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Abstract @ A fuzzy controller, a conventional variable
structure controller, and a region-wise affine fuzzy controller
are compared for the control of an inverted pendulum. The
region-wise affine controller is designed via a conventional
fuzzy controller with a linear defuzzification algorithm: the
mput and output membership functions parameters are chosen
n order to ensure the stability of the linearised system,
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1. Introduction

Experimenial robustness propertics of fuzzy
conirollers remain theoretically difficuli to
prove and their synthesis is still an open
problem. The non-linear structure of the final
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controller is derived from all controllers at the
different stages of fuzzy control [1], particularly
from common defuzzification methods (such as
Centre of Area). In general, fuzzy controliers
have a region-wise structure given the partition
of its input space by the fuzzification stage.
Local controls designed in these regions are
then combined into sets to make up the final
global control. A partition of the state space can
be found for which the controller has region-
wise constant parameiers [3], [4]. Moreover,
each fuzzy controller tuning parameter (i.e. the
shapes and the values of input or output
variables membership functions) influences the
values of parameters in several regions at the
same time. In the particular case of a switching
line separaiing the phase plane into one region
where the control is positive whereas in the
other it is negative, the fuzzy controller may be
seen as a variable structure controller {5} [6]
[7] [8]. This kind of a fuzzy controller can be
assimilated to a variable structure controller
with boundary laver such as in [9], for which
stability theorems exist, bul with a non-linear
switching surface [7] [8].

With the use of trapezoidal input membership
functions and appropriate composition and
inference methods, it will be shown that it is
possible to obtain rule membership functions
which are region-wise affine functions of the
controller input variable. We propose a linear
defuzzification algorithm that keeps this
region-wise affine structure and vields a piece-
wise affine controller A particular and
systematic parameter tuning method will be
given which allows to turn this controlier into
a variable structure-like controller. We will
compare this region-wise affine controller with
a Fuzzy and Variable Structure Controller
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through the application to an inverted
pendulum controf {10].

In the first Section., the equations of the
inverted penduium system will be recalled. In
the second Section, the classical fuzzy and
variable structure controllers, to be used in the
system control, will be presented A fuzzy
controller of which output is an affine function
of its input variables will then be designed, and
a condition on the fuzzy controller parameters
values will be set so that the resulting control
should be picce-wise linear and stable when
used to conirol linear systems. In the third
Section, simulations will be referred for the
three comirollers and a short discussion on the
picce-wise affine controller behaviour will be
undertaken.

2. Inverted Penduium System

The system to be controlled is the classical
inverted pendulum system described in Figure 1
[10].

Figure 1. Inverted Pendulum

A force F' is applied to the cart. The goal is to
stabilise the rod to a position ¢ = 0 from an
initial position &, following a reference
trajectory

0, =0.50,(1+cos(ar)). (1)

The length of the rod is 2/, with / = 1 m, the
mass of the rod is m = 0.1 kg. the mass of the
cartism.= 1kg.

The angle follows the equation:

6=r@)+g@)F, )
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where F is the control, and

{ ml oy
F(0)=] gsin(@)~ —""— cos (0)sin (0 )6 L/
. M+, J
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i/ i_ m LUS:(Q]IL
L 3 m+m, ’))

3)

{ VY
g(ﬁ)= - cos(ﬂ)/g( f! L . e:'r).v‘?(()) | ’ (4)
/\ )

\3 m+ me

This model can be linearised around the
equilibrium point using the model

o N f{/ /4_ W
ssiomitor-{s0- v {452 )
k n+ fﬂc ',ll k l\.“ m+ me }

(3

which can take the form :
x = Ax+ B, {6)
We will define the control error as

(&
£ =9—6 ;and the vector x as x =| }

\E}j
3. Fuzzy and Variable Structure
Controllers

A, Fuzzy Control of the Inverted Pendulum

The control error £ and its derivative £ are the
controller inputs.

The proposed fuzzy controiler {1] follows the
linguistic rules K, such as:

ifeisd; AND ¢éisB, THENuisU

where 4, and B, are linguistic predicates. For

the sake of simplicity, U;; will be a scalar
number,

A membership function gg) to the predicate
"gis A;" and (¢ ) of the predicate " cisB."

can be defined. The vaiue of the membership

functions to the predicate
if eisA; AND &is B, is defined as
(6. €) =min(ude).ud £)). 0]

The output F is computed with the centroid
meihod:
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Practically, 3 predicates (Negative (N), Zero
(Z), Positive (P)) will be considered; the
composition function AND will be the function
min, ) as staied in formula (7). The trapezoidal
membership functions are defined in Figure 2.

% 1s a hmear control which ensures for a known
system the condition :

§S=-ps,

where p is a chosen real positive number.

Calling Afzf—_?and Ag=g-g. it is

[

Hegative Pogitive Negatrve Positive
K ! HE )

\\‘ /k « \\ s

‘\\‘ p \,\ \\ \\ .

/2\\ , 5 \ y &
\. \ £

s 9 7 \
-a a o

Figure 2. Input Membership Functions

The look-up table is defined in Table 1.

Table 1. Lookup Table and Rule Number (in
parentheses) for the Fuzzy Controller Qutput

\ Negative Zero Positive
£
Positive | Fi iRy | FiaRin) | Fis(Rya)
Zero Foi (R | Fau(Ras) | Fas(Ras)
Negative | F3, (Ra)) | Faa(Ra2) | Fas(Raa)

Afier some tuning t(rials, the following
parameters are obtained:

a= 040035 6 =002 F ;= -90, Fi,=6 F ;=
90, Fzy = -30, F3= 30, F3,=-90, F3,= -6, F34
= 90., F:J'_\: 0.

B. Sliding Mode Control of the Inverted
Pendulum

The idea of ihe sliding mode control is to use a

discontinuous control through a variable
struciure system. A hypersurface
s(e, £)y=Clx (9)

defines the discontinuity manifold [11]. T we
consider the approximation of the system (2)
using Eq (5), the control is

5\

1 N K
Fet e pSi= Pt o). @0
g g
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shown that the condition $s < 0. which ensures
the convergence of s to zero, is satisfied if the
gain K is chosen big enough:

Af+Tg_ PS = f4ig-¢ )T
£ i (1)

Ag
I+ = L’

|
KR

| z
To avoid high frequency oscillations close to
the sliding surface s(t). it is proposed in [11] to
replace the function sign(.) in Eq (10) by the
function saturation defined by:

sat{x) = wgnLaJJii > /.
124

(12)

The value of & is so chosen as 1o realise a trade-
off between the robustness of the control and
the damping of the chattering. In the
simulations, the value of the parameters is

s(e, €)=5e+&,p=35, a=001,K=4,

sat(x)——- [—|<]
a

ety

4. Piece-wise Affine

Control

Fuzzy

The membership functions (&) to the predicate
if is A; of the fuzzy controller defined in
Section 2. A, are piece-wise affine functions of
& It becomes obvious that the membership
function (e, &) =min(ufe).ud €)) to the
predicate if sis A, AND £is B, 1is a piece-
wise linear function of wvector x. Thus there
exists a number A of regions %, with p
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=1,2,...M, in the plane {¢,¢} where these
membership functions are affine functions of x.

Yet, the centroid method defined in (8) vields a
non-linear controller with constant parameters

in each region %7,

Let us suppose that V rules are active in each
region #, considered, and rule R, ; reads:

Riv. if €is A; AND gis By then Fis Fj,.

In order to remove the non-linearities due to the

defuzzification stage. the following
defuzzification operator is introduced:
=——Z J+u; ,uh“”)zc (13)

where 4, corresponds  to the membership

function for the rule R,; and the function 4/ is
defined as follows:

B (LN} > {LN}

h() = I, and h is a bijection from
{1..N} into {/..N}.

The belief in rule R;, is thus altered by the
belief in another rule Ry;x: in the inverted
pendulum example, rules R, ;. 2o, Ry and R,
are active at the same time in the quadrant
g<0 and £>0. For all the regions %,
inciuded in this quadrani, we compensaie the
membership function of the cell of the look-up
table which is far from the origin (that is to say
rule R; ;) with the nearest ( rule R.- ) and the
other two active rules by each other (rule R,
and rule R;, ) . The operation is repeated for
the other quadrants as well.

In every region #, where thc membership
functions are piece-wise linear, the resulting
fuzzy controi also becomes piece-wise linear
and can thus be written:

Fle, 8)=ax+V,

for every region #,, p=1... M. (14)

N is the number of active rules in the region

9, Since the u,, are piece-wise affine

functions, I, and «, are linear functions of the
output membership functions F, ;. As a resull,

there exist some parameters f, ;. , such that:
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Vp = Zﬂj-k-p[’}.fc : (15)
ik

The control defined above has a variable
structure because the parameter value is region-
wise. A simpic way to obtain a stable controiler
15 to tune the parameters ( F;; ) so that a
swiiching fine separates the phase plane into
one region where the control is positive,
whereas in the other it is negative. In this case,
it is possible to assimilate the controller to a
Variable Structure Controller with Boundary
Layer [9] as described in [7] [8]. The difference
with the last scheme is that we may obtain a
linear switching surface using the formatism of
fuzzy control. We may thus choose the
membership functions such that there exists a
common frontier to some of the regions 4%, ,
s(x) = C"x where C is a constant matrix; in the
regions %, where the surface C'x is always
positive (respectively negative), a constant
strictly negative (respectively positive) term
will be introduced using the term I, in equation
(73, if 5(x) is both negative and positive in some
region %,. then the term I, in Eq (7) will be
cancelled by tuning the control parameters Fj; .
the control being then linear in the regions
considered. Considering the conirol of the
linearised system (6). the algorithm will thus
be:

= Ax+B(ap‘mx+V ) (16)
P/
where we choose

V,>0if CTx<0 for every xe®

V,<0if C Tv>0 for every xe R )

else I"P =ik

The last condition can be rewritten, using Eq
G

! = Zﬁj,ﬁ:,pﬁ}.k =0 (17)
ik

The control F :ap‘ x+V may fa
P

discontinuous with respect to the surface s(x) =
C"x = 0. Eq (16) can be rewritten as:

i={4+8a, B

Let us suppose that BTC > 0; a sufficient
condition for the stability of the system (19) is

;Sf n' Tx). (18)

P
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. the matrix

0, (l4+8a7 cC +cc L4+Ba;")]< 0. (19)

that. for every region %

other three quadrants 0<e&<a and -b < &
<D, g<eg<Vand0< & <h,0<e<gand0 <
& < 6 which finally makes 16 regions where

The proof is straightforward using the candidate Lyapunov function J =s's. Derivating V, we

obtain:
V=i CCTx+x7CCT %

I/":x?'(AérBapT)TCCTx—BT'

V= xTif(A - BapT)T ccTvce T (aq Bapr))x-

Obviously, I <0 if condition ( 19) is met.

C. Application to the Inverted Pendulum

Let us consider the quadrant called O; where —
a<e<0and 0 < & <b:only rules R ;, R;;,
R;: and Ry, are active. The membership
functions for these rules are respectively,

; £ &) p i E £
fy  =min ﬁ;,b—J, Uy, =mm£l-‘r-;,g,

Thus we have 4 regions %;, 9, H; %, for
which the membership functions are all linear
with respect to &£ and £ and have constant

parameters (Figure 3).

£ £ £ & & & £ X
R ——>—and l+-<-. R, ——<=and 1+-<>2,
& a b a b % a b a b

. é‘ b b -
W, : “Tel and 185s8 R 558 ond e
a b a b a b a b

Qs

Figure 3. Regions with Constant Parameters
Membership Functions
region

For example, for we have:

’ #Rz}] :1_-17_'
repeated for the

& 8
MRy = 1+;””R2k2 =1 e

;!
This operation can be

luRLl =
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Vp}sigv{c'-'"x)c(??‘“xi’ccf(A+Bapf‘)&fx‘rccfbﬂp'p|sfgn(cfx).,

2B7C ), Jsign €7 )NC T x)

the up J has a constant expression (see Figure
3).

The resulting control in the quadrant Q,
(-a<e<0 and 0<é<b)isthen:

e l(1 g, = e, )Py %(1 by, ~ Hy,,)

FL+= (1-*-,u‘E pR”)E_,-I-l(l-r,uRJ—pJ)FUA

Replacing the expression of the up, ; in the

region %,;, we have

&

F 4 . \ . 4 Y
(5_5J51+@+f+fﬁﬂz+ﬁ_f_,}
1{\éd a) ~ b a} : L a b
2 (, & & -
F2_1 +L2+';*E] FZ,Z J

20

R :F=

Due to the symmetry of the operator and of the
membership function, the expression for
control /¥ is the same in regions %>, #: and
Hy, so that the above formula holds for the
whole quadrant ~a < g<0and 0< ¢ <b .

For the other quadrants, using the same
method, we get:

0, < & < a and 0< g < b
(‘;- L [1—;+-£—]F:_3+
F ;_ a ‘ a - :
&
1_7 p R
i e

(LikiﬁﬂlT@_i+£)gl¢

1 b a) b a B

=31/ ' ( ’
1L1+i—6]F32+l2+£+5)F“
L a ' L a
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Qu0<g<aand-b< g <0,

|

|
. 2 .
(1~575\P'7\1+‘2w£+i g, l
\k a b_,‘ ) L a b ) s J
The controller is region-wise linear in the four
quadrants, the symmetry of the membership
functions reduces the number of the regions to
be considered.

D. Stability Analysis and Synthesis

The control (20) is thus piece-wise affine with
constant parameters in each of the four
quadrants ;. @, O; and O, A common
frontier to some of the regions % is the surface:

sw=2+E-0, Q1)
h a

The control will not be discontinuous along this
surface since it belongs to quadrants O, and O,
where the control is continuous. However, we
can choose the controls to be discontinuous
around these quadrants, that is to say in O; and
;. We can thus choose the control to be linear
in quadrants Q; and Q; (I; =0) and have a
discontinuous term in O, and (; so that, using
Eq (16). V, = 0 and 1,.s(x) = 0. The application
of the method yields, as an application of
formula (17):

O, F ., + Fy +2F,, =0,

. (22)

g, :FL2 + Fo+ 2F:,: = 1
and in the discontinuity parts:
.V =k, 2l 820 .20,

< - s eyl s (23)
Oy Vy=Fy,+ 5y +2F,, >0
Substituting Eq (22) in Eq (23) vields:
Qg Vy=Fys=Fy, <0, (24)

Q,:Vy=F,, -F,;,>0

To satisfy equation (24). it suffices to
take /5, # F,3.  The expression of the

controller is this time;
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[—£+£}F‘1+(1+£-+-E—JF“+
1 b a i L b a :

1z &) [ 2T
2,7 =) [ Lty 8] = i I |
2\\b a) Lo v/ J
( j r/ \ \
1 ] & |
| == Fpgel e —w— L Fg% |
1{\p a/ b a ) |
Py =" ’
2 (/1‘- ’\ . I
&-‘—‘ IF,;+#-2, Faq [
\hNa b J
‘f( i o) [z 2) )
* SN
11\ & a) \boa) |
Q3 :u=—|
O P
——+ T a3t P13 i
k a b‘} !
l" i r\] 2é 2}:\] A
i—"—+— 1?3 £ 74— !:;4']
11 % h t} kb a B |
Qy U=
o 2 /"\5 £ 3 |
——+—J_'2-» l
b a - /
(25)

For the inveried penduium siabilisaiion, wc
take a = b = 0.02. The surface s(x) will thus be
CTx=6+£=0.

With the choice of Fi; =1, Fi5 =18, F., =
-055 Fg Fiow 0.85, F3‘1:'1(‘), F_g 3= 0. ]._ F_w_: =<1
we obtain the following matrices
., T ‘ b ‘T . B} ~T 4 3 ? \
0, —[(4 +Ba,”J 7 +cCT (44 Ba, )}i

corresponding to the quadranis O

0 _[-185 -0.96) (=318 -306)
"‘_l\fo.% »(J.()?J’ "27L—3()6 295
[-185 -msw (-956 -48)

- L-—lsg -152) <1 -48 007/
It can be checked that ¢, <0Ofor every j and,

following condition (19). the overall system is
stable.

To avoid chattering due to the discontinuity
term. we use the sarfj function defined in (12)
with a=0.03.

As for the VSC controller defined in Section 3.
A_ it is to hope that the modelling error will be
small enough so that the convergence of the
overall system should not be affected.
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Figure 4. (a) Fuzzy Control, (b) Variable Structure Control, (c) Piece-wise Affine Fuzzy
Control

5. Numerical Results

The structure of the piece-wise aifine controller
is now clear: a fast tracking is allowed by the
“discontinuity” terms. which are region-wise.
and the regulation is ensured nearby the
surface by linear terms. The Sliding Mode
Controiler described in [9] has a better
performance but it might rather difficult 1o
design as the equations of the system should be
known. The controller also resembles the one
which was described in {7] or {8] which can be

%10

o

N
Error £ (rad) 5 \,
\
1 A
4l \ |
2“1 o H
Y 1T
7’}‘ ;’{ i T 1[
[ | ——
v — ]
Q! L =L I B P e T
| |
AL : . L]
0 02 04 06 08 1
Time (s)

Figure 3. Control Errors
Fuzzy Control, Variable Structure
Control,

Piece-wise Affine Fuzzy Control

seen as an exiension of the previously cited
controller, but it has the advantage of being
piece-wise linear and displaving a linear
switching  surface which is a  great
simplificaiion. A major advantage over the
classical fuzzy controller lies in that Egs (17)
and (19) provide a framework for a systematic
controller design. These equations provide
some inequalities which restrict the admissible
parameter domain and give stability or
performance conditions. Parameter tuning can
thus be immediately compared to the trial-and-
error method used for fuzzy control
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6. Conciusion

A linear defuzzification method has allowed to
turn a fuzzy controller into a region-wise affine
state space controller; the control output has a
region-wise constant term and a region-wise
term which is a linear function of the controller
inputs. A sysicmatic parameter tuning ensures
the stability of the controller. and can be of a
real help for control synthesis. It was shown
that this controller could be seen as a particular
casc of variable structure conirol with boundary
laver.

The performance and interests of the control
was shown through the control of an inverted
pendulum and compared to variable structure
control and fuzzy control. A simple
defuzzification configuration was tested, and
future work was suggested for other strategies,
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