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Abstract: The paper discusses some basic issues in natural
language generation (NLG) and describes a head-driven
NLG system for HPSG-like language descriptions. We
address mainly the aspects of surface natural language
generation starting from a meaning representation of the
message meant to be verbalized. The representation of the
linguistic knowledge (grammar and lexicon) as well as the
most important implementation issues (the generator is
implemented in SMALLTALK) are described in detail, also
commenting on the SMALLTALK code.
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1. Introduction

Several researchers have noted that NLG is a
much less investigated area of natural language
processing if compared with work on analysis,
although many useful applications (machine
translation, automatic summarization, question-
answering, dialoguc systems, CALL and
Intelligent CALL, etc.) are supposed to take
advantage of the developments in NLG (see for
instance[Fawcet and Tucker, 1989],
[McDonald.1993], [Zock.1996], [Tufis and

Zock, 1997], [Dale and Mellish, 1998], etc).
This could be partially explained by the
frequently met misconception that generation is
just the reverse of analysis, but also by the fact
that ad-hoc generation methods (pattern-based,
for instance) proved useful enough for the
specific purpose of various applications. It was
mainly the study of the reversibility issues that
showed that although it was possible to use the
same linguistic information for both analysis
and generation, the processes themselves
differed a lot in terms of both their algorithmic
complexity and control and only the shallow
phases of these two processes (parsing and
surface realization respectively) could be
considered more or less the reverse of one
another. In the mid80s, successful research was
carried on the possibility of a common approach
of the parsing and surface generation leading to
the unification of the knowledge representation
for both of these [Shieber,1988], [Dymetman
and Isabelle, 1988] and for many others. The
reversibility of linguistic descriptions became
possible by adopting declarative formalisms,
mainly those based on the unification of
attribute-value structures.

Reusability of the linguistic knowledge makes a
natural prerequisite due to the technological and
conceptual advances over the last few vears and
also to those predictable for the future. If one
considers the effort needed to implement a
processing environment and the pains taken for
a wide coverage language description
(according to some estimates, this ratio is of at
least 1:100), the reusability criterion in
encoding language descriptions should normally
prevail over efficiency. A linguistic description
closely related to a particular formalism,
whatever performant it might be, is at the risk of
being partially or even completely reformulated,
if the programming environment has to be
changed. This is a first aspect of reusability. A
second subtler one refers to avoiding radical
decisions in linguistic phenomena modelling,
based on a formalism or linguistic theory in
fashion at a certain time. More difficult to
realise, this aspect of reusability may be
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facilitated through localizing very precisely all
the elements specific to a certain formalism or
linguistic theory.

The lexicalization trend in grammar modelling,
a generalized practice nowadays, and, for sure,
facilitated by the unification technology, is one
possible answer to making reusability work in
the large. Probably this is one reason why they
are generally accepted. Qur work shares this
lexicalized, unification-based vision of the
language processing.

When speaking about gencration, it is usually
the case that the distinction made between what
has to be said and how it should be said is
further refined into smaller tasks, such as text
planning, sentence planning and linguistic
realization [Dale and Mellish, 1998]. Coming
closer to the implementation of a working
architecture, Reiter and Dale (1997) identified 6
main problematic areas which, although
overlapping to some extent, define at a finer
grained level the strategv-tactics dichotomy
[Dale and Mellish, 1998]:

¢ Content determination -decide on what
information should be part of the text, and
what information should stay out.

o Document structuring — decide on how the
text should be organized and structured. It
is often the case that the information
representation out of which a generator is
supposed to produce coherent text, is not
structured at a sentence equivalent

granularity.

» Lexicalization (lexical choice) — choose the
particular words or phrases which best
convey the intended meaning.

e Aggregation — somehow related to the
problem of document structuring, this issue
is concerned with congesting (whenever the
case is) information into one sentence
realization form, for the sake of fluency and
stylistic relevance.

¢ Referring expression generation— determine
what properties of any entity should be
used in referring to that entity (a
differentiation ~ of  potential  similar
referents).

e Surface realization — determine how the
proper production of an NL text will be
done based on the information provided at
the previous five processing levels. This
includes  production of  adequate
morphological forms of the selected words
and their serialization according to the

syntactic restrictions specified in the
grammar.

One pervasive problem is that of the nature and
the format of the input an NL generator is
supposed to produce texts from. This problem,
which is known as the mapping problem or the
problem of logical equivalence in computational
linguistics [Shieber, 1993], [McDonald. 1993],
can be raised with respect to cach of the six
phascs mentioned above. The problem can be
split into two subproblems: to define a loss-less
mapping and to define a computationally
efficient mapping.

We address here only the process of surface
realization, and assume an input representation
consistent with the linguistic knowledge
representation, thus avoiding the mapping
problem.

The structure of this paper is as follows: the first
Part of the paper presents the general issues put
by natural language surface generation, shows
the limitations of the classical top-down and
bottom -up generation methods, and introduces
the head-driven generation method. Further we
discuss the linguistic representation of the input,
the grammar and the lexicon, and dwell on the
implementation of our generator. The last
Section presents preliminary results, current
limitations and future work.

2. Surface Generation of
Natural Language

A declarative view of grammars as promoted by
the unification formalisms, predicts that
grammars should themselves be interpretable
without regard to direction that they should be
equally suitable for use by parsers and
generators. To put it more simply, in such an
environment the generator works by taking a
feature-structure  (FS) and searching for
grammar rules and lexical entries, which can
relate subparts of the FS to words.

Among the different approaches to surface
generation of natural languages, the head-driven
models appear to be the most successful. From
this point of view, our system is yet another
head -driven generator not committed to a
specific linguistic formalism, and just requiring
a unification-based description of the linguistic
knowledge which would unambiguously
identify a logical form supposed to represent the
semantics of the embedding feature structure.
However, as the reader will noiice, the grammar
and the lexicon descriptions are close to an
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HPSG style description. We have selected this
notation for the same reasons Wilcock and
Matsumoto [1998] selected HPSG. namely that
a head-driven generator is supposed to take full
advantage of linguistic descriptions expressed in
a head-based manner. As HPSG is head -driven
not only syntactically, but also semantically, it
is natural to expect that a head-driven generator
be an appropriate design option. In [Wilcock
and Matsumoto, 1998] there were shown some
inherent difficulties when a head -driven
generator was supposed to work with full HPSG
textbook semantics [Pollard and Sag, 1994]
The difficulties turned up due to the usual
phrasal amalgamation of the quantifier storage
and contextual background conditions' With a
lexical amalgamation of the quantifier storage
as proposed by [Pollard and Yoo 1995], and of
the CONTEXT feature as proposed by
[Wilcock, 1997], the difficulties in using a
head- driven generator for an HPSG grammar
are, to a large extent, almost surpassed. The
other obstacles in Wilcock’s generator count
with the limited power of the implementation
means (template expansion and difference lists)
provided by the programming environment, and
are due to the lack of a dynamic constraint
checking mechanism.

The surface (tactical [Thompson, 1977})
generator, to be presented here, is based on an
efficient head-driven algorithm similar to the
one used in BUGI1 [van Noord, 1988] but,
contrary to most other head -driven generators,
and taking advantage of the language
expressivity and computational properties, this
one is implemented in Smalltatk. The generator
is a mixed variant of van Noord’s BUGI and
Shieber’s Head -driven Generation Algorithm
[Shieber, 1988}, which incorporates advantages
and copes with deficiencies of both of them.
The extensions proposed by Wilcock and
Matsumoto [1998] have also been observed.

For more efficiency , several implementation
issues have been considered (indexing the
lexicon on the logical structures, parallel search,
copying/destructive  unification of feature
structures, etc.).

1 Wilcock (1997) shows that the Semantics Principle needs
reformulation and it is replaced by three other principles:
Semantic Head Inheritance Principle, Quantifier Inheritance
Principle and Contextual Head Inheritance Principle. The
rationale for this reformulation of the Semantics Principle is
the reconciliation of the HPSG definition of semantic head
(based on adjunct daughter or syntactic head daughter) and
the one used by a head-driven algorithm (based on the
identity of the logical forms). This reconciliation is achieved
by including the unscoped quantifiers and the background
conditions in the logical form out of which a head-driven
generator is assumed to produce the surface string.

In the following we will briefly discuss some
computational problems inherent to simple
control strategies (top-down or bottom-up)
which have motivated the combined strategy
used in head -driven generators (top-down and
bottom-up). We will also discuss completeness
and coherence [Wedekind, 1988] and how they
are possible to achieve in our generator. Then
we will detail the Smalltalk implementation of
the generator.

We distinguish, as to the input to the surface
generator, between the content specification, the
one that would head-drive the generation and
the functional specification. the one that would
goal-drive the restrictions application. The
content specification will reflect in the lexical
options, while the functional specifications will
manifest in the final realization of the selected
lexical entries. For instance, a logical form such
as write (john, novel) provides merely the
content specification and unless some functional
defaults are assumed (cat: s, fense: present,
number: singular, definiteness: indef, ctc.) the
logical form is grossly under-specificd.

This approach provides the surface generator
with a feature-structure within which the logical
form represents just the valuc of a feature called
sem, supposed to exist among the first-level
features of the feature structurc. The functional
specifications are supposed to be there,
embedded into the structure representing the
value of the first-level feature syn. The
graphemic realizations of the lexical items
(currently the lexicon is a word-form one, with
all the values responsible for the inflected form
being fully instantiated) are to be found in the
first-level feature called phon. We assume that
whatever  information is provided on
quantification (QSTORE) as well as on
presuppositions and other discourse information
(CONTEXT), it is embedded into the sem
attribute structure. This would account for a
lexical amalgamation of the QSTORE and the
CONTEXT sets as proposed by Wilcock and
Matsumoto [1998].

Whereas in the representation of the input to the
surface generator described in this paper the
syntactic and “semantic” information is mix-up,
it is relatively simple to design an interface
which scparates the two types of information. In
[Tufis et al, 1994] there is described such an
interface called KRIL (Knowledge
Representation to InterLingua), used to link the
immersive language tutoring system FLUENT
[Hamburger et al, 1993], with the natural
language generator of the multilingual natural
language processing system, ATHENA
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[Felshin, 1993]. The structure in Figure la
describes the input specification for the sentence
“Does every person love Mary?” while the

(kril (to-say
raction :love

:agent (object :class :person
cattribute :every
rarole :quantity)
:objectl Mary)

(how-to
:s-type :interrogative
:tma' (:present)

thow( (agent :exophoric))

structure in Figure 1b cormresponds to the
sentence “Every person loved her”.

{kril (to-say

raction :love
:agent {object :class :person
tattribute :every
rarcle :quantity)
:objectl Mary)
(how-to
:s—type :affirmative
:tma (:past)
:how( (agent :exophoric)
(objectl :anaphoric)

Figure 1. Separation of A Logical Form from the Realization Specifications

This description is mapped (via lexicon
inspection) onto a more linguistically -oriented
representation (called Interlingna) and then
passed to the underlying surface generator.

3. Why Top-Down or Bottom-
Up Generators Are Not Enough

As the theory of parsing [Aho, 1972] shows, in
case of top-down, lefi-right approaches, the
grammar rules have to be free of left-recursion,
otherwise the process will not stop. Not only
will the direct recursiveness (such as VP> VP
COMP) be forbidden, but also will the indirect
one be (such as A»B C...Z; B>AD..Y). To
put it more formally, if we denote by o a string
of terminal grammar symbols, by Q a string of
either terminal or non-terminal grammar
symbols and by FIRSTNT(X) =[Y1 Y2 ... YK]
the list of non-terminals so that they are the left-
most non-terminal of whatever sentential form
oYQ that can be gencrated by the grammar
starting with X as a start symbol, then for the
top-down gencrators the relation
XeFIRSTNT(X) should exist. For a grammar
involving feature-structure descriptions, the
precondition should be modified by replacing
the equality in the membership test by a
unification condition, that is X should not get
unified with any Y in FIRSTNT(X).

The use of a rule such as VP> VP COMP in
modelling natural languages is not an accident,
but a common construction in many languages
for specifying the complements of a verb. The
intent is that the rule should apply recursively
until the subcategorization list of the head verb
is empty (saturated) or, to put it otherwise, until
all the complements of the verb are consumed.

In [Shieber et al, 1988] an example of Dutch
cross-serial verb constructions is discussed,
where subcategorization lists may be appended
by syntactic rules, resulting in indefinitely long
lists. One could argue that syntactic information
might block infinite recursion, as any subcat list
has a fixed length (this length is specified in the
lexical entries) but, this information is not
available for top-down generators because they
would look-up the lexicon only at a final stage
when preterminal categories are dealt with. A
more detailed discussion and more examples of
how a simple top-down generator would fail
with tiny left-recursive grammars are to be
found in [van Noord, 1988] and [Shieber et al,
1989].

Another kind of difficulty a simple top-down
generator would face with is discussed in
[Shieber et al]. The problem is illustrated by a
rule like: /S < np/NP, vp(NP)/S. Consider
that the generation process is initiated with the
goal s/love(john, mary), which will fire the rule
s/Sonp/NP, vp(NP)/S. If the generation
proceeds with the left-most non-terminal (the
subgoal np/NP), the search space for the
binding of NP will become huge (since any NP
covered by a grammar would get unified with
the unrestricted semantics of np). Thus, in a
large system, although not properly an infinite
recursion, this kind of a problem may cause the
same¢ hanging-around as a genuine left-
recursion. And this, in spite of the vp semantics
being (due to the variable sharing) bound to the
semantics /ove(john, mary). Several solutions to
this problem are to be considered: use of a kind
of goal freezing as proposed by [Colmerauer,
1982]. a static goal ordering as proposed by
[Dymetman and Isabelle, 1988] or dynamic
ordering (based on checking the instantiation of
semantics of the candidate daughters) as
proposed by Wedekind [1988].
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Bottom-up generators do not have termination
problems with the rule recursiveness since
whatever lexical information will be needed,
this is available from scratch. Yet, they present
other difficulties to be briefly mentioned below.

Most bottom-up generators based on Shieber’s
algorithm [Shieber, 1988] use a deduction
controlled by an Earley-type chart structure.
While this approach works nicely in parsing,
with non-determinism limited by the data -
driven conduct of the algorithm, to reverse it for
generation (that is to make it goal -driven,
applying the rules bottom-up and keeping the
results in the chart) is not straightforward and
might be the source of high computational
inefficiency.

Shieber solved this problem by imposing on the
grammar the semantic monotonicity condition.
This restriction asks that the semantics of each
daughter node of a rule subsumes some part of
the semantics of the mother node of that rule.
Apparently, this is a natural restriction in
dealing with a compositional semantics
approach (each sub-component of a phrase is
supposed to contribute the semantics of the
phrase), but on a closer look it reveals severe
limitations with respect to the coverage of
naturally occurring texts: phrasal verbs (call
some friends up), idioms (kick the bucker),
expletive constructions (it is ...), etc.

Also, the adaptation of the Earley -type of
deduction for generation purposc, is not as
efficient as it is in parsing, because the left-to-

right scheduling of the algorithm (more
structure -oriented than meaning -oriented to the
string) imposes some delayed decisions. A
notorious example is the incertitude on some
attribute values (such as case) for an NP
preceding the head- verbal phrase.

Most of the (surface) generators we are aware
of, construct explicitly or implicitly a syntactic
tree (with specific syntactic or semantic
restrictions) that the underlying grammar
accepts. and according to which the syntactic
validity of the output string is provided.
Depending on how this syntactic tree (whether
virtual or real) is constructed, a traversal order
is defined over the tree (the most usual, but not
the only possible, are depth-first and left-to-
right or breadth-first and left-to-right).
However, as we have seen, for generation
purpose. a different traversal order would be
needed: one that should be goal- driven but
which will also consider the information in the
lexicon whenever this would be necessary.
Certainly, this is particularly relevant to
lexicalized grammars.

4. Head-driven Generation

A straightforward way to meeting the
requirements stated at the end of the previous
Chapter would be the use of information in the
logical form of the generator’s input in a top-
down way of control, to effectively produce
partial sub-strings (assembled in the final
output) in a bottom-up manner, controlled by

Generator’s input: category A and its logical form (LF)

WORDg WORD;,

WORD; WORDy

Figure 2. The final N words text is not generated left to right
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the information available in the dictionary. If
put this way, it is obvious that the actual
segments of texts will be produced from neither
left-to-right nor right-to-left, but in a combined
way.

Figure 2 tries to suggest a head-driven approach
of (surface) generation of natural language. So,
providing the genecrator with a semantic
representation of the intended output (LF) and a
grammatical category to start with, the process
will go downwards until a lexical entry
(corresponding to the head of the syntactic
structure to generate) is found, to subsume the
input information. In Figure 2, this lexical entry
(a particular grammar rule with no right-hand
side) is labelled as D.

The result of unification (restrictions from the
input LF and from the lexical entry) will be
percolated upwards into the mother-node C.
From there, C’s non-head daughters are one -
by- one submitted to the generation procedure.
The generation of each daughter of C will
contribute to further restricting the feature-
structure of C (that is adding more information).

In the following, we will exemplify our
implementation with a simplified version of the
SMALLTALK code and therefore, it is assumed
that the reader has some general knowledge of
the object programming paradigm.

5. The Dictionary and the
Grammar

The generator does not commit itself to a
particular linguistic theory, but relies on a
unification-based formalism. However, the
lexical entries and the grammar rules which
exemplify the functioning of the surface
generator are encoded using an HPSG-flavoured
notation, but once more we need to emphasize
the idea that the basic functionality of the
generator is not dependent on this formalism.
The indexes showing the structure-sharing
information are represented in the notation @n:
followed by a feature structure FS and as @n for
any reference to FS. A feature structure may
contain only references (@n) that means that all
co-indexed references refer to the same
unbound feature structure.

The top -level structure of a lexical entry is
shown in Figure 3.

phon <astring>
syn <afeaturestructure-
sem <asem- featurestructure-{<an atom>

Figure 3. The Top-Level of A Lexical Entry

The features phon and reln take atomic values
(strings of characters, representing the
graphemic form of the word encoded by the
entry and the name of the semantic predicate
underlying the basic meaning of the word in
case).The feature syn is non-atomic, having
feature structures as values. In principle, sem
takes non-atomic valucs, but in this current
version we allowed also atomic values in order
to let the generator work with simpler grammars
and lexicons. Given that the sem feature is
obligatory for all words in the lexicon, usually
atomic sem values are associated with the
description of functional words and constants
(such as proper names).

The general structure of a sem feature structure
is as follows:

[ reln semantic_predicate

< argument! - name > <argument! - value >

< argumentn - name > <argumentn - value >

gstore < list >

conx < list >

Figure 4. The General Structure of A Sem
Feature-Structure

For instance, the semantics of the words in the
paradigmatic family of hate is represented by
the following structure: (reln hate hater @1 hated
@2)

For building lexical entries, the system object
Lex must be sent the method withValues with a
FeatureStructure object as parameter as shown
below.

A := Lex withValues #(phon beautiful
syn (head (mod agr @l def indef )
subcat (first (syn (head (n agr @1 def
indef) )
sem @2)
rest NIL))

sem (reln beautiful arg @1)).
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The next examples show the skeletons of the
lexical entries for the words loves, [ and Julie,
based on which the generator, with an

(phon loves

syn (head (v vform (finite tns prs)

appropriate grammar, is able to produce the
strings: “I love Julie” or “Julie falls in love”
from the logical structures love(i, julie) and
love(julic) respectively.

subcat (first (syn (head (n agr (per a3 num sg)))

sem @1)

rest (first (syn
rest NIL)))
sem (reln love lover @1 lovee @2)).

(phon “falls in love”

syn (head (v vform (finite tns prs)}

(head (np)) sem @2)

subcat (first (syn (head (np agr (per a3 num sg)))

sem @1)
rest NIL))
sem (reln love lover G1l)).
(phon I syn (head (n agr (per al num sg))) sem 1)) .
(phon Julie syn (head (n agr (per a3 num sg))) sem julie)).

Grammar is an ordered set of rules
(OrderedCollection). A rule is a feature
structure pretty much the same as a lexical
entry, having an additional (built-in) attribute
called drrs (daughters) which, in its turn,
contains three (built-in) atiributes: / dirs (lefi-
daughters), head_dtr (head-daughter) and r_dtrs
(right -daughters). [ dtrs and r_difrs have as
values ordered lists of feature structures (they
may be empty), corresponding to the daughters
of the rule that precedes and respectively
follows the head -daughter. If the value of a list
of daughters is an empty list, then the
corresponding attribute is, as usual, omitted.
The head dtr has as value a feature structure,
describing the head -daughter of the rule, that is
the one that shares the sem value with the
mother node.

Two rules, corresponding to the more familiar
format S=>X VP and, respectively VP> VP X,

are shown in Figure 5 (the notation {A . B}
represents a list of which first element is A and
the rest is B):

Rl: (syn (head (s))

sem @1

dtrs ( 1 dtrs @2

head dtr (syn (head
(vp viorm (finite)) subcat @2)
sem @1))).

R2: (syn (head @1 subcat @2)

sem @3

dtrs (head dtr (syn (head
@l: {vp vform (finite)) subcat
{@2 . @4}) sem @3)

r dtrs @4))).

Figure 5. Two Grammar Ruies

A new rule is added to the grammar by sending
to the system object Rule the method withValues
with a FeatureStructure object as parameter as
shown below.

A := Rule withValues: #({(syn (head (np def indef @1 nil))

sem @2

dtrs(r dtrs @3: (first(syn(head(np def indef agr

1))

sem @4)
rest NIL)

head dtr (phon @5

It is important that the generator shall actually
distinguish among different words in the lexicon
and find all the rules that are applicable in a
specific point of the generation. Given that the
generator is driven by the semantics of the
generation goal as well as by the lexical items
that will be inserted in the output string, the
dictionary (object of the type
OrderedCollection) was indexed over the sem

syn (head (mod)

subcat (first @3 rest NIL))
sem (reln @5 arg @4)))).
attribute. The dictionary accessor, withSemantics:
aSem, accepts as search key (aSem) either an
atomic value (as i and julie in the previous
examples) or a proper sem structure (containing
the rel attribute as in the example below:

(sem (reln love lover @1 lovee
@z)).
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The lexicon semantic index is a hash- code
table, which, if given a sem value, returns all the
lexical entries whose semantics strongly unifies
with it. Strong unification as implemented in
our generator, requires that two unifiable feature
structures have the same features the values of
which should be pair-wise unifiable. Therefore,
under strong unification the feature structure
(Featurel x Feature2 y) would not unify with
(Featurel x). From this point of view, the sem
feature structure is interpreted as a predicate
and therefore two sem structures with the same
reln value but with a different number of
features, would be considered distinct and for
ever nonunifiable. Except for the lexical access,
the generator uses the usual (and more
permissive) unification which assumes only
non-conflicting values for the same atttributes.

Grammar is searched for applicable rules on the
basis of a head -feature structure. The grammar
accessor, withHead: aHead, returns all the rules of
which head unifies with the key (allead)..

In the current version of the system, the lexicon
contains all the inflectional variants of a given
lemma. Therefore, the value of a key in the
semantic index is usually a list of feature
structures corresponding to the members of the
inflectional family of the lemma or its
synonyms. The list of lexical entries returned by
the semantic index will be filtered out during
the generation process due to unification
failures (for instance a plural form will be
filtered out by a unification with a feature-
structure waiting for a singular form). However,
with synonyms, this syntactic filtering will not
work and here is one point where additional
information source is needed to make a choice.

6. The Generator

The core of the generator is implemented by the
methods generate, generateDaughters and
upTowards:havingGenerated:, which operate
under co-routine regime.

To keep track of the potential multiple solution
in the generation process, we have implemented
a specialized object called Stringlariants
(which is a type of chart, containing all possible
sub-strings generated towards reaching the final
solution), and an appropriate method (called
variance) which adds new sub-strings and
combines (adding to the left and to the right)
partial chunks of text into larger ones.

The generation procedure is initiated by looking
up in the lexicon for the entries that could serve
as generation pivols for the input goal, that is

the entries whose sem values unify with the
semantics of the current goal. In case the
lexicon contains several such entries, all of them
will then be selected for further processing
(given that the words in the lexicon are indexed
over their sem feature, all the potential pivots
are collected during one lexicon look-up).

The unification underlyving this implementation
is a destructive one, i.e. structure modifying.
However, in order to avoid permanent data
modification (grammar and lexicon), original
data are copied before using them. This way the
algorithm could considerably be accelerated
because a lot of frequent tests and auxiliary data
siructures needed to keep the language
resources unmodified, became superfluous. As a
side -effect. this method eliminates the potential
incompleteness of the generation algorithm (we
will address this issue later). A successful
unification operation modifies the arguments as
a side-effect. The return value is a block of
assignments which, when executed, will
recreate the original arguments. This value is
useful for undoing some modifications that led
to a dead-end and for resuming the computation
from other possible decision points.

generate
| pivots result self copy
|
result := StringVariants
new.
pivots := self lexicon
withSemantics: (self at: #sem).
pivots do: [ :p |
self copy 1= self
copy.
result addAll:
(p upTowards:
self copy havingGenerated:

(StringVariants

with: ((p at:

#phon) value

asString)))].
“result

With a copy of the initial goal feature structure
and each of the potential goals, the generator
proceeds bottom-up (the method
upTowards havingGenerated:) looking for
appropriate rules that will be applicable to the
selected pivot. As in Shiber’s and van Noord’s
generators, the pivot plays the role of a semantic
head of the grammar rules, that is the daughter
of a local tree (representing one grammar rule)
whose semantics is identical (structure- sharing)
to the semantics of the top of the tree (the
mother node, or the left -part of the rule).
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The potential multiple generated texts are
collected and appropriately stored in the result

object which is returned as the output of the
generate method.

upTowards: top havingGenerated: someStringVariants

| rules result left right all

(self subsumed: top) isNil

ifFalse: [“someStringVariants]

ifTrue:
[result := StringVariants new.
rules := self grammar withHead: self.
rules do:

[:r | left := r lefts isNil
ifTrue: [StringVariants with: "' ]
ifFalse: [r lefts generateDaughters].
right := r rights isNil
ifTrue: [StringVariants with: "' ]
ifFalse: [r rights generateDaughters].

all :=

variance: right.

(left wvariance: someStringVariants)

result addAll: (r mother upTowards: top

havingGenerated: all)
1 1.
~“result.
GenerateDaughters

"generates the text corresponding to a list of daughters"

self value == #NIL

ifTrue: [”StringVariants with:

']

ifFalse: ["(((self at: #first) generate)

variance:

((self at: #rest)

When the top- goal subsumes the input pivot -
(self subsumed: top) -, the recursion in generation
is stopped (the recursion takes place via
generateDaughters method). This condition test
reaches at the top of the generation tree
(obtaining a string accepted by the grammar),
and also checks whether all the information
provided in the initial goal has been used. The
method simply returns the text that has been
assembled by previous computations.

The indexing over the grammar rules allows the
identification of the rules having a head-
daughter that unifies with the input pivot. The
mechanism used in our implementation is
similar to the /ink (precompiled) predicate used
in van Noord’s BUG! generator.

So, if the top goal has not been reached, the
relevant rules for the current goal are collected,
and each of them (rules = self grammar withHead:
self) is recursively applied for generating an
alternative segment of text (rules do:[r |...]).
With the text corresponding to the head -node
generated at the previous step, the generate
method is sent to each of the left -daughters
(processed in the order given by the precedence
order specified in the rule) getting the text(s)
that is (are) to be inserted to the left of the
text(s) generated for the head -node (left := r lefts
isNil ifTrue:[StringVariants with: "] ifFalse: [r lefis

generateDaughters))].

generateDaughters|). The same , the generator
computes the text(s) to be inserted to the right
of the generated(s) from the head- node (right =
r rights isNil if True:[String Variants with: "] ifFalse:[r
rights generateDaughters]). Finally, the texts
corresponding to the left -daughters, the head-
daughter and the right -daughter are assembled
(all = (left variance: someStringVariants) variance:
right) and the mother of the currently processed
rule is set as a new pivot in the bottom-up
proceed of the algorithm (r mother upTowards: top
havingGenerated: all). The methods left, right
and mother are selectors which, if sent to a
rule, return the list of feature-structures for the
left -daughters, the list of feature-structures for
the right- daughters and respectively the
feature-structure of the mother -node pertaining
to the rule concerned. If the rule has no lefi- or
right- daughters, the corresponding segment of
text would be the empty string.

As any head-driven algorithm, the present one
has no problem with the left -recursiveness of
the grammar rules. Given that this is argued at
length elsewhere [van Noord,1988], [Shieber,
1988] we will not enter into more details,

For building generation goals, one should send
the system object Generator the constructor
method withValues with an appropriate feature
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structure (that is the one which contains at least the sem attribute).

The basic assumption here is that whatever goal is given as input to the generator, there will be at least
one lexical entry the semantics of which would unify with the semantics of the input. Otherwise, the
generation procedure will produce an empty string. Seemingly, this condition raises the same problems as
Shieber’s grammar monotonicity requirement, but in fact this is not true. The insertion of words which
are stipulated cither lexically (as in the case of particles or idioms), or syntactically (for instance, the
expletive expressions) is always possible given that the stipulation is done in terms of sem restrictions.
For instance, the lexical entry > will be selected when the generator is invoked with a goal such as
die(john) and the idiom kick the bucker is eventually generated. The non-idiomatic kick will not be
considered since its semantics (reln kick kicker @1 kickee @2) does not unify with the initial goal.

(phon kicked
syn (head (vp vform (finite tns past)
subcat (first (syn (head (n agr {(per a3 num sg))) sem @1)
rest (first (syn (head (n def definite agr (per
a3 num sg)))
sem bucket))
rest NIL))))
sem (reln die defunct @1)).

Thus the sequence below will vield two sentence-strings licenced by the grammar and the lexicon:

A := Generator withValues: #(syn (head (s)
sem (reln die
defunct john)}).
A generate. = StringVariants(‘John died’ ‘John kicked the bucket’)

From among the problematic issues connected
with the head-driven generation algorithm, both
van Noord and Shieber discussed Wedekind’s
notions of coherence and completeness of a
generator [Wedekind, 1988 1. In its original
form, Shieber’s algorithm is both incoherent
(that is overgenerating for under-specified input
-unbound variables- with a non-terminating
threat) and incomplete (that is, undergenerating
by leaving out some arguments of the input
logic). A later version of Shieber’s generator
adopted van Noord’s solution from BUGI:
using numbervars to freeze the unbound
variables in the input logical form (for ensuring
coherence) and checking the subsumption of the
final generated feature structure(s) by the initial
input goal (for ensuring completeness).

The specific solutions adopted in BUGL were
imposed mainly by the implementation of the
underlying PROLOG unification.

The under-specification of sem structures does
not create special problems in our generator
because, as we said before, the sem structures
are interpreted in a predicate-like manner,
However, one could produce an underspecified
sem structure which will not be filtered out by
the lexical look-up, namely proving a nil
(unbound) value for one or more features:

a) sem (reln love lover john lovee nil)

As these features are supposed to be referenced
in the syn structure of the selected entries, the
applicable grammar rules will eventually need

2 A much simpler solution for generating the idiomatic expression would have been the use of a simplified entry as the one given
below but we wanted to exemplify the proper lexical insertion, that is one that would pick up whatever stipulated insertion from the

lexicon:
(phon kicked_the_ bucket
syn (head (vp vform (finite tns past)

subcat (first (syn (head (n agr {(per a3 num sg))) sem @l)rest NIL))

sem (reln die defunct @1)).
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these unbound features and, if they fail, in the
end the whole generation will fail. So they will
always produce an empty string.

There might be, however, a real need to under-
specify a certain feature. In such a case the
generator allows a “don’t care” value for any
attribute ( ) which is recorded in the lexicon
and has an empty string as the value for the
pron feature. Therefore, if the intended text is
*“John loves”, then the proper sem structure of
the generation top goal should be in sem (reln
love lover john lovee _).

Let us assume that the dictionary contains the
following entries:

Entryl:
{(phon loves
syn (head (v vform (finite tns
prs)
subcat (first (syn (head
(n agr (per a3 num sqg)))
sem @1)
rest (first (syn
{head (np)) sem @2)
rest NIL)))
sem (reln love lover @1 lovee
@2)).
Entry2:
(phon falls in love
syn (head (vp vform (finite tns
prs))
subcat (first (syn (head
(np agr (per a3 num sg)))
sem @1)
rest NIL))
sem (reln love lover @1)).

With these lexical entries, asking the generator
to produce a text from the following semantic
specification (sem love lover john) only Entry2
will be retrieved from the lexicon (due to a
strong unification used by the lexical look-up).
Based on it, the generator will produce the
string “John falls in love™.

On the other hand, if the generation will start
with the semantic specification (sem love lover
Jjohn lovee ) the actual generator will produce
not the acceptable sentence “John falls in love™
(as one might expect) but the questionable one
*“John loves™.

Completeness is the property of the algorithm
which makes sure that all the information
specified in the input is included in the
generated output, that is when fed with a
semantic representation like sem (reln eat eater
John food pie), the generator should not provide
as a result John eats, but John eats a pie. This

property of the algorithm is achieved by the
samec copying and final  subsumption
mechanism as in BUGL.

The proper generation is launched by
constructing a generation object (sending the
system object Generator the constructor method
withValues with a
FeatureStructure object as parameter)
and sending to it the method generate.

Generator
(head (s))

withValues: #{syn

sem
(reln love

lover i

lovee julie)) generate.

> 4 I love Julie.
Generator withvalues: #(syn
(head (s))
sem
(reln love
lover julie
lovee NIL)) generate.
e 4 Julie falls in love.

7. Conclusions and Further
Work

The generator presented so far has been tested
on very small grammar and lexicon. More
realistic language resources are needed for a full
evaluation of the generator (both linguistic and
computational) performance. Strategic aspects
of generation, that is how and out of what a sem
feature structure as required by the generator is
constructed, have not been discussed. Also, we
have not discussed the generation of multi-
sentence natural text, planning the text
structuring. A general solution to the strategic
generation, if possible, requires further
investigation, but it is very likely that a useful
one (especially from a computational
performance point of view) considers the client-
orientation of the surface generator, at least its
knowledge representation and domain -specific
knowledge.
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