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1. Introduction

The mold constraints are used in several domains 
such as the wafer fabrication in a semiconductor 
plant.

In (Hong et al., 2009), the authors developed a 
mathematical model to describe the problem of 
two identical parallel machines in the production 
of wafer fabrication. The mold constraint is also 
taken into consideration. Three heuristics have 
been proposed in the latter work and compared 
with two existing metaheuristics.

Authors Hong et al. (2008) treated the problem of 
resource-constrained parallel machine scheduling 
with setup time in the practical context of 
microelectronic components manufacturing. The 
mold constraint is also taken into consideration. 
The authors proposed a random-key genetic 
algorithm to solve the problem.

In (Zhao et al., 2018), the authors investigated 
the two parallel machines with mold constraints. 
The authors proposed a mathematical system 
and a heuristic to solve the studied problem. In 
(Zhang et al., 2018), the authors proposed a mixed 
differential evolution genetic algorithm (DEGA) 
to solve the problem with mold constraint. The 
objective was the minimization of the makespan.

Many studies were developed to solve parallel 
machine scheduling problems. The problem is 
NP-hard in the strong sense. Several studies 

in the specialized literature proposed meta-
heuristic algorithms. The mixed-integer 
programming model can be used to solve the 
problem of the parallel machine. Li et al. (2011) 
developed a multi-objective mathematical model 
for the problem of scheduling plastic injection 
machines under mold constraints. Keskinturk et 
al. (2012) developed a bee algorithm for mold 
project scheduling and the proposed method 
proved its efficiency. 

Chung et al. (2019) treated the problem of two 
identical parallel machines with mold constraints. 
Three heuristics are proposed to solve the problem. 
A worst case of 3

2
 is proven in the latter paper.

Kowalczyk and Leus (2017) studied the problem 
of conflicting jobs. A graph of jobs is given in 
order to define the conflicting jobs. More precisely, 
conflicting jobs mean that these jobs can’t be 
processed on the same machine. An exact solution 
is developed based on the branch and price. 

Hà et al. (2019) treated the parallel machines 
problem with conflict graph. The main objective 
of this work is to maximize the total weight of 
tasks which completion times do not exceed the 
due date.

Zinder et al. (2021) solved the problem of 
maximization of the total weight of on-time jobs 
in parallel machines with a conflict graph.
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In (Haouari & Jemmali, 2008), the authors proposed 
several heuristics to solve the problem of parallel 
machines. In addition, the authors proposed two 
branch and bound methods to solve the problem 
optimally. The results showed the performance of 
these branch and bound algorithms.

Davidović et al. (2012) proposed a mathematical 
model to find the optimal quantity of molds for 
the rubber gloves production planning problem. 
Tian et al. (2013) presented a heuristic algorithm 
based on mathematical programming for a lot-
sizing and scheduling problem in mold-injection 
production. Arnaout (2021) used the Worm 
optimization algorithm to solve the two parallel 
machine problems under a single server constraint 
and proved its efficiency through extensive 
computational results. 

Recently, several algorithms were developed to 
solve different problems in scheduling (Jemmali, 
2021a; Jemmali, 2021b). These algorithms can 
be utilized and applied to the studied problem. 
In addition, algorithms developed in (Jemmali, 
2021c) and in (Jemmali & Alourani, 2021) can 
be adopted.

In addition, in a recent work (Hà et al., 2021), 
three objective functions in parallel machines 
problem with conflict jobs were discussed. 
These functions are minimizing the makespan, 
minimizing the weighted summation of the 
jobs’ completion time, and maximizing the total 
weights of completed jobs. Several mixed integer 
linear programming models are proposed to solve 
the problems. As described above, the parallel 
machine problem is NP-hard. No exact method 
reaches the optimal solution in polynomial time. 
This paper proposes a discrepancy search-based 
approach to obtain a near-optimal solution to the 
scheduling problem under mold constraints on 
parallel machines.

The rest of the paper is organized as follows. 
Section 2 is reserved for the problem description. 
Section 3 presents the proposition of the new 
lower bound of the studied problem. The proposed 
algorithms that were developed to solve the 
presented problem are detailed in section 4.  The 
development of the novel meta-heuristic CDDS 
(Climbing Depth-bounded Discrepancy Search) 
is presented in section 5. The experimental results 
are detailed in section 6. The conclusion is given 
in section 7.

2. Problem Description

The problem definition and some of its relevant 
proprieties are detailed in this section. In addition, 
the parallel machines scheduling problem with as 
well as some of its characteristics are recalled. 
This is because of the key role of the latter 
problem in providing algorithms for the current 
studied problem. 

The two parallel machine scheduling problem 
with mold constraints is stated as follows. A set 
of two machines M1 and M2, identical parallel 
machines, is given. A set {1,2,..., }J n=  of n jobs 
has to be processed on the machines respecting the 
following constraint. Two jobs j1 and j2 in the same 
mold can’t be processed on the two machines 
simultaneously. These jobs j1 and j2are conflicts. 
The index of mold is denoted by m1 with 1 i h≤ ≤ ,  
where h is the number of molds. The processing 
time of each job is denoted by pj. Each job can be 
processed only on one machine. The preemption 
of the execution of each job is not allowed. The 
completion time on each machine is denoted by 
C1 and C2 on machines M1 and M2, respectively. 
The completion time of a job j is denoted by tj. 
The time of the mold replacement is equal to zero 
in this study. The maximum completion time is 
calculated as follows:

max 1 21
max max( , )jj n

C t C C
≤ ≤

= =
                      

(1)

The objective is to minimize the maxC . The 
problem is denoted as max2 | |iP m C .

3. Lower Bound

A new lower bound for the studied problem is 
proposed. This lower bound is based on the idea of 
the relaxation problem. The following proposition 
gives the lower bound.  

Proposition 1

The lower bound TVL  detailed in (Haouari et al., 
2006) is a lower bound for the studied problem.

Proof

Since the two parallel machines problem 
max2 ||P C  is a relaxation problem max2 | |iP m C ,  

the lower bound TVL  detailed in (Haouari et al., 
2006) is a lower bound for the studied problem. 
In this paper the developed lower bound TVL  is 
denoted by LB.
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4. Proposed Algorithms

Several algorithms will be presented in this 
section. These algorithms are based on three 
approaches. The first approach is the application 
of the dispatching rules LPT (Longest Processing 
Time) and SPT (Smallest Processing Time) 
with some modifications adapted to the studied 
problem. The second approach is based on the 
critical mold. The third approach is based on the 
classification into groups of the jobs belonging to 
different molds.

4.1 Sorting with Modifications 
Algorithm (SM)

This algorithm is based on four functions. The first 
function is the longest processing time (LPT). The 
second one is the smallest processing time (SPT). 
The third function is based on the idea of reducing 
the time-out applying LPT. The time-out is a time 
slot in a machine during which any job should 
be processed. Indeed, when a job j is scheduled 
and if the completion time of this job on M1 is the 
same as on M2 then, the machine that reduces the 
time-out is chosen. The fourth function is based 
on the idea of reducing the time-out applying SPT. 
Now, after applying these four functions, the best 
solution will be picked. This is conducted to the 
SM value.

4.2 Longest-Mold Variants  
Algorithm (LM)

The summation of all the processing times of jobs 
that belong to a mold mi is denoted by Cmi. Each 
mold will be represented as a fictive job Fmi  with 
processing time Cmi. Indeed, the number of fictive 
jobs is h. One denotes by 1{ ,..., }hFm Fm Fm= .  

LT(Ls) denotes the procedure that applies the LPT 
heuristic on a list of jobs Ls. The first part of the 
algorithm LM is to call LT(Fm). The obtained 
makespan is denoted by LM1. The second part 
of the algorithm LM is based on calculating the 
second value LM2 as follows. 

Firstly, the longest mold which is the mold that 
has the maximum Cmi  has to be determined. All 
the jobs in a mold mi will be grouped in a set Sm1. 

An intuitive value is calculated as 1

2

n

j
j

p
V ==

∑
. 

The jobs in Smi are sorted according to the non-
increasing order of their processing time. A 

sequence Sq is created by the arrangement of all 
sorted jobs in Smi {1,..., }i h∀ ∈ . Now, the jobs 
belonging to Sq on M1 are started to be scheduled 
until reaching V. The remaining jobs will be 
scheduled on M2. The obtained makespan will 
be denoted by LM2. The value returned by the 
algorithm LM will be 1 2min( , )LM LM .

The instructions given by LM heuristic are 
illustrated in Algorithm 1. Hereafter, the function 
DFJ() calculates the load of each mold and 
determines the fictive jobs Sm2. NINCRS(Ls) is 
the function that sorts a list of jobs  according to 
the non-increasing order of their processing time. 
SJ(Ls, X) denotes the function that schedules a list 
of jobs on the first machine without exceeding X. 
The remaining jobs will be scheduled on the second 
machine. The makespan will be returned by SJ(). 

Algorithm 1. LM Algorithm
Call DFJ(J, h)      
LT(Fm)
Calculate V For (i = 1 to h)
       Call NINCRS(Smi)    
EndFor
Determine Sq
LM2 =SJ(Sq, V)

1 2min( , )LM LM LM=

4.3 Grouped-Mold Algorithm (GM)

ni denotes the number of jobs in Smi and 

1
max ii h

T n
≤ ≤

= . k
iJ  denotes the job in the mold i and 

in the kth position in the set Smi {1,..., }i h∀ ∈  
and {1,..., }k T∀ ∈ . Now, the groups kGr   

{1,..., }k T∀ ∈  are constructed as follows. 
1 1 1 1

1 2{ , ,..., }hGr J J J= , 2 2 2 2
1 2{ , ,..., }hGr J J J=

,…, 1 2{ , ,..., }T T T T
hGr J J J= . It is worthy to note 

that {1,..., }i h∀ ∈ , if ik n>  which implies the 
non-existence of k

iJ .   

The first part of the algorithm GM is to calculate 
the GM1 value as follows. The jobs in Gr1 are 
scheduled according to LPT. After that, the jobs 
in Gr2 are scheduled according to LPT, and so 
on until scheduling the jobs in GrT. The obtained 
makespan will be denoted by GM1. 

The second part of the algorithm GM is to 
calculate the GM2 value as follows. The procedure 
utilized to calculate GM1 is applied on all the sets 
Smi excluding those containing only one job. The 
jobs in the excluded sets will be considered as 
a new group and will be scheduled one by one 
separately on the most available machine. The 
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obtained makespan will be denoted by GM2. 
The value returned by the algorithm GM will be 

1 2min( , )GM GM .  

The instructions given by GM heuristic are 
illustrated in Algorithm 2. Hereafter the function 
DG() determines groups Gr1 {1,..., }k T∀ ∈  .

Algorithm 2. GM Algorithm
Call DFJ(J, h)      
Call NINCRS(Fm)      
Call DG ()
GM1 = LT(Gr)
For (i = 1 to T) do
       If len(Gri = 1) then
	 Grp pushback(Gr, Gri)
       EndIf
EndFor
GM2 = LT (Grp)
GM = min(GM1, GM2)

Example 1

Taking into consideration the example presented 
in Table 1, GM algorithm works as follows. 
First ly,  1 {3,5, 4,6}Gr = ,  2 {7,8}Gr = ,  

3 {1,2}Gr = , 4 {10}Gr = , and 5 {9}Gr =  
are obtained. The first considered sequence 
is  {{3,5,4,6},{7,8},{1,2},{10},{9}}Gr = .  
The sequences on the two identical parallel 
machines are {3,5,4,6}  and {7,8,1,2,10,9}. 
The makespan 1 12GM = .

Table 1. pj and h values for ten jobs for Example 1

j 1 2 3 4 5 6 7 8 9 10

pj 2 1 3 5 3 1 3 2 1 2

h 3 4 3 1 4 2 3 4 3 3

The second part of algorithm works as follows. 
1 {3,5}Gr = ,  2 {7,8}Gr = , 3 {1,2}Gr = ,  
4 {10}Gr = , 5 {9}Gr = , 6 {4}Gr = , and 
7 {6}Gr =   are obtained. The considered sequence 

i s  {{3,5},{7,8},{1,2},{10},{9},{4},{6}} . 
The sequences on the two parallel machines are 
{3,5,10,9,6} and {7,8,1,2,4} . The makespan  
GM2 = 13. Therefore GM = min(GM1, GM2).

4.4 Grouped-Variant Mold  
Algorithm (GV)

Firstly, the groups that have only one job are 
conserved. These jobs will constitute a set J1. The 
jobs in the remaining groups will be scheduled 
according to LPT. Now, the jobs in J1 will be 

scheduled one by one. The obtained makespan 
will be denoted by GV1. The second step is to 
apply the above procedure but instead of applying 
LPT in the remaining groups SPT is applied. 
The obtained makespan will be denoted by GV2. 
The value returned by the algorithm GV will be 
min(GV1, GV2).

4.5 Improved Longest Mold  
Algorithm (IL)

This algorithm applies the same procedures 
detailed in LM algorithm. The difference is the 
value of V. Indeed, in this algorithm V = LB. 
There is no dominance between LM and IL.

4.6 Improved Algorithms

All the algorithms presented above will be 
improved using an enhancing procedure denoted 
by CDDS which will be detailed in the next SM 
section. Applying the CDDS on SM , LM , GM ,  
GV , and IL  the new algorithms will be denoted 
by SM , LM , GM , GV , and IL , respectively.

4.7 Best Algorithm

This algorithm is obtained after calling all the 
algorithms described in subsection 4.6, and the best 
value will be returned. This algorithm is denoted by 
BA . Thus,     min( , , , , )BA SM LM GM GV IL= , 

5. Enhanced Procedure CDDS

In this section, an existing local search method 
based on tree-search, called Climbing Depth-
bounded Discrepancy Search (CDDS) is used 
(Hmida et al., 2011). This method is a hybrid one 
based on two discrepancy-based methods: DDS 
(Hmida et al., 2010) and Climbing Discrepancy 
Search (CDS) (Hmida et al., 2007). CDDS 
introduced an intensification process around 
promising solutions. This discrepancy search-
based starts with an initial solution which 
will be explained below. The exploration of 
neighborhoods through several iterations makes 
the new values to be more and more far from 
the solution fixed as the referenced one. After 
each iteration, the best solution will be picked. If 
the picked solution is better than the referenced 
solution, then the latter one will be updated, and 
the instruction is restarted. The advantage of 
CDDS is that the neighborhoods are defined and 
structured by the discrepancy principle. Thus, 
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variable-size neighborhoods are built using a 
gradual increase of the allowed discrepancies. 
The utilization of a discrepancy-based procedure 
conducts to the organization of the local search 
approach. The discrepancy principle is reinforced 
by using a depth limit to restrict the exploration in 
less-promised areas.

Thus, applying a discrepancy consists in 
scheduling another job than that given by the 
heuristic. For example, when the depth is equal 
to 4 and the sequence returned by a heuristic is 
{6,8,4,3,2,1,5,10,9,7} for 10n = . The generated 
neighborhood is based on the permutation of the 4 
jobs in the given sequence. For this example, the 
generated neighborhood is {3,6,8,4,2,1,5,10,9,7}, 
{6,3,8,4,2,1,5,10,9,7}, {6,8,3,4,2,1,5,10,9,7}, 
{4,6,8,3,2,1,5,10,9,7}, {6,4,8,3,2,1,5,10,9,7} and 
{8,6,4,3,2,1,5,10,9,7}.

The discrepancy number is calculated as follows. 
The first value obtained by the heuristic represents 
zero discrepancies. All the other values represent 
1-discrepancy.

The instructions given by CDDS algorithm are 
illustrated in Algorithm 3. Hereafter, ()ISP  
is the procedure which applies one heuristic 
among SM , LM , GM , GV , and IL  returns 
the first reference solution denoted by 0S .  
The ()CLP  is the procedure which applies 
discrepancy, computes new leaves in the tree 
denoted by , and returns the maxC . d  denotes 
the number of discrepancies max{1,..., }d D=  
and max {1,..., }D n=  is the maximum allowed 
discrepancy which is a parameter of the algorithm.

Algorithm 3. The CDDS algorithm

  1d =               
  0 ( )S ISP J=     
  While ( maxd D< ) do 

0' ( , )S CLP S d=
If  ( max max 0( ') ( )C S C S< )   

0 'S S=
                           0d =
               EndIf 
               1d d= +

   EndWhile 

The proposed approach is based on discrepancy 
search algorithms combined with several algorithms 
implemented to find appropriate solutions.  It is 
important to start with a possible solution and 

then update it during the evolution process. The 
encoding scheme adopted in this paper is based on 
the five heuristics presented above. 

Example 2

Taking into consideration the example presented 
in Table 2, SM  algorithm works as follows. The 
sequence {7,10,2,5,4,3,8,9,1,6} is obtained. The 
sequences on the two identical parallel machines 
are {7,2,4,3,9} on 1M  and {10,5,8,1,6} on 2M . 
The makespan obtained by the SM  algorithm is 24.

Table 2. pj and h values for ten jobs for Example 2

j j 1 2 3 4 5 6 7 8 9 10

pj pj 1 7 2 5 7 1 8 2 2 8

h h 2 4 1 1 4 2 2 4 3 3

In general, the mold constraint implies that if a job 
j is processed by a machine, in the period of the 
processing time of  j, no other job that requires the 
same mold can be processed on the other machine. 
This time slot can invoke a time-out.

Figure 1 represents the schedule of jobs described 
in Table 2. This figure shows that job 2 on machine  

1M  and job 5 on machine 2M  require the same 
mold, then job 5 will be postponed until job 2 is 
finished and job 8 will also postponed until job 
5 is finished. The results ( 0S ) are also shown in 
Figure 1. The initial max 24C = . 

Figure 1. The initial solution

By applying CDDS algorithm, and choosing 
max 3D = , the neighborhood set of the first 

reference solution at 1d = , is:

{{2,7,10,5,4,3,8,9,1,6};7,2,10,5,4,3,8,9,1,6}; 
{7,10,2,5,4,3,8,9,1,6}; {10,7,2,5,4,3,8,9,1,6}}. 
Based on the first neighbor, the obtained 
sequences on the two identical parallel machines 
are {2,10,4,1,6} and {7,5,3,8,9}. 
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The makespan obtained by the SM  algorithm 
is 22. The solution is presented in Figure 2. The 
latter solution will be considered as the new 
reference solution and the process will be repeated 
to improve the final completion time. 

Figure 2. The second reference solution

6. Experiments and Discussion

This section reports about the experiments 
conducted to demonstrate the performance 
of the proposed algorithms for scheduling on 
parallel machines with the mold constraints. The 
experiments were performed by Visual Studio C++ 
on an Intel® Core™i5-1035G1 CPU@1.00GHz 
1.19 GHz / 8.00 GB. 

Three classes of instances were generated to 
assess the proposed algorithms. The variables 
( , )n h  were fixed as follows. {3,4,5,6,7}h =
and {10,20,30,50,100,150,200}n = . The 
processing time jp  was generated randomly 
from the uniform distributions as follows: Class 
1 is U(5,20), Class 2 is U(10,50) and Class 3 is 
U(10,100). For fixed values of n , h , and class, 
10 instances were generated. Indeed, the total 
instances are 5 7 3 10 1050× × × = .

Several indicators are calculated to measure the 
performance of the proposed algorithms:

•	 A: Value returned by the presented algorithm;

•	  
A LBGp

LB
−

=  : Gap between the presented 

algorithm and the proposed lower bound;

•	 Ga: Average of Gp values;

•	 Pr: Percentage of the instances that A = LB;

•	 Time: Average running time in seconds.

Table 3 presents the performance of all the 
proposed algorithms according to Pr, Time, and 
Ga. The best algorithm is BA  with a percentage of 
96.4%, zero average gap, and an average running 
time of 146.316 s. The percentage of 96.4% 
proves that the proposed algorithms reach the 
optimal solution in 96.4% of instances. 

The second best algorithm is GM  with a 
percentage of 90.2%, an average gap of 0.001, and 
an average running time of 29.501 s. The optimal 
solution is reached in 90.2% of instances. The 
results demonstrate that the proposed algorithm is 
effective and efficient in solving parallel machines 
with mold constraints.

Table 4 presents the performance of all the 
proposed algorithms according to Ga when n is 
varying. This table shows that the average gap has 
a higher value when 10n =  for all algorithms. 
For 100n ≥  the average gap is equal to zero for 
all the algorithms. For both algorithms GM  and 
BA the average gap is equal to zero excepting 
when 10n = . 

Table 4. Performance of all the proposed algorithms 
according to Ga when n is varying 

n SM LM GM GV IL BA
10 0.018 0.034 0.007 0.030 0.035 0.002

20 0.005 0.010 0.000 0.006 0.009 0.000
30 0.001 0.004 0.000 0.002 0.003 0.000
50 0.002 0.002 0.000 0.001 0.002 0.000

100 0.000 0.000 0.000 0.000 0.000 0.000
150 0.000 0.000 0.000 0.000 0.000 0.000
200 0.000 0.000 0.000 0.000 0.000 0.000

Table 3. Performance of all the proposed algorithms according to Pr, Time and Ga

SM LM GM GV IL BA

Pr
87.2% 65.1% 90.2% 73.0% 68.5% 96.4%

Time 6.719 66.831 29.501 33.525 9.739 146.316

aG 0.004 0.007 0.001 0.006 0.007 0.000

mailto:CPU@1.00GHz
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Table 5 presents the performance of all the 
proposed algorithms according to Ga when h is 
varying. This table shows that the average gap 
decreases when h increases for all the algorithms 
expecting GM . The maximum average gap of 
0.016 is obtained by LM  when 3h = . The zero 
average gap is reached for GM  when 3h =  and 
for BA  for all h values. 

Table 5. Performance of all the proposed algorithms 
according to Ga when h is varying 

h SM LM GM GV IL BA
3 0.012 0.016 0.000 0.011 0.013 0.000

4 0.003 0.005 0.001 0.005 0.006 0.000

5 0.001 0.005 0.001 0.004 0.005 0.000

6 0.001 0.004 0.001 0.004 0.006 0.000

7 0.001 0.004 0.002 0.002 0.004 0.000

This table shows that the maximum average gap of 
0.011 is obtained when 5Id =  (the pair of ( , )n h  
is (10,7)). 

Table 6. Example of Id for n={10,20}

Id n h GM
1

10

3 0.003

2 4 0.006
3 5 0.007
4 6 0.008
5 7 0.011
6

20

3 0.000
7 4 0.000
8 5 0.000
9 6 0.001
10 7 0.000

Figure 3 illustrates the variation of the average gap 
according to Id  for the GM  algorithm The Id  
value is the number of the pair ( , )n h .

Table 6 shows the determination of the Id  value 
for {10,20}n = .

7. Conclusion

This paper treats the problem of two machines 
under mold constraints. The problem is proved 
to be a NP-hard one. A new lower bound of 
the studied problem was developed. Several 
heuristics were proposed. A novel meta-heuristic 
is proposed to enhance the proposed heuristics. 
The experimental results showed the importance 
of the enhancement of the meta-heuristics. 
Compared with the values obtained by the 
lower bound of the studied problem, the best-
proposed heuristic reaches the optimal solution 
in 96.4% of instances. It can be easily seen that 
the proposed  algorithm obtained a near-optimal 
solution with a 96.4% success rate and, therefore, 
proved to be very effective. A comparison between 
different heuristics is studied and discussed in the 
experimental results. The proposed heuristics can 
be enhanced to solve a large scale of instances. In 
addition, the proposed heuristics can be used in a 
branch and bound method for the elaboration of 
the exact solution of the problem.
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