On Many-valued Equivalence and Distance Functions

Mircea Sularia

"Politehnica" University of Bucharest Department of Mathematics II 313 Splaiul Independentei, 77206 Bucharest 5 ROMANIA e-mail: sularia@euler.math.pub.ro

Abstract: The variety of biresiduated algebras including the structures of D-algebra and MV-algebra was introduced together with a corresponding logical system. A many-valued space over a biresiduated algebra is a set equipped with an equivalence function and a distance function such that these functions are complementary. A cartesian closed category of many-valued spaces is presented.

Keywords: fuzzy set, MV-algebra, Heyting algebra, Brouwer algebra, D-algebra, residuated lattice, biresiduated algebra, equivalence function, distance function, category.

Introduction

The notion of fuzzy set was introduced by L. A. Zadeh in 1965 as "a class of objects with a continuum of grades of membership" [12]. A fuzzy set A is characterized by a mapping f_A from X to [0, 1], called membership function on X, where $[0, 1] \subset \mathbb{R}$ is the complete bounded chain of positive real numbers. In this paper the acceptance of a fuzzy set is that of a couple (X, f), where X is a set and $f: X \to [0, 1]$ is a function.

The notion of L-set including the notion of fuzzy set was introduced by J. A. Goguen as a couple (X, f), where L is a lattice and $f: X \to L$ is a function. Goguen considers that the algebra of inexact concepts is a residuated lattice [6]. Adjoint couples and residuated lattices are often used in the fuzzy set theory [11].

The theory of *MV-algebras* is a mathematical development arising from algebraic foundations of many-valued reasoning [3, 4].

An MV-algebra has both a structure of residuated lattice and a structure of dual residuated lattice.

In order to identify a standard logical system which includes features common to some basic many-valued logical systems, a variety of biresiduated algebras was introduced in [10]. This class of biresiduated algebras includes Heyting algebras [1, 2], Brouwer algebras and MV-algebras. A D-algebra [9, 10] is a structure

isomorphic to a subdirect product between a Heyting algebra and a Brouwer algebra. Thus, every D-algebra is also a biresiduated algebra.

A general description of the connection between some basic algebraic structures from the category of biresiduated algebras, is given.

The notions of equivalence and distance functions on a set over a biresiduated algebra are introduced together with the notion of many-valued space. Different examples of these notions are given. The purpose of this paper is to present a cartesian closed category of many-valued spaces over a complete D-algebra. This category can be considered as a starting point leading to a new suitable mathematical development of the fuzzy set theory.

1. Basic algebraic structures

1.1 Biresiduated algebras

Let \underline{K} be the class of algebras $\mathbf{A} = (A, \wedge, \vee, \otimes, \rightarrow, \oplus, -, \neg, 0, 1)$ of type (2, 2, 2, 2, 2, 2, 1, 0, 0).

A biresiduated algebra is an algebra A of \underline{K} with seven operations \land (meet), \lor (join), \otimes (multiplication), \rightarrow (residuation), \oplus (addition), - (dual residuation), - (negation) and two constants $0, 1 \in A$ such that:

(BR1) (A, \wedge , \vee , 0, 1) is a bounded distributive lattice with the minimum element 0 and the maximum element 1.

(BR2) (A, \otimes) and (A, \oplus) are *commutative* semigroups.

(BR3) The following equations hold:

- (i) $x \vee (x \otimes y) = x$
- $(i^{\circ}) \times \wedge (x \oplus y) = x$
- (ii) $x \otimes (y \vee z) = (x \otimes y) \vee (x \otimes z)$
- $(ii^{\circ}) \times \oplus (y \wedge z) = (x \oplus y) \wedge (x \oplus z)$

(iii)
$$x \otimes (y \wedge z) = [(x \otimes y) \wedge (x \otimes z)] \otimes 1$$

(iii°)
$$x \oplus (y \lor z) = [(x \oplus y) \lor (x \oplus z)] \oplus 0$$

(iv)
$$(x \otimes y) \otimes 1 = x \otimes y$$

(iv°)
$$(x \oplus y) \oplus 0 = x \oplus y$$

(v)
$$(x \otimes y) \oplus 0 = (x \oplus 0) \otimes (y \oplus 0)$$

$$(v^{\circ})$$
 $(x \oplus y) \otimes 1 = (x \otimes 1) \oplus (y \otimes 1)$

(vi)
$$(x \rightarrow y) \otimes 1 = x \rightarrow y$$
;

$$(vi^\circ) (x-y) \oplus 0 = x-y;$$

(vii)
$$(x \rightarrow y) \oplus 0 = \neg(x - y)$$

(vii°)
$$(x - y) \otimes 1 = \neg(x \rightarrow y)$$

(viii)
$$\neg x = x \rightarrow 0$$

(viii°)
$$\neg x = 1 - x$$

(ix)
$$x \to (y \to z) = (x \otimes y) \to z$$

$$(ix^{o})$$
 $(x - y) - z = x - (y \oplus z)$

(x)
$$x \otimes (x \rightarrow y) = (x \wedge y) \otimes 1$$

$$(x^{\circ}) (x - y) \oplus y = (x \vee y) \oplus 0$$

(xi)
$$(x \wedge y) \rightarrow x = 1$$

$$(xi^{\circ}) x - (x \vee y) = 0$$

(xii)
$$(x \otimes 1) \vee \neg x = x \vee \neg x$$

(xii°)
$$(x \oplus 0) \land \neg x = x \land \neg x$$

Let BR be the class of biresiduated algebras.

1.2 Residuated algebras

A biresiduated algebra will be called *residuated* algebra if verifying:

(R1)
$$x \otimes 1 = x$$
.

The following condition holds in every residuated algebra:

$$z \le x \rightarrow y \text{ iff } z \otimes x \le y.$$

Let R be the class of residuated algebras.

1.3 Heyting algebras

A Heyting algebra is a system

$$(A, \land, \lor, \rightarrow, 0, 1)$$

such that $(A, \land, \lor, 0)$ is a relatively pseudocomplemented lattice with the minimum element 0, the binary operation of relative pseudocomplementation \rightarrow and 0, 1 \in A satisfying $1 = 0 \rightarrow 0$ and for every $x, y, z \in A$:

$$z \le x \rightarrow y \text{ iff } z \land x \le y.$$

Let \underline{H} be the class of Heyting algebras and \underline{H}^* be the class of biresiduated algebras verifying the following equation:

(R2)
$$x \otimes y = x \wedge y$$
.

The next result expresses the relation between the classes of algebras \underline{H}^* , \underline{R} , \underline{BR} and \underline{H} .

1.4 Proposition

(i) $H^* \subset R \subset BR$.

(ii) The algebraic categories associated with the classes \underline{H} and \underline{H}^* are isomorphic.

Proof

(i) Relation 1.3(R2) implies 1.2(R1).

(ii) A biresiduated algebra of \underline{H} can be associated with every Heyting algebra

$$(A, \land, \lor, \rightarrow, 0, 1) \in \underline{H}$$

such that it verifies 1.3(R2) together with the following equations:

$$\neg x = x \to 0;$$

 $x - y = \neg(x \to y);$

$$x \oplus y = \neg \neg (x \lor y).$$

Using this correspondence an isomorphism between the algebraic categories associated with H and H* is reached

1.2° Dual residuated algebras

A biresiduated algebra will be called *dual* residuated algebra if verifying:

$$(R1^\circ) \times \oplus 0 = x$$
.

The following condition holds in every dual residuated algebra:

$$x - y \le z \text{ iff } x \le y \oplus z.$$

Let R° be the class of dual residuated algebras.

1.3° Brouwer algebras

A Brouwer algebra is a system

$$(A, \land, \lor, -, 0, 1)$$

such that $(A, \wedge, \vee, 1)$ is a dual Heyting lattice with a binary operation – (relative pseudo-subtraction) and $0, 1 \in A$ satisfying 1 = 0 - 0 and for every $x, y, z \in A$:

$$x - y \le z \text{ iff } x \le y \lor z.$$

Let <u>Br</u> be the class of Brouwer algebras and <u>Br</u>* be the class of biresiduated algebras verifying the following equation:

(R2°)
$$x \oplus y = x \vee y$$
.

The next result expresses the relation between the classes of algebras \underline{Br}^* , \underline{R}° , \underline{BR} and Br.

1.4° Proposition

- (i) $\underline{Br}^* \subset \underline{R}^\circ \subset \underline{BR}$.
- (ii) The algebraic categories associated with the classes <u>Br</u> and <u>Br</u>* are isomorphic.

Proof

- (i)Relation 1.3°(R2°) implies 1.2°(R1°).
- (ii) A biresiduated algebra of <u>Br</u>* can be associated with every Brouwer algebra

$$(A, \wedge, \vee, \neg, 0, 1) \in \underline{Br}$$

such that it verifies 1.3°(R2°) together with the following equations:

$$\neg x = 1 - x;$$

$$x \to y = \neg(x - y);$$

$$x \otimes y = \neg \neg(x \wedge y).$$

Using this correspondence an isomorphism between the algebraic categories associated with Br and Br is obtained.

1.5 MV-algebras

An MV-algebra [4] is a system $(A, \oplus, \neg, 0)$ of type (2, 1, 0) such that the following equations hold:

MV1)
$$x \oplus (y \oplus z) = (x \oplus y) \oplus z$$
;
MV2) $x \oplus y = y \oplus x$;
MV3) $x \oplus 0 = x$;
MV4) $\neg \neg x = x$;
MV5) $x \oplus \neg 0 = \neg 0$;
MV6) $\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x$.

From MV1)-MV3) it follows that $(A, \oplus, 0)$ is an *abelian monoid*. We define a constant 1 and the operations \otimes , \rightarrow and - together with a binary relation \leq on A as follows, for any two elements x, y of A:

- $(1) 1 = \neg 0$;
- (2) $x \otimes y = \neg(\neg x \oplus \neg y)$;
- $(3) x \rightarrow y = \neg x \oplus y$;
- (4) $x y = x \otimes \neg y$;
- (5) $x \le y$ iff $\neg x \oplus y = 1$.

Then \leq is an order relation which determines on A a structure of distributive lattice with the smallest element 0 and the greatest element 1, $(A, \land, \lor, 0, 1)$, such that:

(6)
$$x \lor y = (x \otimes \neg y) \oplus y$$
;

$$(7) \times \wedge y = \neg(\neg x \vee \neg y).$$

Let \underline{MV} be the class of MV-algebras and \underline{MV}^* be the class of algebras

$$\mathbf{A}^* = (\mathbf{A}, \wedge, \vee, \otimes, \rightarrow, \oplus, -, \neg, 0, 1)$$
 associated with an MV-algebra

$$A = (A, \oplus, \neg, 0),$$

where the operations \land , \lor , \otimes , \rightarrow , \neg and 1 are defined as above. The next result expresses the relation between the classes MV, MV* and BR.

1.6 Proposition

- (i) $\underline{MV}^* = \underline{R} \cap \underline{R}^\circ \subset \underline{BR}$.
- (ii) The algebraic categories associated with the classes MV and MV* are isomorphic.

Proof

(i) Every algebra $\mathbf{A}^* \in \underline{MV}^*$ associated with an MV-algebra $\mathbf{A} \in \underline{MV}$ and defined as in 1.5 is a biresiduated algebra (see Definition 1.1) satisfying equations 1.2(R1) and 1.2°(R1°). The following specific relations hold:

$$x \wedge y = x \otimes (x \rightarrow y);$$

 $x \vee y = (x - y) \oplus y;$

(ii) Using the precedent correspondence an isomorphism between the algebraic categories associated with MV and MV can be obtained.□

The result below was established in [10].

1.7 Theorem

The class <u>BR</u> of biresiduated algebras is the variety of algebras of <u>K</u> generated by $R \cup R^{\circ}$.

1.8 Boolean algebras

A Boolean algebra [8] is a system

$$(A, \land, \lor, \neg, 0, 1)$$

of type (2, 2, 1, 0, 0) such that $(A, \land, \lor, 0, 1)$ is a bounded distributive lattice and it satisfies the equations $x \land \neg x = 0$ and $x \lor \neg x = 1$.

Let \underline{B} be the class of Boolean algebras and \underline{B}^* be the class of algebras $A \in \underline{K}$ associated with Boolean algebras $(A, \land, \lor, \neg, 0, 1)$ such that:

$$x \otimes y = x \wedge y$$
;

$$x \rightarrow y = \neg x \lor y$$
;

$$x \oplus y = x \vee y$$
;

$$x - y = x \land \neg y$$
.

1.9 D-algebras

A D-algebra [9] is a system

$$A = (A, \land, \lor, \rightarrow, -, 0, 1)$$

of type (2, 2, 2, 2, 0, 0) such that it is isomorphic to a subdirect product of two structures

$$\mathbf{H} = (\mathbf{H}, \wedge, \vee, \rightarrow, -, 0, 1)$$

and

$$\mathbf{Br} = (\mathbf{Br}, \wedge, \vee, \rightarrow, -, 0, 1),$$

where $(H, \land, \lor, \to, 0, 1)$ is a Heyting algebra such that $x - y = (x \to y) \to 0$, for all $x, y \in H$ and $(Br, \land, \lor, -, 0, 1)$ is a Brouwer algebra such that $x \to y = 1 - (x - y)$, for all $x, y \in Br$.

Let \underline{D} be the class of D-algebras and \underline{D}^* be the class of biresiduated algebras $\mathbf{A} \in \underline{BR}$ such that the following equations hold:

(D1)
$$x \otimes y = (x \wedge y) \otimes 1$$
;

(D2)
$$\mathbf{x} \oplus \mathbf{y} = (\mathbf{x} \vee \mathbf{y}) \oplus \mathbf{0}$$
.

Then the algebraic categories associated with \underline{D} and \underline{D} are isomorphic.

The structures of Boolean algebra, Heyting algebra and Brouwer algebra are related to the structure of D-algebra as follows:

1.10 Theorem

(i) $B^* = H^* \cap \underline{Br}^* \subset \underline{D}^* \subset \underline{BR}$.

(ii) \underline{D}^* is a variety of biresiduated algebras generated by $\underline{H}^* \cup \underline{Br}^*$.

2. Many-valued spaces over a biresiduated algebra

Let X be a set and A be a biresiduated algebra.

In this Section the notions of equivalence and distance functions on X and the term of many-valued space over A will be introduced.

2.1 Definition

An equivalence function on X over A is a mapping $e: X \times X \to A \otimes 1$ such that the following conditions hold for all $x, y, z \in X$:

(i)
$$e(x, x) = 1$$
;

(ii)
$$e(x, y) = e(y, x)$$
;

(iii)
$$e(x, y) \otimes e(y, z) \le e(x, z)$$
.

2.2 Definition

A distance function on X over A is a mapping $A : X \times X \to A = 0$

$$d: X \times X \to A \oplus 0$$

such that the following conditions hold for all $x, y, z \in X$:

(i)
$$d(x, x) = 0$$
;

- (ii) d(x, y) = d(y, x);
- (iii) $d(x, z) \le d(x, y) \oplus d(y, z)$.

2.3 Definition

A many-valued space over A with the carrier set X (called more simply an A-valued space) is a system $\mathcal{X} = (X, e, d)$ such that

$$e: X \times X \rightarrow A \otimes 1$$

is an equivalence function on X over A,

$$d: X \times X \rightarrow A \oplus 0$$

is a distance function on X over A and the following conditions hold for all $x, y \in X$:

(i)
$$e(x, y) \otimes d(x, y) = 0$$
;

(ii)
$$e(x, y) \oplus d(x, y) = 1$$
.

2.4 Example

Let $R \subseteq X \times X$ be an equivalence relation on X,

$$e_R = \alpha_R : X \times X \rightarrow \{0, 1\}$$

be the Boolean characteristic function of R, i.e.

$$e_{R}(x,y) = \begin{cases} 1, & \text{if } (x, y) \in R \\ 0, & \text{if } (x, y) \notin R \end{cases}$$

for all $x, y \in X$ and

$$d_{R} = \neg \alpha_{R} : X \times X \rightarrow \{0, 1\}$$

be the Boolean complement of α_R , i.e

$$d_{R}(x,y) = \begin{cases} 0, & \text{if } (x, y) \in R \\ 1, & \text{if } (x, y) \notin R \end{cases}$$

for all $x, y \in X$.

Then the standard A-valued space associated with R is the triplet

$$\chi[R] = (X, e_R, d_R).$$

Thus, the standard A-valued space associated with the identity relation R on X,

$$R = \Delta = \{(x, x) / x \in X\},\$$

is the system

$$\alpha[\Delta] = (X, e_{\Lambda}, d_{\Delta})$$

where for all $x, y \in X$:

$$e_{\Delta}(x,y) = \begin{cases} 1, & \text{if } x = y \\ 0, & \text{if } x \neq y \end{cases}$$

and

$$\mathbf{d}_{\Delta}(\mathbf{x},\mathbf{y}) = \begin{cases} 0, & \text{if } \mathbf{x} = \mathbf{y} \\ 1, & \text{if } \mathbf{x} \neq \mathbf{y} \end{cases}.$$

2.5 Example

Let

$$e_A: A \times A \rightarrow A \otimes 1$$

and

$$d_A: A \times A \rightarrow A \oplus 0$$

be the mappings defined for all $x, y \in A$ by

$$e_A(x, y) = (x \rightarrow y) \otimes (y \rightarrow x);$$

 $d_A(x, y) = (x - y) \oplus (y - x).$

Then the standard A-valued space associated with A is the triplet

$$A = (A, e_A, d_A).$$

The mapping e_A is called the equivalence function on A and the mapping d_A is called the distance function on A.

2.6 Example

If $A \in \underline{D}^*$ is associated with a *D-algebra* $(A, \wedge, \vee, \rightarrow, -, 0, 1)$

then the equivalence and distance functions on **A** are defined by:

$$e_A(x, y) = [(x \to y) \land (y \to x)] \otimes 1;$$

$$d_A(x, y) = [(x - y) \lor (y - x)] \oplus 0,$$

for all $x, y \in A$.

If $A \in \underline{H}^* \subset \underline{D}^*$ is associated with a *Heyting algebra* $(A, \wedge, \vee, \rightarrow, 0, 1)$ then for all $x, y \in A$:

$$e_A(x, y) = (x \to y) \land (y \to x);$$

$$d_A(x, y) = \neg \neg [\neg (x \to y) \lor \neg (y \to x)],$$

where $\neg u = u \rightarrow 0$, $\forall u \in A$. Then concrete expressions of equivalence and distance functions on **A** can be obtained, if **A** is associated with the complete Heyting algebra of open subsets of a topological space.

If $A \in \underline{Br}^* \subset \underline{D}^*$ is associated with a *Brouwer* algebra $(A, \wedge, \vee, -, 0, 1)$ then for all $x, y \in A$:

$$e_A(x, y) = \neg \neg [\neg (x - y) \land \neg (y - x)];$$

$$d_A(x, y) = (x - y) \lor (y - x).$$

where $\neg u = 1 - u$, $\forall u \in A$. Then concrete expressions of equivalence and distance functions on **A** can be also obtained, if **A** is associated with the complete Brouwer algebra of closed subsets of a topological space.

If $A \in \underline{B}^* \subset \underline{D}^*$ is associated with a *Boolean algebra* $(A, \land, \lor, \neg, 0, 1)$ then for all $x, y \in A$:

$$e_A(x, y) = (\neg x \lor y) \land (\neg y \lor x);$$

$$d_A(x, y) = (x \land \neg y) \lor (y \land \neg x).$$

2.7 Example

Let A be the *Lukasiewicz structure* on the real unit interval [0, 1] i.e. for all $x, y \in [0, 1]$:

$$x \wedge y = \min(x, y);$$

 $x \vee y = \max(x, y);$
 $x \otimes y = \max(0, x + y - 1);$
 $x \to y = \min(1, 1 - x + y);$
 $x \oplus y = \min(1, x + y);$
 $x - y = \max(0, x - y);$
 $\neg x = 1 - x.$

where in the second member of the precedent relations + and - are the usual operations of addition and subtraction of real numbers. Then the following relations hold:

$$e_A(x, y) = 1 - |x - y|;$$

 $d_A(x, y) = |x - y|.$

Therefore, the distance function d_A is the *usual distance* on $[0, 1] \subset R$ and the equivalence function e_A is the negation of d_A .

2.8 Example

Let A be a structure of biresiduated algebra on the real unit interval [0, 1] defined by the following relations for all $x, y \in [0, 1]$:

$$x \wedge y = \min(x, y);$$

$$x \vee y = \max(x, y);$$

$$x \otimes y = x \cdot y;$$

$$x \to y = \begin{cases} 1, & \text{if } x \leq y \\ \frac{y}{x}, & \text{if } x > y \end{cases};$$

$$x \oplus y = \begin{cases} 1, & \text{if } x \vee y \neq 0 \\ 0, & \text{if } x \vee y = 0 \end{cases};$$

$$x - y = \begin{cases} 0, & \text{if } x \leq y \text{ or } 0 < y < x \\ 1, & \text{if } 0 = y < x \end{cases};$$

$$\neg x = x \to 0 = 1 - x = \begin{cases} 1, & \text{if } x = 0 \\ 0, & \text{if } x \neq 0 \end{cases},$$

where in the second member of the precedent relations $x \cdot y$ is the multiplication of x by y and

 $\frac{y}{x}$ is the division of y by $x \ne 0$ in **R**. Then the following relations hold:

$$e_{A}(x, y) = \begin{cases} 1, & \text{if } x = y = 0 \\ \frac{x \wedge y}{x \vee y}, & \text{if } x \neq 0 \text{ or } y \neq 0 \end{cases};$$

$$d_{A}(x, y) = \begin{cases} 0, & \text{if } (x = y = 0) \text{ or } (x \cdot y \neq 0) \\ 1, & \text{if } (x = 0 < y) \text{ or } (y = 0 < x) \end{cases}.$$

2.9 Example

Let A be a structure of biresiduated algebra on the real unit interval [0, 1] defined by the following relations for all $x, y \in [0, 1]$:

$$x \wedge y = \min(x, y);$$

$$x \lor y = max(x, y);$$

$$\mathbf{x} \otimes \mathbf{y} = \begin{cases} 1, & \text{if } \mathbf{x} \wedge \mathbf{y} = 1 \\ 0, & \text{if } \mathbf{x} \wedge \mathbf{y} \neq 1 \end{cases};$$

$$x \to y = \begin{cases} 1, & \text{if } x \le y \text{ or } y < x < 1 \\ 0, & \text{if } y < 1 = x \end{cases}$$

$$x \oplus y = x + y - x \cdot y;$$

$$x - y = \begin{cases} 0, & \text{if } x \le y \\ \frac{x - y}{1 - y}, & \text{if } x \ge y \end{cases};$$

$$\neg x = 1 - x = x \rightarrow 0 = \begin{cases} 0, & \text{if } x = 1 \\ 1, & \text{if } x \neq 1 \end{cases}$$

The following relations will then hold:

$$e_{A}(x, y) = \begin{cases} 1, & \text{if } (x = y = 1) \text{ or } x \lor y \neq 1 \\ 0, & \text{if } (x < 1 = y) \text{ or } (y < 1 = x) \end{cases};$$

$$d_{A}(x, y) = \begin{cases} 0, & \text{if } x = y = 1\\ \frac{\left|x - y\right|}{1 - (x \wedge y)}, & \text{if } x \wedge y \neq 1 \end{cases}.$$

2.10 Example

Let A be the structure of biresiduated algebra on the real unit interval [0, 1] defined as in Example 2.8. Suppose that $p \in \mathbb{R}$ and p > 1. Define the mapping

$$e_p: \mathbf{R} \times \mathbf{R} \rightarrow [0, 1]$$

for all $x, y \in R$ by

$$e_p(x, y) = p^{-\left|x - y\right|}.$$

It follows that for all $x, y, z \in R$

$$e_p(x, y) \cdot e_p(y, z) \le e_p(x, z)$$
.

Thus e_p is an equivalence function on R over A.

Let A be the structure of biresiduated algebra on the real unit interval [0, 1] defined as in Example 2.9. Define the mapping

$$d_p: \mathbb{R} \times \mathbb{R} \rightarrow [0, 1]$$

for all $x, y \in \mathbb{R}$ by

$$d_p(x, y) = 1 - e_p(x, y) = 1 - p^{-|x-y|}$$
.

Then d_p is a distance function on R over A. \square

The next section is the final part of this paper and it presents a notion of morphism and a corresponding category of A-valued spaces.

3. The category S[A]

Let A be a biresiduated algebra.

If X, Y, Z are sets and $f: X \to Y$, $g: Y \to Z$ are functions then $g \cdot f: X \to Z$ is the function defined by $(g \cdot f)(x) = g(f(x))$, for all $x \in X$. For all sets X and Y, let [X, Y] be the set of all functions from X to Y. A specific terminology used in fuzzy set theory [7] will be adopted in this section. A function $\mu \in [X, A]$ is called an **A**-subset of X. For all $f \in [X, Y]$, if $v \in [Y, A]$ is an **A**-subset of Y then $v \cdot f \in [X, A]$ is called the inverse image of v under v.

The next definition introduces a notion of morphism which makes the class S[A] of all Avalued spaces be a category.

3.1 Definition

Let $\mathcal{X} = (X, e_X, d_X)$ and $\mathcal{Y} = (Y, e_Y, d_Y)$ be two **A**-valued spaces. A *morphism from* \mathcal{X} to \mathcal{Y} is a function

$$f: X \to Y$$

such that the following conditions hold for all $x_1, x_2 \in X$ and $y \in Y$:

- (i) $e_X(x_1, x_2) \otimes e_Y(f(x_1), y) \le e_Y(f(x_2), y)$;
- (ii) $d_Y(f(x_2), y) \le d_Y(f(x_1), y) \oplus d_X(x_1, x_2)$.

The set of all morphisms from \mathcal{X} to \mathcal{Y} will be denoted by $Hom(\mathcal{X}, \mathcal{Y})$.

3.2 Definition

Let $f \in Hom(\mathfrak{A}, \mathfrak{A})$ and $g \in Hom(\mathfrak{A}, \mathfrak{Z})$ be morphisms, where $\mathfrak{A}, \mathfrak{A}, \mathfrak{Z} \in \mathcal{S}[A]$. Then

$$g \cdot f \in Hom(\mathcal{X}, \mathcal{Z})$$

and it is called the product of the couple (g, f). The class S[A] and the class of all morphisms

together with this product of morphisms is a category denoted by S[A].

The next definition introduces the notion of monotone A-subset of an A-valued space and it will be used to characterize morphisms.

3.3 Definition

Let $\mathcal{X} = (X, e, d) \in \mathcal{S}[A]$. A monotone A-subset of \mathcal{X} is a function

$$\mu: X \to A$$

such that the following conditions hold for all $x, y \in X$:

- (i) $\mu(x) \otimes e(x, y) \leq \mu(y)$;
- (ii) $\mu(y) \le \mu(x) \oplus d(x, y)$.

The set of all monotone A-subsets of α will be denoted by $\mathcal{M}[\alpha]$.

3.4 Lemma

Let $\mathcal{X} = (X, e, d) \in \mathcal{S}[A]$ and $x \in X$. Define two functions

$$e[x]: X \to A \text{ and } d[x]: X \to A$$

such that for all $y \in X$:

$$e[x](y) = e(x, y);$$

$$d[x](y) = d(x, y).$$

Then e[x], $d[x] \in \mathcal{M}[\mathcal{X}]$.

Proof

Now we show that $e[x] \in \mathcal{M}[\mathcal{X}]$. The functions e and d satisfy all the conditions 2.1(i)-(iii), 2.2(i)-(iii), 2.3(i) and 2.3(ii). Let x', $y \in X$. From Definition 2.1 (ii) it follows that

(1)
$$e[x](x') \otimes e(x', y) = e(x, x') \otimes e(x', y)$$

 $\leq e(x, y)$
 $= e[x](y)$.

From Definition 2.2 (ii) and the relation

$$(\forall a \in A) a \oplus \neg a = 1$$

it follows that

$$1 = d(x, x') \oplus \neg d(x, x')$$

$$\leq d(x, y) \oplus d(x', y) \oplus \neg d(x, x').$$

This implies that

 $\neg d(x, y) \le \neg d(x, x') \oplus d(x', y)$, but the conditions 2.3(i) and 2.3(ii) imply $(\forall x, y \in X) \neg d(x, y) = e(x, y) \oplus 0$, therefore

$$= \neg d(x, y)$$

$$\leq (e(x, x') \oplus 0) \oplus d(x', y)$$

$$= e[x](x') \oplus d(x', y).$$

The relations (1) and (2) imply $e[x] \in \mathcal{M}[x]$. The other condition $d[x] \in \mathcal{M}[x]$ follows using similar arguments.

The next result characterizes morphisms as functions preserving the property of monotony by making inverse images.

3.5 Proposition

Let $\mathcal{X} = (X, e_X, d_X)$ and $\mathcal{Y} = (Y, e_Y, d_Y)$ be two objects of $\underline{\mathcal{S}}[\mathbf{A}]$ and $f: X \to Y$ be a function. Then the following conditions are equivalent:

- (i) $f \in Hom(\mathcal{X}, \mathcal{Y})$;
- (ii) $v \cdot f \in \mathcal{M}[\mathcal{X}]$, for all $v \in \mathcal{M}[\mathcal{Y}]$.

Proof

- (i) \Rightarrow (ii). Suppose that 3.5 (i) holds. Using Definitions 2.3 and 3.1 this implies that for all $x_1, x_2 \in X$:
- (1) $e_X(x_1, x_2) \le e_Y(f(x_2), f(x_1);$
- (2) $d_Y(f(x_2), f(x_1)) \le d_X(x_1, x_2)$.

Let $v \in \mathcal{W}[\mathcal{Y}]$ i.e. $v : Y \to A$ is a function such that for all $y_1, y_2 \in Y$:

- (3) $v(y_1) \otimes e_Y(y_1, y_2) \le v(y_2)$;
- (4) $v(y_2) \le v(y_1) \oplus d_Y(y_1, y_2)$.

Suppose that $x_1, x_2 \in X$. Using (3) and (4) and the properties of the operations \otimes and \oplus in A, from (1) and (2) it follows that:

$$v(f(x_1)) \otimes e_X(x_1, x_2) \leq v(f(x_1)) \otimes e_Y(f(x_1), f(x_2))$$

$$\leq v(f(x_2));$$

$$v(f(x_2)) \le v(f(x_1)) \oplus d_Y(f(x_1), f(x_2))$$

 $\le v(f(x_1)) \oplus d_X(x_1, x_2).$

Therefore, $v \cdot f \in \mathcal{M}[x]$. This shows that the condition 3.5 (ii) holds.

(ii) \Rightarrow (i). Suppose that 3.5 (ii) holds. Using Lemma 3.4 it follows that for all $x_1 \in X$, the functions

$$e_Y[f(x_1)]: Y \to A$$

and

$$d_Y[f(x_1)]: Y \to A$$

are monotone A-subsets of **4**. From 3.5 (ii) it follows that

$$e_Y[f(x_1)] \cdot f : X \to A$$

and

$$d_Y[f(x_1)] \cdot f : X \to A$$

are monotone A-subsets of \mathcal{X} . This implies that the following relations hold for all $x_1, x_2 \in X$:

(5)
$$e_X(x_1, x_2) = e_X(x_1, x_2) \otimes 1$$

 $= e_X(x_1, x_2) \otimes e_Y(f(x_1), f(x_1))$
 $= e_X(x_1, x_2) \otimes (e_Y[f(x_1)] \cdot f)(x_1)$
 $\leq (e_Y[f(x_1)] \cdot f)(x_2)$

$$= e_Y(f(x_1), f(x_2)).$$

(6)
$$d_Y(f(x_1), f(x_2)) = (d_Y[f(x_1)] \cdot f)(x_2)$$

 $\leq d_X(x_1, x_2) \oplus (d_Y[f(x_1)] \cdot f)(x_1)$
 $= d_X(x_1, x_2) \oplus d_Y(f(x_1), f(x_1))$
 $= d_X(x_1, x_2) \oplus 0$
 $= d_X(x_1, x_2)$.

From (5) and (6) it follows that f verifies the conditions from Definition 3.1, i.e. 3.5 (i) holds. This completes the proof. \Box

3.6 Example

Let 2 be a biresiduated algebra having precisely two elements 0 and 1. Suppose that $R \subseteq X \times X$ is an equivalence relation on X. Let

$$\chi[R] = (X, e_R, d_R)$$

be the standard 2-valued space associated with R defined as in example 2.4. Then (X, d_R) is a metric space such that $D \subseteq X$ is open iff D is R-monotone i.e. the following condition holds for all $x, y \in X$:

$$x \in D$$
 and $(x, y) \in R$ imply $y \in D$.

Using Definition 3.3, it follows that the following condition holds for all $D \subseteq X$:

D is R-monotone iff
$$\mu_D \in \mathcal{M}[\mathcal{X}[R]]$$
,

where $\mu_D: X \to \{0, 1\}$ is the characteristic function of D defined for all $x \in X$ by

$$\mu_{D}(x) = \begin{cases} 1, & \text{if } x \in D \\ 0, & \text{if } x \notin D \end{cases}$$

Therefore, the set of all monotone 2-subsets of $\mathcal{X}[R]$ can be identified with the set of all open sets of the metric space (X, d_R) .

Suppose that

$${\bf /}[R'] = (Y, e_{R'}, d_{R'})$$

is another 2-valued space associated with an equivalence relation R' on Y. From Proposition 3.5 it follows that the following conditions are equivalent for any function $f: X \to Y$:

- (i) $f \in Hom(\mathcal{X}[R], \mathcal{Y}[R'])$;
- (ii) f is a continuous function from the metric space (X, d_R) to the metric space $(Y, d_{R'})$.

Therefore, the category S[A] includes all 2-valued spaces associated with equivalence relations on sets such that the notion of morphism between A-valued spaces is an extension of the notion of continuous functions

between standard metric spaces associated with these equivalence relations.

3.7 Example

Let $\mathcal{X}_1 = (X, e_1, d_1)$ and $\mathcal{X}_2 = (X, e_2, d_2)$ be two **A**-valued spaces having the same carrier set X and $1_X : X \to X$ be the identity mapping on X. Define $\mathcal{X}_1 < \mathcal{X}_2$ iff $1_X \in Hom(\mathcal{X}_1, \mathcal{X}_2)$ i.e. the following conditions hold for all $x, y \in X$:

$$e_1(x, y) \le e_2(x, y);$$

 $d_2(x, y) \le d_1(x, y).$

Let $\mu: X \to A$ be any function. Define two functions

$$e_{u}, e_{u}^{*}: X \times X \rightarrow A \otimes 1$$

such that for all $x, y \in X$:

$$e_{\mu}(x, y) = e_{A}(\mu(x), \mu(y));$$

$$e^*_{\mu}(x, y) = i \left((\mu(x) \to \mu(y)) \land (\mu(y) \to \mu(x)) \right),$$

where e_A is the equivalence function on $\bf A$ defined as in Example 2.5 and

$$i: A \rightarrow A \otimes 1$$

is an interior operator on the poset (A, \leq) [2,10] defined by

$$i(a) = a \otimes 1, \forall a \in A.$$

Define also two functions

$$d_{\mu}, d_{\mu}^*: X \times X \to A \oplus 0$$

such that for all $x, y \in X$:

$$d_{\mu}(x, y) = d_{A}(\mu(x), \mu(y));$$

$$d_{\mu}^{*}(x, y) = c((\mu(x) - \mu(y)) \vee (\mu(y) - \mu(x))),$$

where d_A is the distance function on A defined as in Example 2.5 and

$$c: A \to A \oplus 0$$

is a closure operator on the poset (A, \leq) [2,10] defined by

$$c(\mathbf{a}) = \mathbf{a} \oplus 0, \forall \mathbf{a} \in A.$$

Then $\mathcal{X}_{\mu} = (X, e_{\mu}, d_{\mu})$ and $\mathcal{X}_{\mu}^{*} = (X, e_{\mu}^{*}, d_{\mu}^{*})$ are two A-valued spaces with the same carrier set X such that the following conditions hold:

- $\mu \in \mathcal{M}[\mathcal{X}_{\mu}] \cap \mathcal{M}[\mathcal{X}^{*}_{\mu}];$
- $\chi_{\mu} < \chi_{\mu}^*$;
- $\mathfrak{X} \in S[A]$ and $\mu \in \mathfrak{M}[\mathfrak{X}]$ imply $\mathfrak{X} < \mathfrak{X}^*_{\mu}$.

The next Lemma presents conditions for a morphism to be monomorphism, epimorphism or isomorphism of the category S[A].

3.8 Lemma

Let $\mathcal{X} = (X, e_X, d_X)$, $\mathcal{Y} = (Y, e_Y, d_Y) \in \mathcal{S}[\mathbf{A}]$. Then the following conditions hold in the category $\underline{\mathcal{S}}[\mathbf{A}]$ for all $f \in Hom(\mathcal{X}, \mathcal{Y})$:

- (i) f is a monomorphism iff f is injective.
- (ii) If the function f is surjective then f is an epimorphism.
- (iii) If the function f is bijective then f is an isomorphism iff for all $x_1, x_2 \in X$:

(I1)
$$e_X(x_1, x_2) = e_Y(f(x_1), f(x_2));$$

(I2)
$$d_X(x_1, x_2) = d_Y(f(x_1), f(x_2)).$$

Proof

The condition 3.8 (ii) and the fact that if f is an injective function then f is a monomorphism are clear. Suppose that f is a monomorphism, but f is not an injective function i.e. for some $x_1, x_2 \in X$, we have $f(x_1) = f(x_2)$ and $x_1 \neq x_2$. Let $Z = \{x_1, x_2\}$ and $g, h : Z \to X$ such that g(z) = z and $h(z) = x_1, \forall z \in Z$. This implies that $f \cdot g = f \cdot h$. Let $g[\Delta] = (Z, e_{\Delta}, d_{\Delta})$ be the standard structure of A-valued space associated with the identity relation Δ on Z defined as in example 2.4. Using definition 3.1 one obtains that g, $h \in Hom(\mathfrak{Z}[\Delta], \mathfrak{X})$. Then, from the property $f \cdot g = f \cdot h$ and the condition that f is a monomorphism it follows that g = h, but the definitions of g and h imply $g \neq h$, contradiction. Thus, 3.8 (i) and 3.8(ii) hold. The condition 3.8(iii) follows from the fact that if f is a bijective function then the relations 3.8(I1) and 3.8 (I2) hold iff $f^{-1} \in Hom(\mathbf{u}, \mathbf{x})$, where $f^{-1}: Y \to X$ is the inverse function of f.

Now we show that the finite direct limits exist in the category S[A]. Concrete constructions of finite products and equalizers are given.

3.9 Finite direct limits

Let I be a nonempty finite set and

$$(\boldsymbol{\chi}_i = (X_i, e_i, d_i))_{i \in I}$$

be a family of objects in S[A]. Let

$$X = \prod_{i \in I} X_i$$

be the cartesian product set of $(X_i)_{i \in I}$ and

$$(\pi_i: X \to X_i)_{i \in I}$$

be the family of canonical projections of X. Define two functions

$$e_X: X \times X \to A \otimes 1$$

and

$$d_X: X \times X \to A \oplus 0$$

such that for all $x, y \in X$:

$$\mathbf{e}_{_{X}}(\mathbf{x},\,\mathbf{y}) = \underset{\dot{\mathbf{i}}\,\in\,\mathbf{I}}{\otimes}\,\mathbf{e}_{\dot{\mathbf{i}}}(\pi_{\dot{\mathbf{i}}}(\mathbf{x}),\,\pi_{\dot{\mathbf{i}}}(\mathbf{y}))$$

and

$$d_{X}(x, y) = \bigoplus_{i \in I} d_{i}(\pi_{i}(x), \pi_{i}(y)).$$

Then the triplet

$$\alpha = (X, e_X, d_X)$$

is an object in S[A] such that

$$(\forall i \in I) \pi_i \in Hom(\mathcal{X}, \mathcal{X}_i).$$

The system $(\mathcal{X}, (\pi_i)_{i \in I})$ is a direct product of the family $(\mathcal{X}_i)_{i \in I}$ in the category $\underline{\mathcal{S}}[A]$. This property is a consequence of the fact that for all $\mathcal{Y} = (Y, e_Y, d_Y) \in \mathcal{S}[A]$, if

(
$$\forall i \in I$$
) $p_i \in Hom(\mathbf{\mathcal{U}}, \mathbf{\mathcal{X}}_i)$

then there exists an unique function

$$f: Y \to X$$

defined by

$$(\forall y \in Y) (\forall i \in I) f(y)(i) = p_i(y)$$

such that

$$f \in Hom(\mathcal{U}, \mathcal{X})$$

and

$$(\forall i \in I) \pi_i \cdot f = p_i$$

Let $I[\Delta] = (1, e_{\Delta}, d_{\Delta})$ be an object of S[A] associated with the identity relation Δ on a set I having precisely one element. Then $I[\Delta]$ is a final object for S[A] i.e. the set $Hom(\mathcal{X}, I[\Delta])$ has precisely one element, for each $\mathcal{X} \in S[A]$. It follows that the following condition holds:

(1) Finite products exist in the category S[A].

Now we show that:

(2) Equalizers exist in the category S[A].

Suppose that

$$f, g \in Hom(\mathcal{X}, \mathcal{Y}),$$

where

$$\alpha = (X, e_X, d_X), \alpha = (Y, e_Y, d_Y) \in S[A].$$

Define a subset Z of X by

$$Z = \{ x \in X / f(x) = g(x) \}$$

and two functions

$$e_Z: Z \times Z \to A \otimes 1$$

and

$$d_Z: Z \times Z \rightarrow A \oplus 0$$

such that for all $u, v \in Z$:

$$e_{Z}(u, v) = e_{X}(u, v);$$

$$d_{Z}(u, v) = d_{X}(u, v).$$

Let $\sigma: Z \to X$ be the inclusion map of Z in X i.e. ($\forall z \in Z$) $\sigma(z) = z$. Then

$$\mathbf{g} = (\mathbf{Z}, \mathbf{e}_{\mathbf{Z}}, \mathbf{d}_{\mathbf{Z}}) \in \mathcal{S}[\mathbf{A}]$$

and the system (\mathbf{g}, σ) is an equalizer of the couple (\mathbf{f}, \mathbf{g}) in the category $\underline{S}[\mathbf{A}]$.

From the properties (1) and (2) it follows that the following conditions hold:

(3) Finite direct limits and pullbacks exist in the category S[A].

A complete biresiduated algebra is any system $A \in \underline{BR}$ such that $(A, \land, \lor, 0, 1)$ is a complete lattice.

The next result was established in [9] and it presents in a synthetical form new properties of the category S[A] if A is a complete D-algebra.

3.10 Theorem

If $A \in \underline{D}^*$ is a biresiduated algebra associated with a *complete D-algebra* then $\underline{S}[A]$ is a cartesian closed category.

Theorem 3.10 follows from 3.9(3) and the fact that for all $\mathcal{X}, \mathcal{Y} \in \mathcal{S}[\mathbf{A}]$, if \mathbf{A} is associated with a complete D-algebra then there exists a standard structure of \mathbf{A} -valued space on the set $Hom(\mathcal{X}, \mathcal{Y})$ and one can define a functor

$$E^{\mathbf{z}} = ()^{\mathbf{z}} : \underline{\mathcal{S}}[\mathbf{A}] \to \underline{\mathcal{S}}[\mathbf{A}]$$

as follows, for all $\mathbf{\mathcal{U}} \in \mathcal{S}[\mathbf{A}]$, $\mathbf{g} \in \mathit{Hom}(\mathbf{\mathcal{U}}, \mathbf{\mathcal{J}})$) and $\mathbf{f} \in E^{\mathbf{\mathcal{I}}}(\mathbf{\mathcal{U}})$:

- $E^{\mathbf{x}}(\mathbf{\mathcal{U}}) = Hom(\mathbf{\mathcal{X}}, \mathbf{\mathcal{U}});$
- $E^{\mathbf{z}}(g)(f) = g \cdot f$

such that the following condition holds:

• E^{α} is the exponentiation functor by α . The precedent condition means that E^{α} is a right adjoint of the functor direct product by α ,

$$\Pi[\alpha] = (\) \times \alpha : \underline{S}[A] \to \underline{S}[A].$$

If A is associated with a complete D-algebra one can prove also that the *inverse limits exist* in the category S[A].

In order to elaborate a new interesting and comprehensive mathematical theory of fuzzy sets having an unitary logical foundation, different new ways to make the class $S[\mathbf{A}]$ into a category can be considered. For this purpose, a good source of inspiration is the elementary toposes theory together with complete Ω -sets theory, where Ω is a complete Heyting algebra [5]. A first goal is to identify an adequate class of many-valued mathematical models including sheaves. A completeness theorem with respect to these models also must be proved.

REFERENCES

- BALBES, R. and DWINGER, PH., Distributive Lattices, UNIVERSITY OF MISSOURI PRESS, 1974.
- BOICESCU, V., FILIPOIU, A., GEORGESCU, G. and RUDEANU S., Lukasiewicz-Moisil Agebras, NORTH-HOLLAND, 1991.
- CHANG, C. C., Algebraic Analysis of Many-valued Logics, TRANS. AMER. MATH. SOC. 88, 1958, pp. 467-490.
- CIGNOLI, R., D'OTTAVIANO L. M. and MUNDICI, D., Algebraic Foundations of Many-valued Reasoning, KLUWER ACADEMIC PUBL., DORDRECHT.
- FOURMAN, M. P. and SCOTT, D. A., Sheaves and Logic, Lectures Notes in Mathematics, Vol.753, 1979, pp. 302-401.
- GOGUEN, J. A., L-fuzzy sets, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 18 (1967) 145-174.
- NEGOITA, C. V. and RALESCU, D. A., Simulation, Knowledge-base Computing and Fuzzy Statistics, VAN NOSTRAND, 1987.
- PONASSE, D. and CARREGA, J. C., Algèbre et topologie booléennes, MASSON, Paris, 1979.
- SULARIA, M., Contributions to the Study of Some Formal Systems from the Point of View of Algebraic Logic, Ph. D dissertation, Babes-Bolyai University of Cluj-Napoca, Romania, 1986.
- SULARIA, M., A Logical System for Multicriteria Decision Analysis, Studies in Informatics and Control, Vol. 7, No.3, September 1998, pp. 237-260.
- TURUNEN, E., Residuated Lattices in Fuzzy Logical Systems, in T. Terano, M. Sugeno , M. Mukaidono and K. Shigemashu (Eds.) Fuzzy Engineering, Proceedings of the International Fuzzy Engineering Symposium'91, pp.60-69.
- 12. ZADEH, L.A., **Fuzzy Sets**, INFORMATION AND CONTROL, No. 8, 1965, pp.338-353.