
71

ICI Bucharest © Copyright 2012-2022. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

The mold constraints are used in several domains
such as the wafer fabrication in a semiconductor
plant.

In (Hong et al., 2009), the authors developed a
mathematical model to describe the problem of
two identical parallel machines in the production
of wafer fabrication. The mold constraint is also
taken into consideration. Three heuristics have
been proposed in the latter work and compared
with two existing metaheuristics.

Authors Hong et al. (2008) treated the problem of
resource-constrained parallel machine scheduling
with setup time in the practical context of
microelectronic components manufacturing. The
mold constraint is also taken into consideration.
The authors proposed a random-key genetic
algorithm to solve the problem.

In (Zhao et al., 2018), the authors investigated
the two parallel machines with mold constraints.
The authors proposed a mathematical system
and a heuristic to solve the studied problem. In
(Zhang et al., 2018), the authors proposed a mixed
differential evolution genetic algorithm (DEGA)
to solve the problem with mold constraint. The
objective was the minimization of the makespan.

Many studies were developed to solve parallel
machine scheduling problems. The problem is
NP-hard in the strong sense. Several studies

in the specialized literature proposed meta-
heuristic algorithms. The mixed-integer
programming model can be used to solve the
problem of the parallel machine. Li et al. (2011)
developed a multi-objective mathematical model
for the problem of scheduling plastic injection
machines under mold constraints. Keskinturk et
al. (2012) developed a bee algorithm for mold
project scheduling and the proposed method
proved its efficiency.

Chung et al. (2019) treated the problem of two
identical parallel machines with mold constraints.
Three heuristics are proposed to solve the problem.
A worst case of 3

2
 is proven in the latter paper.

Kowalczyk and Leus (2017) studied the problem
of conflicting jobs. A graph of jobs is given in
order to define the conflicting jobs. More precisely,
conflicting jobs mean that these jobs can’t be
processed on the same machine. An exact solution
is developed based on the branch and price.

Hà et al. (2019) treated the parallel machines
problem with conflict graph. The main objective
of this work is to maximize the total weight of
tasks which completion times do not exceed the
due date.

Zinder et al. (2021) solved the problem of
maximization of the total weight of on-time jobs
in parallel machines with a conflict graph.

Studies in Informatics and Control, 31(1) 71-78, March 2022

https://doi.org/10.24846/v31i1y202207

Near-Optimal Solutions for Mold Constraints on
Two Parallel Machines

Abir BEN HMIDA1,4*, Mahdi JEMMALI2,3,4

1 Department of Information Systems, Faculty of Computer and Information Technologies at Khulais,
Jeddah University, Saudi Arabia
2 Department of Computer Science and Information, College of Science at Zulfi, Majmaah University,
Majmaah, 11952, Saudi Arabia
3 Mars Laboratory, University of Sousse, Sousse, Tunisia
4 Department of Computer Science, Higher Institute of Computer Science and Mathematics of Monastir,
Monastir University, Monastir, 5000, Tunisia
a.hhmida@uj.edu.sa (*Corresponding author), m.jemmali@mu.edu.sa, mah_jem_2004@yahoo.fr

Abstract: This paper investigates the mold constraints for the two parallel machines problem. The goal is to minimize the
makespan. The resource constraint can be defined as a mold. This constraint is also defined as jobs with conflict. Two jobs
can’t be executed by the two machines simultaneously. The problem is proved to be a non-deterministic polynomial NP-hard
one. Different heuristics have been proposed in this paper to solve the studied problem. A novel meta-heuristics algorithm
is developed to enhance the proposed heuristics. The computational results and discussions show the performance of the
proposed solutions. A different class of instances is implemented to test the proposed heuristics. The results show that the
developed heuristics reaches the optimal solution in 96.4% of instances. Therefore, the obtained results represent near-
optimal solutions for the studied problem.

Keywords: Mold constraint, Heuristics, Makespan, Scheduling, Local-search.

mailto:m.jemmali@mu.edu.sa

https://www.sic.ici.ro

72 Abir Ben Hmida, Mahdi Jemmali

In (Haouari & Jemmali, 2008), the authors proposed
several heuristics to solve the problem of parallel
machines. In addition, the authors proposed two
branch and bound methods to solve the problem
optimally. The results showed the performance of
these branch and bound algorithms.

Davidović et al. (2012) proposed a mathematical
model to find the optimal quantity of molds for
the rubber gloves production planning problem.
Tian et al. (2013) presented a heuristic algorithm
based on mathematical programming for a lot-
sizing and scheduling problem in mold-injection
production. Arnaout (2021) used the Worm
optimization algorithm to solve the two parallel
machine problems under a single server constraint
and proved its efficiency through extensive
computational results.

Recently, several algorithms were developed to
solve different problems in scheduling (Jemmali,
2021a; Jemmali, 2021b). These algorithms can
be utilized and applied to the studied problem.
In addition, algorithms developed in (Jemmali,
2021c) and in (Jemmali & Alourani, 2021) can
be adopted.

In addition, in a recent work (Hà et al., 2021),
three objective functions in parallel machines
problem with conflict jobs were discussed.
These functions are minimizing the makespan,
minimizing the weighted summation of the
jobs’ completion time, and maximizing the total
weights of completed jobs. Several mixed integer
linear programming models are proposed to solve
the problems. As described above, the parallel
machine problem is NP-hard. No exact method
reaches the optimal solution in polynomial time.
This paper proposes a discrepancy search-based
approach to obtain a near-optimal solution to the
scheduling problem under mold constraints on
parallel machines.

The rest of the paper is organized as follows.
Section 2 is reserved for the problem description.
Section 3 presents the proposition of the new
lower bound of the studied problem. The proposed
algorithms that were developed to solve the
presented problem are detailed in section 4. The
development of the novel meta-heuristic CDDS
(Climbing Depth-bounded Discrepancy Search)
is presented in section 5. The experimental results
are detailed in section 6. The conclusion is given
in section 7.

2. Problem Description

The problem definition and some of its relevant
proprieties are detailed in this section. In addition,
the parallel machines scheduling problem with as
well as some of its characteristics are recalled.
This is because of the key role of the latter
problem in providing algorithms for the current
studied problem.

The two parallel machine scheduling problem
with mold constraints is stated as follows. A set
of two machines M1 and M2, identical parallel
machines, is given. A set {1,2,..., }J n= of n jobs
has to be processed on the machines respecting the
following constraint. Two jobs j1 and j2 in the same
mold can’t be processed on the two machines
simultaneously. These jobs j1 and j2are conflicts.
The index of mold is denoted by m1 with 1 i h≤ ≤ ,
where h is the number of molds. The processing
time of each job is denoted by pj. Each job can be
processed only on one machine. The preemption
of the execution of each job is not allowed. The
completion time on each machine is denoted by
C1 and C2 on machines M1 and M2, respectively.
The completion time of a job j is denoted by tj.
The time of the mold replacement is equal to zero
in this study. The maximum completion time is
calculated as follows:

max 1 21
max max(,)jj n

C t C C
≤ ≤

= =

(1)

The objective is to minimize the maxC . The
problem is denoted as max2 | |iP m C .

3. Lower Bound

A new lower bound for the studied problem is
proposed. This lower bound is based on the idea of
the relaxation problem. The following proposition
gives the lower bound.

Proposition 1

The lower bound TVL detailed in (Haouari et al.,
2006) is a lower bound for the studied problem.

Proof

Since the two parallel machines problem
max2 ||P C is a relaxation problem max2 | |iP m C ,

the lower bound TVL detailed in (Haouari et al.,
2006) is a lower bound for the studied problem.
In this paper the developed lower bound TVL is
denoted by LB.

	 73

ICI Bucharest © Copyright 2012-2022. All rights reserved

Near-Optimal Solutions for Mold Constraints on Two Parallel Machines

4. Proposed Algorithms

Several algorithms will be presented in this
section. These algorithms are based on three
approaches. The first approach is the application
of the dispatching rules LPT (Longest Processing
Time) and SPT (Smallest Processing Time)
with some modifications adapted to the studied
problem. The second approach is based on the
critical mold. The third approach is based on the
classification into groups of the jobs belonging to
different molds.

4.1 Sorting with Modifications
Algorithm (SM)

This algorithm is based on four functions. The first
function is the longest processing time (LPT). The
second one is the smallest processing time (SPT).
The third function is based on the idea of reducing
the time-out applying LPT. The time-out is a time
slot in a machine during which any job should
be processed. Indeed, when a job j is scheduled
and if the completion time of this job on M1 is the
same as on M2 then, the machine that reduces the
time-out is chosen. The fourth function is based
on the idea of reducing the time-out applying SPT.
Now, after applying these four functions, the best
solution will be picked. This is conducted to the
SM value.

4.2 Longest-Mold Variants
Algorithm (LM)

The summation of all the processing times of jobs
that belong to a mold mi is denoted by Cmi. Each
mold will be represented as a fictive job Fmi with
processing time Cmi. Indeed, the number of fictive
jobs is h. One denotes by 1{ ,..., }hFm Fm Fm= .

LT(Ls) denotes the procedure that applies the LPT
heuristic on a list of jobs Ls. The first part of the
algorithm LM is to call LT(Fm). The obtained
makespan is denoted by LM1. The second part
of the algorithm LM is based on calculating the
second value LM2 as follows.

Firstly, the longest mold which is the mold that
has the maximum Cmi has to be determined. All
the jobs in a mold mi will be grouped in a set Sm1.

An intuitive value is calculated as 1

2

n

j
j

p
V ==

∑
.

The jobs in Smi are sorted according to the non-
increasing order of their processing time. A

sequence Sq is created by the arrangement of all
sorted jobs in Smi {1,..., }i h∀ ∈ . Now, the jobs
belonging to Sq on M1 are started to be scheduled
until reaching V. The remaining jobs will be
scheduled on M2. The obtained makespan will
be denoted by LM2. The value returned by the
algorithm LM will be 1 2min(,)LM LM .

The instructions given by LM heuristic are
illustrated in Algorithm 1. Hereafter, the function
DFJ() calculates the load of each mold and
determines the fictive jobs Sm2. NINCRS(Ls) is
the function that sorts a list of jobs according to
the non-increasing order of their processing time.
SJ(Ls, X) denotes the function that schedules a list
of jobs on the first machine without exceeding X.
The remaining jobs will be scheduled on the second
machine. The makespan will be returned by SJ().

Algorithm 1. LM Algorithm
Call DFJ(J, h)
LT(Fm)
Calculate V For (i = 1 to h)
 Call NINCRS(Smi)
EndFor
Determine Sq
LM2 =SJ(Sq, V)

1 2min(,)LM LM LM=

4.3 Grouped-Mold Algorithm (GM)

ni denotes the number of jobs in Smi and

1
max ii h

T n
≤ ≤

= . k
iJ denotes the job in the mold i and

in the kth position in the set Smi {1,..., }i h∀ ∈
and {1,..., }k T∀ ∈ . Now, the groups kGr

{1,..., }k T∀ ∈ are constructed as follows.
1 1 1 1

1 2{ , ,..., }hGr J J J= , 2 2 2 2
1 2{ , ,..., }hGr J J J=

,…, 1 2{ , ,..., }T T T T
hGr J J J= . It is worthy to note

that {1,..., }i h∀ ∈ , if ik n> which implies the
non-existence of k

iJ .

The first part of the algorithm GM is to calculate
the GM1 value as follows. The jobs in Gr1 are
scheduled according to LPT. After that, the jobs
in Gr2 are scheduled according to LPT, and so
on until scheduling the jobs in GrT. The obtained
makespan will be denoted by GM1.

The second part of the algorithm GM is to
calculate the GM2 value as follows. The procedure
utilized to calculate GM1 is applied on all the sets
Smi excluding those containing only one job. The
jobs in the excluded sets will be considered as
a new group and will be scheduled one by one
separately on the most available machine. The

https://www.sic.ici.ro

74 Abir Ben Hmida, Mahdi Jemmali

obtained makespan will be denoted by GM2.
The value returned by the algorithm GM will be

1 2min(,)GM GM .

The instructions given by GM heuristic are
illustrated in Algorithm 2. Hereafter the function
DG() determines groups Gr1 {1,..., }k T∀ ∈ .

Algorithm 2. GM Algorithm
Call DFJ(J, h)
Call NINCRS(Fm)
Call DG ()
GM1 = LT(Gr)
For (i = 1 to T) do
 If len(Gri = 1) then
	 Grp pushback(Gr, Gri)
 EndIf
EndFor
GM2 = LT (Grp)
GM = min(GM1, GM2)

Example 1

Taking into consideration the example presented
in Table 1, GM algorithm works as follows.
First ly, 1 {3,5, 4,6}Gr = , 2 {7,8}Gr = ,

3 {1,2}Gr = , 4 {10}Gr = , and 5 {9}Gr =
are obtained. The first considered sequence
is {{3,5,4,6},{7,8},{1,2},{10},{9}}Gr = .
The sequences on the two identical parallel
machines are {3,5,4,6} and {7,8,1,2,10,9}.
The makespan 1 12GM = .

Table 1. pj and h values for ten jobs for Example 1

j 1 2 3 4 5 6 7 8 9 10

pj 2 1 3 5 3 1 3 2 1 2

h 3 4 3 1 4 2 3 4 3 3

The second part of algorithm works as follows.
1 {3,5}Gr = , 2 {7,8}Gr = , 3 {1,2}Gr = ,
4 {10}Gr = , 5 {9}Gr = , 6 {4}Gr = , and
7 {6}Gr = are obtained. The considered sequence

i s {{3,5},{7,8},{1,2},{10},{9},{4},{6}} .
The sequences on the two parallel machines are
{3,5,10,9,6} and {7,8,1,2,4} . The makespan
GM2 = 13. Therefore GM = min(GM1, GM2).

4.4 Grouped-Variant Mold
Algorithm (GV)

Firstly, the groups that have only one job are
conserved. These jobs will constitute a set J1. The
jobs in the remaining groups will be scheduled
according to LPT. Now, the jobs in J1 will be

scheduled one by one. The obtained makespan
will be denoted by GV1. The second step is to
apply the above procedure but instead of applying
LPT in the remaining groups SPT is applied.
The obtained makespan will be denoted by GV2.
The value returned by the algorithm GV will be
min(GV1, GV2).

4.5 Improved Longest Mold
Algorithm (IL)

This algorithm applies the same procedures
detailed in LM algorithm. The difference is the
value of V. Indeed, in this algorithm V = LB.
There is no dominance between LM and IL.

4.6 Improved Algorithms

All the algorithms presented above will be
improved using an enhancing procedure denoted
by CDDS which will be detailed in the next SM 
section. Applying the CDDS on SM , LM , GM ,
GV , and IL the new algorithms will be denoted
by SM , LM , GM , GV , and IL , respectively.

4.7 Best Algorithm

This algorithm is obtained after calling all the
algorithms described in subsection 4.6, and the best
value will be returned. This algorithm is denoted by
BA . Thus,     min(, , , ,)BA SM LM GM GV IL= ,

5. Enhanced Procedure CDDS

In this section, an existing local search method
based on tree-search, called Climbing Depth-
bounded Discrepancy Search (CDDS) is used
(Hmida et al., 2011). This method is a hybrid one
based on two discrepancy-based methods: DDS
(Hmida et al., 2010) and Climbing Discrepancy
Search (CDS) (Hmida et al., 2007). CDDS
introduced an intensification process around
promising solutions. This discrepancy search-
based starts with an initial solution which
will be explained below. The exploration of
neighborhoods through several iterations makes
the new values to be more and more far from
the solution fixed as the referenced one. After
each iteration, the best solution will be picked. If
the picked solution is better than the referenced
solution, then the latter one will be updated, and
the instruction is restarted. The advantage of
CDDS is that the neighborhoods are defined and
structured by the discrepancy principle. Thus,

	 75

ICI Bucharest © Copyright 2012-2022. All rights reserved

Near-Optimal Solutions for Mold Constraints on Two Parallel Machines

variable-size neighborhoods are built using a
gradual increase of the allowed discrepancies.
The utilization of a discrepancy-based procedure
conducts to the organization of the local search
approach. The discrepancy principle is reinforced
by using a depth limit to restrict the exploration in
less-promised areas.

Thus, applying a discrepancy consists in
scheduling another job than that given by the
heuristic. For example, when the depth is equal
to 4 and the sequence returned by a heuristic is
{6,8,4,3,2,1,5,10,9,7} for 10n = . The generated
neighborhood is based on the permutation of the 4
jobs in the given sequence. For this example, the
generated neighborhood is {3,6,8,4,2,1,5,10,9,7},
{6,3,8,4,2,1,5,10,9,7}, {6,8,3,4,2,1,5,10,9,7},
{4,6,8,3,2,1,5,10,9,7}, {6,4,8,3,2,1,5,10,9,7} and
{8,6,4,3,2,1,5,10,9,7}.

The discrepancy number is calculated as follows.
The first value obtained by the heuristic represents
zero discrepancies. All the other values represent
1-discrepancy.

The instructions given by CDDS algorithm are
illustrated in Algorithm 3. Hereafter, ()ISP
is the procedure which applies one heuristic
among SM , LM , GM , GV , and IL returns
the first reference solution denoted by 0S .
The ()CLP is the procedure which applies
discrepancy, computes new leaves in the tree
denoted by , and returns the maxC . d denotes
the number of discrepancies max{1,..., }d D=
and max {1,..., }D n= is the maximum allowed
discrepancy which is a parameter of the algorithm.

Algorithm 3. The CDDS algorithm

 1d =
 0 ()S ISP J=
 While (maxd D<) do

0' (,)S CLP S d=
If (max max 0(') ()C S C S<)

0 'S S=
 0d =
 EndIf
 1d d= +

 EndWhile

The proposed approach is based on discrepancy
search algorithms combined with several algorithms
implemented to find appropriate solutions. It is
important to start with a possible solution and

then update it during the evolution process. The
encoding scheme adopted in this paper is based on
the five heuristics presented above.

Example 2

Taking into consideration the example presented
in Table 2, SM algorithm works as follows. The
sequence {7,10,2,5,4,3,8,9,1,6} is obtained. The
sequences on the two identical parallel machines
are {7,2,4,3,9} on 1M and {10,5,8,1,6} on 2M .
The makespan obtained by the SM algorithm is 24.

Table 2. pj and h values for ten jobs for Example 2

j j 1 2 3 4 5 6 7 8 9 10

pj pj 1 7 2 5 7 1 8 2 2 8

h h 2 4 1 1 4 2 2 4 3 3

In general, the mold constraint implies that if a job
j is processed by a machine, in the period of the
processing time of j, no other job that requires the
same mold can be processed on the other machine.
This time slot can invoke a time-out.

Figure 1 represents the schedule of jobs described
in Table 2. This figure shows that job 2 on machine

1M and job 5 on machine 2M require the same
mold, then job 5 will be postponed until job 2 is
finished and job 8 will also postponed until job
5 is finished. The results (0S) are also shown in
Figure 1. The initial max 24C = .

Figure 1. The initial solution

By applying CDDS algorithm, and choosing
max 3D = , the neighborhood set of the first

reference solution at 1d = , is:

{{2,7,10,5,4,3,8,9,1,6};7,2,10,5,4,3,8,9,1,6};
{7,10,2,5,4,3,8,9,1,6}; {10,7,2,5,4,3,8,9,1,6}}.
Based on the first neighbor, the obtained
sequences on the two identical parallel machines
are {2,10,4,1,6} and {7,5,3,8,9}.

https://www.sic.ici.ro

76 Abir Ben Hmida, Mahdi Jemmali

The makespan obtained by the SM algorithm
is 22. The solution is presented in Figure 2. The
latter solution will be considered as the new
reference solution and the process will be repeated
to improve the final completion time.

Figure 2. The second reference solution

6. Experiments and Discussion

This section reports about the experiments
conducted to demonstrate the performance
of the proposed algorithms for scheduling on
parallel machines with the mold constraints. The
experiments were performed by Visual Studio C++
on an Intel® Core™i5-1035G1 CPU@1.00GHz
1.19 GHz / 8.00 GB.

Three classes of instances were generated to
assess the proposed algorithms. The variables
(,)n h were fixed as follows. {3,4,5,6,7}h =
and {10,20,30,50,100,150,200}n = . The
processing time jp was generated randomly
from the uniform distributions as follows: Class
1 is U(5,20), Class 2 is U(10,50) and Class 3 is
U(10,100). For fixed values of n , h , and class,
10 instances were generated. Indeed, the total
instances are 5 7 3 10 1050× × × = .

Several indicators are calculated to measure the
performance of the proposed algorithms:

•	 A: Value returned by the presented algorithm;

•	
A LBGp

LB
−

= : Gap between the presented

algorithm and the proposed lower bound;

•	 Ga: Average of Gp values;

•	 Pr: Percentage of the instances that A = LB;

•	 Time: Average running time in seconds.

Table 3 presents the performance of all the
proposed algorithms according to Pr, Time, and
Ga. The best algorithm is BA with a percentage of
96.4%, zero average gap, and an average running
time of 146.316 s. The percentage of 96.4%
proves that the proposed algorithms reach the
optimal solution in 96.4% of instances.

The second best algorithm is GM with a
percentage of 90.2%, an average gap of 0.001, and
an average running time of 29.501 s. The optimal
solution is reached in 90.2% of instances. The
results demonstrate that the proposed algorithm is
effective and efficient in solving parallel machines
with mold constraints.

Table 4 presents the performance of all the
proposed algorithms according to Ga when n is
varying. This table shows that the average gap has
a higher value when 10n = for all algorithms.
For 100n ≥ the average gap is equal to zero for
all the algorithms. For both algorithms GM and
BA the average gap is equal to zero excepting
when 10n = .

Table 4. Performance of all the proposed algorithms
according to Ga when n is varying

n SM LM GM GV IL BA
10 0.018 0.034 0.007 0.030 0.035 0.002

20 0.005 0.010 0.000 0.006 0.009 0.000
30 0.001 0.004 0.000 0.002 0.003 0.000
50 0.002 0.002 0.000 0.001 0.002 0.000

100 0.000 0.000 0.000 0.000 0.000 0.000
150 0.000 0.000 0.000 0.000 0.000 0.000
200 0.000 0.000 0.000 0.000 0.000 0.000

Table 3. Performance of all the proposed algorithms according to Pr, Time and Ga

SM LM GM GV IL BA

Pr
87.2% 65.1% 90.2% 73.0% 68.5% 96.4%

Time 6.719 66.831 29.501 33.525 9.739 146.316

aG 0.004 0.007 0.001 0.006 0.007 0.000

mailto:CPU@1.00GHz

	 77

ICI Bucharest © Copyright 2012-2022. All rights reserved

Near-Optimal Solutions for Mold Constraints on Two Parallel Machines

Table 5 presents the performance of all the
proposed algorithms according to Ga when h is
varying. This table shows that the average gap
decreases when h increases for all the algorithms
expecting GM . The maximum average gap of
0.016 is obtained by LM when 3h = . The zero
average gap is reached for GM when 3h = and
for BA for all h values.

Table 5. Performance of all the proposed algorithms
according to Ga when h is varying

h SM LM GM GV IL BA
3 0.012 0.016 0.000 0.011 0.013 0.000

4 0.003 0.005 0.001 0.005 0.006 0.000

5 0.001 0.005 0.001 0.004 0.005 0.000

6 0.001 0.004 0.001 0.004 0.006 0.000

7 0.001 0.004 0.002 0.002 0.004 0.000

This table shows that the maximum average gap of
0.011 is obtained when 5Id = (the pair of (,)n h
is (10,7)).

Table 6. Example of Id for n={10,20}

Id n h GM
1

10

3 0.003

2 4 0.006
3 5 0.007
4 6 0.008
5 7 0.011
6

20

3 0.000
7 4 0.000
8 5 0.000
9 6 0.001
10 7 0.000

Figure 3 illustrates the variation of the average gap
according to Id for the GM algorithm The Id
value is the number of the pair (,)n h .

Table 6 shows the determination of the Id value
for {10,20}n = .

7. Conclusion

This paper treats the problem of two machines
under mold constraints. The problem is proved
to be a NP-hard one. A new lower bound of
the studied problem was developed. Several
heuristics were proposed. A novel meta-heuristic
is proposed to enhance the proposed heuristics.
The experimental results showed the importance
of the enhancement of the meta-heuristics.
Compared with the values obtained by the
lower bound of the studied problem, the best-
proposed heuristic reaches the optimal solution
in 96.4% of instances. It can be easily seen that
the proposed algorithm obtained a near-optimal
solution with a 96.4% success rate and, therefore,
proved to be very effective. A comparison between
different heuristics is studied and discussed in the
experimental results. The proposed heuristics can
be enhanced to solve a large scale of instances. In
addition, the proposed heuristics can be used in a
branch and bound method for the elaboration of
the exact solution of the problem.

Acknowledgments

This work was funded by the University of Jeddah,
Jeddah, Saudi Arabia, under grant No. (UJ-21-
DR-154). The authors, therefore, acknowledge
with thanks the technical and financial support
from the University of Jeddah.

Figure 3. The variation of the average gap according to Id for the GM algorithm

https://www.sic.ici.ro

78 Abir Ben Hmida, Mahdi Jemmali

REFERENCES

Arnaout, J. P. (2021). Worm optimisation algorithm
to minimise the makespan for the two-machine
scheduling problem with a single server, International
Journal of Operational Research, 41(2), 270-281.

Chung, T., Gupta, J. N. D., Zhao, H. & Werner, F.
(2019). Minimizing the makespan on two identical
parallel machines with mold constraints, Computers
& Operations Research, 105, 141-155.

Davidović, T., Šelmić, M., Teodorović, D. & Ramljak,
D. (2012). Bee colony optimization for scheduling
independent tasks to identical processors, Journal of
Heuristics, 18(4), 549-569.

Hà, M. H., Ta, D. Q. & Nguyen, T. T. (2021). Exact
Algorithms for Scheduling Problems on Parallel
Identical Machines with Conflict Jobs, arXiv preprint
arXiv:2102.06043.

Hà, M. H., Vu, D. M., Zinder, Y. & Thanh, T. (2019).
On the capacitated scheduling problem with conflict
jobs. In 2019 11th International Conference on
Knowledge and Systems Engineering (KSE), (pp. 1-5).
DOI: 10.1109/KSE.2019.8919323

Haouari, M., Gharbi, A. & Jemmali, M. (2006). Tight
bounds for the identical parallel machine scheduling
problem, International Transactions in Operational
Research, 13(6), 529-548.

Haouari, M. & Jemmali, M. (2008). Tight bounds for
the identical parallel machine‐scheduling problem:
Part II, International Transactions in Operational
Research, 15(1), 19-34.

Hmida, A. B., Haouari, M., Huguet, M. J. & Lopez,
P. (2010). Discrepancy search for the flexible job
shop scheduling problem, Computers & Operations
Research, 37(12), 2192-2201.

Hmida, A. B., Haouari, M., Huguet, M. J. & Lopez,
P. (2011). Solving two-stage hybrid flow shop
using climbing depth-bounded discrepancy search,
Computers & Industrial Engineering, 60(2), 320-327.

Hmida, A. B., Huguet, M. J., Lopez, P. & Haouari, M.
(2007). Climbing depth-bounded discrepancy search
for solving flexible job shop scheduling problems. In
Proceedings of the 3rd Multidisciplinary International
Conference on Scheduling: Theory and Applications
(MISTA 2007), (pp. 217-224).

Hong, T.-P., Sun, P.-C. & Jou, S.-S. (2009).
Evolutionary computation for minimizing makespan
on identical machines with mold constraints, WSEAS
Transactions on Systems and Control, 7(4), 339-348.

Hong, T.-P., Sun, P.-C. & Li, S.-D. (2008). A heuristic
algorithm for the scheduling problem of parallel
machines with mold constraints. In the 7th WSEAS
International Conference on Applied Computer &
Applied Computational Science, 7(6), (pp. 642–651).

Jemmali, M. (2021a). Intelligent algorithms and
complex system for a smart parking for vaccine
delivery center of COVID-19, Complex & Intelligent
Systems, 1-13.

Jemmali, M. (2021b). An optimal solution for the
budgets assignment problem, RAIRO: Recherche
Opérationnelle, 55, 873.

Jemmali, M. (2021c). Projects Distribution Algorithms
for Regional Development, ADCAIJ: Advances in
Distributed Computing and Artificial Intelligence
Journal, 10(3), 293-305.

Jemmali, M. & Alourani, A. (2021). Mathematical
model bounds for maximizing the minimum completion
time problem, Journal of Applied Mathematics and
Computational Mechanics, 20(4), 43-50.

Keskinturk, T., Yildirim, M. B. & Mehmet Barut,
M. (2012). An ant colony optimization algorithm for
load balancing in parallel machines with sequence-
dependent setup times, Computers & Operations
Research, 39(6), 1225-1235.

Kowalczyk, D. & Roel Leus, R. (2017). An exact
algorithm for parallel machine scheduling with
conflicts, Journal of Scheduling, 20(4), 355-372.

Li, K., Shi, Y., Yang, S. & Cheng, B. (2011). Parallel
machine scheduling problem to minimize the
makespan with resource dependent processing times,
Applied Soft Computing, 11(8), 5551-5557.

Ríos-Solís, Y. Á., Ibarra-Rojas, O. J., Cabo, M. &
Possani, E. (2020). A heuristic based on mathematical
programming for a lot-sizing and scheduling problem
in mold-injection production, European Journal of
Operational Research, 284(3), 861-873.

Tian, Y., Liu, D., Yuan, D. & Wang, K. (2013). A
discrete PSO for two-stage assembly scheduling
problem, The International Journal of Advanced
Manufacturing Technology, 66(1-4), 481-499.

Zhang, Z., You, F. & Zhao, X. (2018). A Research on
Lot Streaming in Parallel Machines Scheduling with
Mold Constraint, Industrial Engineering Journal,
21(3): 59.

Zhao, H. D, Gao, J. & Zhu, F. (2018). Scheduling
on parallel machines with mold constraints. In 2nd
International Conference on Advanced Technologies
in Manufacturing and Materials Engineering
(ATMME 2018), 389 (pp. 30-37).

Zinder, Y., Berlińska, J. & Peter, C. (2021). Maximising
the total weight of on-time jobs on parallel machines
subject to a conflict graph, Mathematical Optimization
Theory and Operations Research, 280-295.

	_Hlk65101795
	_Hlk93314534
	_Hlk79944558
	_Hlk79945381
	_Hlk79945716
	_Hlk79946300
	_Hlk79949019
	_Hlk79948995
	_Hlk79966272
	_Hlk79967469
	_Hlk79966470
	_Hlk79967399
	_Hlk79966554
	_Hlk79966713
	_Hlk80178655
	_Hlk79950863
	OLE_LINK6
	OLE_LINK7
	_Hlk84799754
	_Hlk85284937
	_Hlk88166470
	_Hlk84800607
	_Hlk84800704
	_Hlk84800639
	_Hlk85285823
	_Hlk85285705
	_Hlk85285798
	_Hlk85285726
	_Hlk88575938
	_Hlk95474020
	_Hlk84826000
	_Hlk81746251
	_Hlk84826048
	_Hlk88169960
	_Hlk84826285
	_Hlk88681045
	_Hlk88576380
	_Hlk84826358
	_Hlk93597467
	_Hlk84826543
	_Hlk84826612
	_Hlk84826662
	_Hlk88777151
	_Hlk72598236
	_Hlk72595510
	_Hlk72595526
	_Hlk72595544
	_Hlk72595568
	_Hlk72595591
	_Hlk72595608
	_Hlk79022436
	_Ref83553088
	_Hlk88777435
	_Ref83553329
	_Ref73285396
	_Ref73429633
	_Hlk84875420
	_Hlk84875410
	_Hlk84875950
	_Ref84344740
	_Hlk84879441
	_Hlk84875934
	_Hlk84878341
	_Hlk84879109
	_Hlk84879291
	_Hlk84879311
	_Hlk69605207
	_Ref88814925
	_Hlk84882594
	_Hlk84884282
	_Hlk85148111
	_Hlk84882825
	_Ref83553901
	_Hlk84884256
	_Ref69633722
	_Hlk84884300
	_Ref95582959
	_Ref95767407
	_Ref95767403
	_Hlk68560962
	_Hlk84885067
	_Hlk84884489
	_Hlk84884515
	_Hlk84884994
	_Hlk84885035
	_Ref70815484
	_Hlk85149124
	_Ref70986492
	_Ref93274735
	_Hlk84885419
	_Hlk95757077
	_Hlk96366946
	_Hlk72184508
	_Hlk72180906
	_Hlk72181474
	_Hlk72182231
	_Hlk80983026
	_Hlk94389558
	_Hlk80712379
	_Hlk94525072
	_Hlk94525260
	_Hlk94531175
	_Hlk94525027
	_Hlk93007322
	_Hlk92995493
	_Hlk92993974
	_Hlk94099572
	_Hlk93006259
	_Hlk89119130
	_Hlk94081814
	_Hlk95392680
	_Hlk85725169
	_Hlk85629151
	_Hlk85626918
	_Hlk85626804
	_Hlk85627107
	_Hlk70408984
	_Hlk85711903
	_Hlk86144408
	_Hlk85628883
	_Hlk85108447

