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Introduction

The notion of fuzzy set was iniroduced by L. A.
Zadeh in 1965 as “a class of objects with a
continuum of grades of membership” [12]. A
fuzzy set A is characterized by a mapping f,
from X to [0. 1]. called membership function
on X, where |0, 1] c R is the complete bounded
chain of positive real numbers. In this paper the
acceptance of a fuzzy set is that of a couple
(X, ). where Xisasetand {: X — [0, 1]isa
function.

The notion of L-sef including the notion of
fuzzy sct was introduced by J. A. Goguen as a
couple (X, f). where L is a latticeand f: X - L
is a function. Goguen considers that the
algebra of inexact concepts is a residuated
lattice [6]. Adjoint couples and residuated
lattices are often used in the fuzzy set theory [11].

The theorv of AMi~-algebras is a mathematical
development arising from algebraic foundations
of many-valued reasoning {3, 4].

An MV-algebra has both a structure of
residuated lattice and a structure of dual
residuated lattice.

In order 1o identify a standard logical system
which includes features common to some basic
many-valued logical systems, a variety of
biresiduated algebras was introduced in [10].
This class of biresiduated algebras includes
Heyting algebras |1, 2\, Brouwer algebras and
MV-algebras. A D-algebra |9, 10] is a structure
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isomorphic to a subdirect product between a
Heyting algebra and a Brouwer algebra. Thus,
every D-algebra is also a biresiduated algebra.

A general description of the connection
between some basic algebraic structures from
the category of biresiduated algebras, is given.

The notions of eguivalence and distance
Junctions on a set over a biresiduated algebra
are introduced together with the notion of
many-valued space. Different examples of these
notions are given. The purpose of this paper is
to present a cartesian closed category of many-
valued spaces over a complete D-algebra. This
category can be considered as a starting point
leading to a new suitable mathematical
development of the fuzzy set theory.

1. Basic algebraic structures

1.1 Biresiduated algebras

Let K be the class of algebras
A=A A v, B - @ - — 0, 1)
oftype(2,2,2,2,2.2,1,0,0).

A biresiduated algebra is an algebra A of K
with seven operations A (meet), v (join), ®
(multiplication), — (residuation), @ (addition),
— (dual residuation). — (negation) and two
constants 0, 1 € A such that:

(BR1D) (A. A, v. 0, 1) is a bhounded
distributive lattice with the minimum element 0
and the maximum element 1.

(BR2) (A, ®) and (A, @) are commutative
Semigroups.

(BR3) The following equations hold:

HxvxB®y=x
() xAx®y)=x
(W X@Fv)=xRy)vx®z)
(Y XBYAD=xONAXD2)
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(i) x@FArz)=[x@yA(x@2)]@1
(i) x@(yva)=[x@y)vxDz)] D0

v) xR 1=x®yvy
(iv?) (x@y)@0=x®y

V) x®YS0=x80)B(yS0)
) x@N®1=x0HSFO )

(1) (N-ryel=x-3y
Vi) (x—y)@0=x-y;

(vil) (x>V@0==(x-Y)
Vi) x-N®1==(x->V)

(viil) =x=x—0
(viii®) —=x=1-x

(X)) x> Fy—-22)=xQy)—>z
(1x°) (x—-V)—-z=x—-(v@72)

X)) xB®Xx—-2N=ExAry®1
(x°) (x—-V)By=xvy @0

(xi) xAy)—=>x=1
(%) x-(xvy)=0

(xil) (X® 1) v ax=xv X
(xii°) (x@PO) A =X=XA —X

Let BR be the class of biresiduated algebras.

1.2 Residuated algebras
A biresiduated algebra will be called residuated
algebra if verifying:
RHx®1=x.
The following condition holds in every
residuated algebra:
z<x—viffz 8x <y,

Let R be the class of residuated algebras.

1.3 Heyting algebras

A Hevting algebra is a system

(AL A, v, = 0. 1)
such that (A, A, v, 0) is a relatively pseudo-
complemented lattice with the minimum
clement 0. the binary operation of relative
pscudocomplementation — and 0, 1 € A
satisfving 1 =0 — O and forevery x, v,z € A:

z<x—>viffz A x<y.
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Let H be the class of Heyting algebras and H
be the class of biresiduated algebras verifving
the following equation:

(R2)x®y=xAv,

The next result expresses the relation
between the classes of algebras H. R,
BR and H.

1.4 Proposition

()H cRcBR.
(i1) The algebraic categories associated with the
classes H and H are isomorphic.

Proof

(1) Relation 1.3(R2) umplies 1.2(R1).

(ii) A biresiduated algebra of H can be

associated with every Heyting algebra
(A v, >0, e H

such that 1t verifies 1.3(R2) together

with the following equations:

—X=X—0;
X—-yV==(Xx—>V)
XBy=—a=(Xvy)

Using this correspondence an isomorphism
between the aigebraic categories associated
with Hand H isreached C

1.2° Dual residuated algebras
A biresiduated algebra will be called dual
residuated algebra if verifving:

RIHxD0O=x

The following condition holds in every dual
residuated algebra:

x-yv<ziffx<y®z

Let R” be the class of dual residuated algebras.

1.3" Brouwer algebras

A Brouwer algebra is a system

(AL A, v, —, 0, 1)
such that (A, A, v, 1} is a dual Hevting lattice
with a binary operation — (relative pseudo-
subtraction) and 0, 1 € A satisfving 1 =0 -0
and for every X, v, z € A:

x-y<ziff x<ywvz

Let Br be the class of Brouwer algebras and Br’
be the class of biresiduated algebras verifying
the following equation:
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R2)x@y=xvy.

The next result expresses the relation
between the classes of algebras Br., R°,
BR and Br.

1.4° Proposition

(i) Br « R° ¢ BR.
(ii) The algebraic categories associated with the
classes Br and Br_ are isomorphic.

Progf

()Relation 1.3°(R2°) implies 1.2°(R1°).
(i) A biresiduated algebra of Br can be
associated with every Brouwer algebra
(A, A, v, -0, 1)e Br

such that it verifies 1.3°(R2°) together
with the following equations:

-x=1-x;

¥y ==alZ=Y);

X@y=—=(xAy).
Using this correspondence an isomorphism
between the algebraic categories associated

with Br and Br’ is obtained. 0

1.5 MV-algebras

An MV-algebra [4] is a system (A, @, —, 0) of
type (2, 1. 0) such that the following equations
hold:

MVDx@(v@2)=x@By Sz
MV)x@v=y@x;
MVi)x®0=x;

MV4) ——x = x;

ﬁ(i\l’j) X&0= —0:

MVﬁ) —(—x S }) @ Yo ﬁ(”‘;}" &7 X) D x.

From MV1)-MV3) it follows that (A, ®, 0) is
an abelian monoid. We define a constant 1 and
the operations ®, — and - together with a
binary relation < on A as follows, for any two
clements x, y of A:

(2)xBy=—(-x & —y);

()x->y=-x@y,

(HXx-y=xB®—y,

(S)x=syiff -x®y=1,
Then < is an order relation which determines
on A a structure of distributive lattice with the
smallest element 0 and the greatest element 1,
(A, A, v. 0, 1), such that:

(O)xVvy=x®-y) @y,

(N XAY==(=X Vv —y).
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Let MV be the class of MV-algebras and MV
be the class of algebras

A =(AAV.® = & — -0 1)
associated with an MV-algebra

A=(A. S, -.0),

where the operations A, v, ® —, — and 1 are
defined as above. The next result expresses the
relation between the classes MV, M\L and BR.

1.6 Proposition

(i) MV =R~R° cBR.
(i1) The algebraic categories associated with the
classes MV and MV_ are isomorphic,

Proof

(1) Every algebra A" € MV associated with an
MV-algebra A € MV and defined as in 1.5 is a
biresiduated algebra (see Definition 1.1)
satisfying equations 1.2(R1) and 1.2°(R1°). The
following specific relations hold:
XAY=X®(x—>vy)
Xvy=(x-y) @y,
(i) Using the precedent correspondence an
isomorphism between the algebraic categories
associated with MV and MV can be obtained.]

The result below was established in {10].

1.7 Theorem

The class BR of biresiduated algebras is the
variety of algebras of K generated by R w R”.

1.8 Boolean algebras

A Boolean algebra [B] is a system

(A, v, =, 0, D
of type (2, 2, 1, 0, 0) such that (A, A. v, 0, 1) is
a bounded distributive lattice and it satisfies the
equations x A —=x =0 and x v —x = 1,

Let B be the class of Boolean algebras and B’
be the class of algebras A € K associated with
Boolean algebras (A, ~, v, —. 0, 1) such that:

xQ@y=xAy,
X—=y==XVY;
X@v=xvy;
X—y=XA-V,

1.9 D-algebras

A D-algebra [9] is a system
A= (Aa Ny Ny =, —, U.- 1)
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of type (2, 2, 2, 2, 0, 0) such that it is
isomorphic to a subdirect product of two
structures

H=HAAv,—>-01
and

Br=(Br. A, v, —, -0 1)
where (H, A, v, —>, 0, 1) is a Heyting algebra
such that x—y=(x—>v—>0,forallx. ye H
and (Br, A, v. —, 0, 1) is a Brouwer algebra
suchthatx > y=1-(x-y). forallx,y € Br.

Let D be the class of D-algebras and D’ be the
class of biresiduated algebras A € BR such that
the following equations hold:

DOHxBy=xAVNS1L;
D x®y=(xvy @0

Then the algebraic categories associated with D
and D are isomorphic.

The structures of Boolean algebra. Heyting
algebra and Brouwer algebra are related to the
structure of D-algebra as follows:

1.10 Theorem

()B =H ~Br <D <BR
(i) D is a variety of biresiduated algebras
generated by i . B_rs

2. Many-valued spaces
over a biresiduated algebra

Let X be a set and A be a biresiduated algebra.

In this Section the notions of equivalence and
distance functions on X and the term of many-
valued space over A will be introduced.

2.1 Definition

An equivalence function on X over A is a
mapping ¢ : X x X - A ® 1 such that the
following conditions hold for all x,y,z € X

(Dex, x)=1;
(ii) e(x, y) = e(y, X);
(i) e(x, v) ® ely, z) < e(X, 2).

2.2 Definition

A distance function on X over A is a mapping
d: XxX—->AD0

such that the following conditions hold for all

X,v,Z2eX:
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( Ddx, x)=0;
(ii) d(x. ¥) = d(y. X):
(1) d(x, z) < d(x, y) @ d(y. 7).

2.3 Definition

A many-valued space over A with the carrier
set X (called more simply an A-valued space) is
a system 4 = (X, e, d) such that
e XxX—>A®1
is an equivalence function on X over A,
d:XxX->AD0
is a distance function on X over A and the
following conditions hold forall x. vy € X

(e(x,y)®dx.y)=0;
(iDe(x,y)®dx,v)= 1.
2.4 Example
Let R < X x X be an equivalence relation on X,
er=og: X x X {0, 1}
be the Boolean characteristic function of R. i.e.

I_1, if(x, y) eR
e (x.,y)=4 . ;
R |0, if(x, y) R
forall x. v € X and
dg = ot X x X = {0, 1}

be the Boolean complement of o, i.€.
jn, if (x, y) eR

GOV i y) eR

forallx, v e X.
Then the standard A-valued space associated
with R is the triplet

F[R]= (X er, dr).

Thus, the standard A-valued space associated
with the identity relation R on X,

R=A={{x,x)/x e X],
is the system

2Al= (X, e, . d,)

where for all x, y € X:

¥} L ifx=y
(& Y=
AN T N0, ifx =y
and
fo,ifx=y
d y) = T
S L T
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2.5 Example

Let

eaAxA->ARI
and

di AxA->AD0

be the mappings defined for all x, v € Aby

el V) =xX—->y)®(y > x);
dax. ) =x-y) Sy -x.

Then the standard A-valued space associated
with A is the triplet

A= (A ey dy)

The mapping e, is called the equivalence
function on A and the mapping d, is called the
distance function on A.

2.6 Example

If A € D’ is associated with a D-algebra

(A, A, v, =, — 0. 1)
then the equivalence and distance functions on
A are defined by:

ealX, V=[x >NAy->x]® 1
da(x. NV =[x-V)v({y-x)] @0,

forallx.y € A

If A e H < D is associated with a Heyting
algebra (A, A, v. —, 0, 1) thenforall x. v € A:

CAX, V)= (X 2> ¥) A (Y > x);
dA(X, }') = —:—.[—:(x —>V)Vv —1(}’ e X)]:

where —u =u — 0, ¥V u € A Then concrete
expressions of equivalence and distance
functions on A can be obtained, if A is
associated with the complete Heyting algebra of
open subsets of a topological space.

If A e Br « D is associated with a Brouwer
algebra (A, A, v, —. 0, ) thenforall x, v € A:

ealX, y) = ~—f=(x - ¥) A =y = X))
da(X. ¥) =(X-y) v (y—X),

where —u = 1 — u, V u € A. Then concrete
expressions of equivalence and distance
functions on A can be also obtained, if A is
associated with the complete Brouwer algebra
of closed subsets of a topological space.

If A € B < D is associated with a Boolean
algebra (A, A, v, -, 0, Dthen forall x, y € A:

EAlX, ¥) = (mX VY) A (=Y Vv X))
da(x, ¥) = (X A —Y) v (v A 2X).
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2.7 Example

Let A be the Lukasiewicz structure on the real
unit interval [0, 1] i.e. forall x, y € [0, 1]

XAY=min(x, y).

XV y = max(x, y);
x®y=max(0,x+y-1);
X—=y=min(l, I -x+y);
Xx®y=min(l, x +y);

X -y =max{0, x - ¥);
—Xx=1-x,

where in the second member of the precedent
relations + and - are the usual operations of
addition and subtraction of real numbers. Then
the following relations hold:

EalX, ¥y =il— ix-yi;

da(x. ¥) = [x-].
Therefore, the distance function d, is the usual
distance on [0, 1] — R and the equivalence
function e, is the negation of da.
2.8 Example

Let A be a structure of biresiduated algebra on
the real unit inferval [0, 1] defined by the
following relations for all x, v € [0, 1}:

X AY=nmin(x, y);

X Vy = max(x, y);

Xy =¥
lrl ifx<y
‘(ﬁ)*iy if\(>v;
Ix
[1,ifxvy=0
i() ifxvy=0"

m fxsyor0<y<x
va*i

| 1f0_v<‘<

f1,ifx=0
X=x—20=1-x= . ;
0,ifx =0

where in the second member of the precedent
relations x - v is the multiplication of x by y and

"
= 1is the division of y by x # 0 in R. Then the
X

following relations hold:
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i, ifx=y=0
E Y= M\), ifx.i()ory.io:
Lxvy
(0, if (x=y=0)or(x-y#0
d, (=1 (x=y=0)or(x-) )'
: Ll,lf(x=()<_v)or(y=0<x)

2.9 Example

Let A be a structure of biresiduated algebra on
the real unit interval [0, 1] defined by the
following relations for all x, y € [0, 1]:

X AY=mn(x, y);

XV y=max(x, y):

r’l, ifxanyv=1
XBY =3 ’ :
(0, ifxAy =1

l,ifx<yory<x<l
X—=>yv= ) ;
0, ify<l=x

|’o, ifx <y
- ] -V
A <IA — ifx>vy’
\l'y
(0, ifx =

The following relations will then hold:

[ Lif (x=y=Dorxvy#l
eA(x,y)= )
[0,if (x<l=y)or(y <l=x)

[_0’ ifX=Y=1
]
d, (x. y)—ﬂi‘i, ifxay=l
1-(xAy)
2.10 Example

Let A be the structure of biresiduated algebra
on the real unit interval [0. 1] defined as in
Example 2.8. Suppose that p € R and p > 1.
Define the mapping

& RxR—[0,1]
forall x.v € R by

ep(X, ¥) = p_l" - 3’%.
It follows that foralix, v,z e R

e(X, ¥) - &ply, 2) S ey(X, Z).
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Thus e, is an equivalence function on R over A.

Let A be the structure of biresiduated algebra
on the real unit interval [0, 1] defined as in
Example 2.9. Define the mapping

d, R xR —[0,1]
forallx,y € R by

X - »1

!
dof(x, Y)=1-¢e(x,y)=1-p~
Then d, is a distance function on ® over A. [

The next section is the final part of this paper
and it presents a notion of morphism and a
corresponding category of A-valued spaces.

3. The category S|A]

Let A be a biresiduated algebra.

IfFX. Y. Zaresetsand [ : X > Y, g: Y » Z
are functions then g - {: X — Z is the function
defined by (g - D(x) = g(f(x)). for all x € X. For
all sets X and Y. let [X, Y] be the set of all
functions from X to Y. A specific terminology
used in fuzzy set theory |7] will be adopted in
this section. A function p € [X, A] is called an
A-subserof X. Forall fe [X, Y], if v e [Y, A]
is an A-subset of Y then v - f € [X, A] is called
the inverse image of v under f.

The next definition introduces a notion of
morphism which makes the class STA] of all A-
valued spaces be a category.

3.1 Definition

Let ¥ = (X, ex, dy) and % = (Y. ey, dy) be two
A-valucd spaces. A morphism from % to % is a
function

f:X->Y
such that the following conditions hold for ali
X.X: € XandveY:

(1) ex(x1, X2) @ ey(f(x)), y) < ex(l(x2). y).

(i) dy(f(xz), ¥) < dv(f(x1). ¥) D dx(x1, X2).
The set of all morphisms from 4 fo % will be
denoted by Hom(%,%).

3.2 Definition

Let f € Hom(%, %) and g € Hom(%, 3) be

morphisms, where 2.%, 2 € S[A]. Then
g-fetom(X, %)

and it is called the product of the couple (g, f).

The class STA] and the class of all morphisms
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together with this product of morphisms is a
category denoted by STA].

The next definition introduces the notion of
monotone A-subset of an A-valued space and it
will be used to characterize morphisms,

3.3 Definition

Let ¥ = (X, e, d) € SJA|. 4 monotone A-subset
of % is a function
H:X—A

such that the following conditions hold for all
x,veX:

(1) p(x) B elx, y) < wy);

(1) u(y) < ux) D dx, y).
The set of all monotone A-subsets of 4 will be
denoted by #[%].

3.4 Lemma

Let ¥ = (X, e, d) € SJA] and x € X Define
two functions
e[x]: X > Aandd[x] X > A
such that for all v € X:
e[x](y) = e(x. y);
dlxj(y) = d(x, y).
Then efx]. d[x] € #[%].

Proof

Now we show that e[x] € #[%]. The functions
¢ and d satisfy all the conditions 2.1(i)-(iii),
2.2(1)-(iii), 2.3(1) and 2.3(ii). Let X", vy € X.
From Definition 2.1 (ii) it follows that

(1) elx}(x") ®@e(x’,y) =e(x, X')®e(x’,y)
se(x,y)
= e[x](y).

From Definition 2.2 (ii) and the relation
(VaeA)a®@-a=1
it follows that

1 =d(x, x) @ -d(x. X))
Ldx, ¥) @d(x’, y) @ —d(x, x).
This implies that
—d(x, ¥) < —d(x, X)) @ d(x", y).
but the conditions 2.3(i) and 2.3(ii) imply
(Vx.y € X)=d(x, y) = e(x. y) ©0,
therefore

= -d(x, v)
S X))@ @A,y
= e[x](x") & d(x’, ).

The relations (1) and (2) imply e[x] e #[Z].
The other condition d[x] € #[%] follows using
similar arguments. O
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The next result characlerizes morphisms as
functions preserving the property of monotony
by making inverse images.

3.5 Proposition

Letd = (X, €x, dﬁ() aﬂdff = (Y, Sy, dy) be two
objects of SJA] and [ : X - Y be a function.
Then the following conditions are equivalent:

(i) f € Hom(X.,%);
(i) v - f e #|7]. forall v e %[%].

Proof

(i) = (ii). Suppose that 3.5 (i) holds. Using
Definitions 2.3 and 3.1 this implies that for all
X1, X2 € X:

(1) exlxy, X2) < ev(f(xz), f(x:);
(2)  dy(f(x2), f(xy)) < dx(xy, x2).

Letv e %[%]ie v:Y — Ais a function such
that forally;. v, € Y:

(3)  v(¥1) ® ey(y, ¥2) < v(y2):
(4) v(¥2) = v(v1) © dv(y, y2).

Suppose that x;, x; € X. Using (3) and (4) and
the properties of the operations @ and @ in A,
from (1) and (2) it follows that:
v(f(xi )) ® ex(x-l, Xg) < v(f(xl)) 2] ey(f(x-l),
f(x2))

< v(f(x0)):
S v(f(x1)) © dy(f(x), f(x2))
< V{f(x1)) @ dx(xy, x).
Thercefore, v - f € %[%]. This shows that the
condition 3.5 (ii) holds.

vif(x2))

(if) = (i). Suppose that 3.5 (ii) holds. Using
Lemma 3.4 it follows that for all x; € X, the
functions

ey[fixDl: Y = A
and
dy[f(X;)] Y - A
are monotone A-subsets of %. From 3.5 (i) it
follows that
C\’[f(xl)l X = A
and
dvlf(x)] - . X —> A

are monotone A-subsets of 4. This implies that

the following relations hold for all x;, x, € X;

(5) ex(x1, X2} = ex(x), x2) @ 1
= ex(X1, X2) ® ev(f(xy), f(x1))
= ex{Xi1, X2) @ (e[f(x1)] - H(x5)
< (ev{f(x1)] - D(x2)
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= ey(f(xy), f(x2)).

(6) dy(fi(x)), f(x2)) = (dy[f(x))] - D(x2)
< dx(xl, X>) @ (dy[f(\in ) f)(X}-)
= dy(x1, X2) @ dy(f(x;), f(x1))
b dx(.\'1. X2) @0
= dX(X] 5 Xz).
From (5) and (6) it follows that f verifies the

conditions from Definition 3.1, ie. 3.5 (i)
holds. This completes the proof. O

3.6 Example

Let 2 be a biresiduated algebra having precisely
two elements 0 and 1. Suppose that R € X x X
is an equivalence relation on X. Let

ZIR] = (X, eg, dr)

be the standard 2-valued space associated with
R defined as in example 2.4, Then (X, dg) is a
metric space such that D < X is open iff D is
R-monotone ie. the following condition holds
forall x, v e X

xeDand(x,y) e Rimplyy € D.

Using Definition 3.3, it follows that the
following condition holds for all D < X:

D is R-monotone iff pup € #[A[R]],

where pup © X — {0, 1} is the characteristic
function of D defined for all x € X by
l.Lif xeD

B (X) = :
0.if xegD

Therefore. the set of all monotone 2-subsets of

Z[R] can be identified with the set of all open
sets of the metric space (X, dg).

Suppose that

#Z[R’] = (Y, er. dr)
is another 2-valued space associated with an
equivalence relation R” on Y. From Proposition
3.5 it follows that the following conditions are
equivalent for any function f: X — Y:

(i) f € Hom(X[R], %[R’]):

(i) f is a continuous funcfion from the metric
space (X, dr) to the metric space (Y, dr).

Therefore, the category SJA] includes all 2-
valued spaces associated with equivalence
relations on sets such that the notion of
morphism between A-valued spaces is an
extension of the notion of continuous functions
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between standard metric spaces associated with
these equivalence relations.

3.7 Example

Let 4, = (X, e, d)) and %, = (X, e, dy) be two
A-valued spaces having the same carrier set X
and 1y : X — X be the identity mapping on X.
Define 4, < 4, iff 1x € Hom(¥:, %2) ie. the
following conditions hold for all x, v € X:

el(x, y) <exAx, v);

dx(x, v) < di(x, y).

Let 4 : X — A be any function. Define two
functions

eneu XxX>A®1
such that forall x, y € X:
Cu(x, ¥) = ea(px). p(y));
¢ux, 1) =i (1) = 1EN A (1E) = 1RED).

where ¢, is the equivalence function on A
defined as in Example 2.5 and
itA>AR®1
is an interior operator on the poset (A, <)
{2.10] defined by
ia=a®li,VaeA

Define also two functions
d,d,: XxX->A®0
such that forall x, v € X
du(x, ¥) = da(p(x), py);
4w, 9 = (100 = BEY v (BO) - D).

where dy is the distance function on A defined
as in Example 2.5 and
c:A>A®0
is a closure operator on the poset (A, <) [2,10]
defined by
cla)=a®0,VaeA

Then 2, = (X, e, d)and 2", = (X, ¢’ d) are
two A-valued spaces with the same carrier set
X such that the following conditions hold:

o pewm[,) [T,
s oot
e 7€ SjAjandp e ®{7]imply % <%,

The next Lemma presents conditions for a
morphism to be monomorphism, epimorphism
or isomorphism of the category STA].
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3.8 Lemma

Let = (X. ex, dx). % = (Y, ey, dy) € S[A]
Then the following conditions hold in the
category S1A] for all f € Hom(x, %):

(1) f'is a monomorphism iff f is injective.

(i1) If the function f is surjective then f is an
epimorphism.

(iii) If the function f is bijective then f is an
isomorphism iff for all x;, x; € X;

(I1) ex(x1, x2) = ev(f(x1), f(x2));
(12) dx(x1, x2) = dy(f(x)), f(x3)).

Proof

The condition 3.8 (ii) and the fact that if f is an
injective function then f is a monomorphism
are clear. Suppose that f is a monomorphism.
but f is not an injective function i.e. for some
X1, X2 € X, we have f (x;) = f(x;) and x; # x..
Let Z={ x;, x; } and g, h : Z — X such that
g(z) =z and h(z) = x;, ¥ z € Z. This implies
that f- g = - h. Let 2[A] = (Z. e,, dy) be the
standard structure of A-valued space associated
with the identity relation A on Z defined as in
example 2.4. Using definition 3.1 one obtains
that g. h € Hom(3|A]. %). Then, from the
property f - g =1 h and the condition that f is a
monomorphism it follows that g = h, but the
definitions of g and h imply g # h,
contradiction. Thus. 3.8 (i) and 3.8(ii) hold.
The condition 3.8(iii) follows from the fact that
if fis a bijective function then the relations
3.8(11) and 3.8 (12) hold iff f' & Hom. %),
where f' : Y — X is the inverse function of f.
Now we show that the finite direct limits exist
in the category STA]. Concrete constructions of
finite products and equalizers are given.

3.9 Finite direct limits

Let I be a nonempty finite set and
@=Xi e ddier
be a family of objects in STA]. Let
X= TIX,
iel
be the cartesian product set of (X,); . ; and
M X—>X)ier

be the family of canonical projections of X.
Define two functions

ex  XxX—>A®1
and

dy : Xx X > AS® 0
such that forall x, v e X:
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ex(x%¥)= @ ej(n;(x), 7, (y)
iel
and
dy(xy)= @ dj(m; ), 7).
tel
Then the triplet
7=(X ex. dv
is an object in STA] such that
(Viel)nw e Hom(x, %)),
The system (X, (1), . 1) is a direct product of
the family (X\); < 1 in the category S|A]. This
property is a consequence of the fact that for all
% =(Y,ey. dy) € S[A], if
(Viel)p e Hom¥. 1)
then there exists an unique function
f:Y¥Y->X
defined by
(YyeY)(Viel) ) =p(y)
such that
f e Hom{g, %)
and
(Viel)ym-f=p,
Let 7]A] = (7, es di) be an object of SJA]
associated with the identity relation A on a set 7
having precisely one element. Then 7[A] is a
Jinal object for S[A] i.e. the set Hom(X, 1|A])
has precisely one clement, for each ¥ € SJA].
1t follows that the following condition holds:

(1) Finite products exist in the category SJAl.
Now we show that:
(2) Equalizers exist in the category S[A].

Suppose that
f.g e Hom(%.%).
where
2=(X ex. dx). % = (Y, ey, dy) € STA].
Definc a subset Z of X by
Z={xeX/{(x)=g(x)}

and two functions

7. ZxZ—>A®1]
and

dz:ZxZ—>AD 0
such that forallu, v € Z:

ez (u. v) = ex (u, v);

dz (u, v) = dx (u, v).
Let 5 : Z — X be the inclusion map of Z in X
ie.(VzeZ)o(z) =z Then

2=(Z, ¢, dy) € S|A)

and the system (g, o) is an equalizer of the
coupie (f, g) in the category S[A].

From the properties (1) and (2) it follows that
the foliowing conditions hold:
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(3) Finite direct limits and pullbacks exist in
the category S|A].

A complete biresiduated algebra is any system
A e BR such that (A, A, v, 0, 1) is a complete
lattice.

The next result was established in [9] and it
presents in a synthetical form new properties of
the category STA] if A is a complete D-algebra.

3.10 Theorem

If A e D is a biresiduated algebra associated
with a complete D-algebra then SIA] is a
cartesian closed category.

Theorem 3.10 follows from 3.9(3) and the fact
that for all Z, % € SIA], if A is associated with
a complete D-algebra then there exists a
standard structure of A-valued space on the set
Hom(,%) and one can define a functor
= ()" SIA] - SIA]

as follows, for all % € S|A], g € Hom(%, 3))
and f € E*(%)):
o E'y)=Hom®.%);
o Egh=g-f
such that the following condition holds:
e E* is the exponentiation functor by %.
The precedent condition means that £ is a
right adjoint of the functor direct product by %,

Mai=()y=7: SIA] —» SIA]
If A is associated with a complete D-algebra
one can prove also that the inverse limits exist
in the category STA].

In order to claborate a new interesting and
comprehensive mathematical theory of fuzzy
sets having an unitary logical foundation,
different new ways to make the class SJA] into
a category can be considered. For this purpose,
a good source of inspiration is the clementary
toposes theory together with complete Q-sets
theory, where Q is a complete Heyting algebra
[5]. A first goal is to identify an adequate class
of many-valued mathematical models including
sheaves. A completeness theorem with respect
to these models also must be proved.
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