment in a computer network–Part II:
Decentralized control, IEEE Transactions on
Automatic Control, 24(5), 709-716. DOI: 10.1109/
TAC.1979.1102169

Shiala, G., Majhib, S. K. & Phatakc, D. B. (2015).
A Comparison Study for File Synchronisation. In
International Conference on Intelligent Computing,
Communication & Convergence (ICC-2015), (pp.
133-141).

Shu, J., Wang, B., Meng, W. & Deng, Y. (2004). Policy
of file migration at server in cluster file system. In
IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2004), (pp. 691-698). DOI:
10.1109/CCGrid.2004.1336700

Stolikj, M., Cuijpers, P. J. L. & Lukkien, J. J.
(2013). Efficient reprogramming of wireless sensor
networks using incremental updates. In 2013 IEEE
International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops),
San Diego, CA (pp. 584-589).

Suel, T. (2018). Delta Compression Techniques. In
Sakr S. & Zomaya, A. (eds.), Encyclopedia of Big
Data Technologies, Springer.

Suel, T. & Memon, N. (2002). Algorithms for delta
compression and remote file synchronization. In
Sayood S. (ed.), Handbook of Lossless Compression,
Academic Press.

Teraoka, H., Nakahara, F. & Kurosawa, K. (2016).
Incremental update method for resource-constrained
in-vehicle ECUs. In 2016 IEEE 5th Global Conference
on Consumer Electronics, Kyoto (pp. 1-2).

Tos, U., Mokadem, R., Hameurlain, A., Ayav, T. &
Bora, S. (2016). A Performance and Profit Oriented
Data Replication Strategy for Cloud Systems. In
2016 International IEEE Conferences on Ubiquitous
Intelligence & Computing, Advanced and Trusted
Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People,
and Smart World Congress (UIC/ATC/ScalCom/
CBDCom/IoP/SmartWorld), Toulouse (pp. 780-787).

Trendafilov, D., Memon, N. & Suel, T. (2002). Zdelta:
a simple delta compression tool, Technical Report,
Polytechnic University, CIS Department. Available at:
<http://cis.poly.edu/zdelta/>.

Tridgell, A. (1999). Efficient Algorithms for Sorting
and Synchronization, Ph.D. Thesis, The Australian
National University. Available at: <https://rsync.
samba.org/documentation.html>.

Wu, S., Liu, L., Jiang, H., Che, H. & Mao, B. (2019).
PandaSync: Network and Workload Aware Hybrid
Cloud Sync Optimization. In Proceedings of the 2019
IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), Dallas, Texas, United
States (pp. 282-292).

Xiao, H., Li, Z., Zhai, E., Xu, T., Li, Y., Liu, Y. & Zhang,
Q. (2018). Towards Web-based Delta Synchronization
for Cloud Storage Services. In Proceedings of the 16th
USENIX Conference on File and Storage Technologies
(FAST’18), Oakland, CA (pp. 155-168).

Xie, F., Yan, J. & Shen, J. (2017). Towards Cost
Reduction in Cloud-Based Workflow Management
through Data Replication. In 2017 Fifth International
Conference on Advanced Cloud and Big Data (CBD),
Shanghai (pp. 94-99).

Xu, L., Pavlo, A., Sengupta, S. & Gagner, G. R. (2017).
Online Deduplication for Databases. In Proceedings
of the 2017 ACM International Conference on
Management of Data (SIGMOD ’17), Association
for Computing Machinery, New York, NY, USA (pp.
1355-1368). DOI: 10.1145/3035918.3035938

Xu, L., Pavlo, A., Sengupta, S., Li, J. & Gagner, G. R.
(2015). Reducing replication bandwidth for distributed
document databases. In Proceedings of the Sixth
ACM Symposium on Cloud Computing (SoCC ’15).
Association for Computing Machinery, New York, NY,
USA (pp. 222-235). DOI: 10.1145/2806777.2806840

	_Hlk65101795
	_Hlk93314534
	_Hlk79944558
	_Hlk79945381
	_Hlk79945716
	_Hlk79946300
	_Hlk79949019
	_Hlk79948995
	_Hlk79966272
	_Hlk79967469
	_Hlk79966470
	_Hlk79967399
	_Hlk79966554
	_Hlk79966713
	_Hlk80178655
	_Hlk79950863
	OLE_LINK6
	OLE_LINK7
	_Hlk84799754
	_Hlk85284937
	_Hlk88166470
	_Hlk84800607
	_Hlk84800704
	_Hlk84800639
	_Hlk85285823
	_Hlk85285705
	_Hlk85285798
	_Hlk85285726
	_Hlk88575938
	_Hlk95474020
	_Hlk84826000
	_Hlk81746251
	_Hlk84826048
	_Hlk88169960
	_Hlk84826285
	_Hlk88681045
	_Hlk88576380
	_Hlk84826358
	_Hlk93597467
	_Hlk84826543
	_Hlk84826612
	_Hlk84826662
	_Hlk88777151
	_Hlk72598236
	_Hlk72595510
	_Hlk72595526
	_Hlk72595544
	_Hlk72595568
	_Hlk72595591
	_Hlk72595608
	_Hlk79022436
	_Ref83553088
	_Hlk88777435
	_Ref83553329
	_Ref73285396
	_Ref73429633
	_Hlk84875420
	_Hlk84875410
	_Hlk84875950
	_Ref84344740
	_Hlk84879441
	_Hlk84875934
	_Hlk84878341
	_Hlk84879109
	_Hlk84879291
	_Hlk84879311
	_Hlk69605207
	_Ref88814925
	_Hlk84882594
	_Hlk84884282
	_Hlk85148111
	_Hlk84882825
	_Ref83553901
	_Hlk84884256
	_Ref69633722
	_Hlk84884300
	_Ref95582959
	_Ref95767407
	_Ref95767403
	_Hlk68560962
	_Hlk84885067
	_Hlk84884489
	_Hlk84884515
	_Hlk84884994
	_Hlk84885035
	_Ref70815484
	_Hlk85149124
	_Ref70986492
	_Ref93274735
	_Hlk84885419
	_Hlk95757077
	_Hlk96366946
	_Hlk72184508
	_Hlk72180906
	_Hlk72181474
	_Hlk72182231
	_Hlk80983026
	_Hlk94389558
	_Hlk80712379
	_Hlk94525072
	_Hlk94525260
	_Hlk94531175
	_Hlk94525027
	_Hlk93007322
	_Hlk92995493
	_Hlk92993974
	_Hlk94099572
	_Hlk93006259
	_Hlk89119130
	_Hlk94081814
	_Hlk95392680
	_Hlk85725169
	_Hlk85629151
	_Hlk85626918
	_Hlk85626804
	_Hlk85627107
	_Hlk70408984
	_Hlk85711903
	_Hlk86144408
	_Hlk85628883
	_Hlk85108447

