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Abstract: Queueing models of re-entrant lines with semi-
infinite buffer capacities are developed under buffer priority
scheduling policies. On the assumption of Poisson arrival
and exponential processing times, the models can be
formulated as a standard form of Quasi-birth-and-
death(QBD) type. Then non-linear matrix equations can be
used to solve the static performances of the systems. Not
only can numerical results be worked out but also a
preferable method for comparison between disciplines is
available for such systems.
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1. Introduction

Re-entrant lines are common in semi-conductor
manufacturing. During the cycle time parts of
them may visit more than once the same
machine, thus making it difficult to analyse the
static performances. Only queueing networks
which are of product form such as Jackson
network could be explicitly solved so far. Most
re-entrant lines are not of product form [1].

Scheduling policies and stability of the svstem
have been extensively studied by many
rescarchers. L.M. Wein listed twelve disciplines
in [2]. Comparison among disciplines is mainly
through simulations as we lack quantitative
theories.

Both linear programming (LP) and fluid model
methods have been used in studying the
conditions of stability. By LP method one can
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work out upper and lower bound of a certain
performance measure [3]. Fluid model is an
asymptotic model of systems in the long-run.
On the basis of the law of Large Numbers and
the Central Limit theory, diffusion between
fluid model and the original traffic equations
can be approximated Dai and Chen[4,5] have
developed sufficient and necessary conditions
of stabilitv for two-station networks by means
of the concept of virtual station and push start.
Regretfully mneither of them can lead to
numerical results for performances.

The matrix-geometric solution mecthod was
proposed by M.F.Neuts latc 70°s [6]. This
method has been extensively studied and widely
used in communication networks.
manufacturing systems and computer networks,
We introduce it to re-entrant lines to show that
it is preferable in solving complex Markovian
networks.

Buffer capacities arc assumed to be infinite in
[3.4,5]. In practice they are always finite. We
assume that all but the first buffer capacities are
finite.

We also assume that the network is Markovian.
So it can be modelled as QBD type under
Poisson arrival rate and exponential processing
times. The numerical results of static
performances can be worked out through such
models. The results also provide a criterion of
comparison between scheduling disciplines.

The paper is organized as follows: re-entrant
queueing network is illustrated in Section 2.
QBD type model under random scheduling (RS)
is developed in Section 3 together with the
condition of stability. In Section 4 we model the
network under last buffer first serve (LBFS)
policy and analyse its stability. A comparison
between RS and LBFS is made in Section 5.
Final conclusions are drawn in Section 6.
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2. Nlustration of the Network

Consider the system shown in Figure 1. Its
behaviour under clear-a-fraction policy has been
studied by Kumar [7]. Deterministic form under
FIFQ is studied by Whitt[8]. A dvnamic model
under static buffer priority queueing disciplines
is studied by Dai [5]. The conditions of stability
are discussed. No numerical results of static
performances are available so far.
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-

——

Figure 1

There are two stations in Figure 1 named A,
and M, . The route of parts is
M oMo—M>—M,. The successive buffers
visited are by, b, b3, by respectively. Parts arrive
at b, as Poisson distribution of rate A
Processing times in each buffer are of
exponential distribution of rate z. Let ¢; denote
the capacity of b;.

Set of states is denoted by J={(ij.m,n), i<c,
Jj<e,, m<es, n<cq}. i, j, m, n are numbers of parts
in by, by, bs, by at the sample time. Spacc of
states  is  (0,1,....c)X(0,1,....c2)X(0,1,....c3)
X(0,1,....cq).

States are listed in a lexicographical order.

Let  pajmmymay denote the transition
probability from state (iy,m;n) to state
(i’j.m'n"). P is the matrix of transition
probability of the system. X=[ Xo.Xi,..X.... ]
stands for the static invariant probability vector
of P.

The systems are scheduled according to a buffer
priority policy. It can be seen from Figure 1 that
both parts in #; and b, need be processed in M,
while only one part can be processed at a time.
Apparently resource constraints exist. Order of
processing is decided by the policy. If RS is
adopted, then both b, and b, are selected with
the probability 0.5. On the other hand, if LBFS
policy is adopted, then b, may not be processed
as long as b4 is not empty. Situation about b,
and b5 is the same as that of &, and b,.

Throughout the paper semi-infinite buffer
capacities are assumed. That is, all capacities
but ¢, are finite. Set ¢;=w, c7=c5=c~H-1.

Without any loss of generality, set 4 ;
A+ =1
i=l
This is a method of sampling a continuous time
system to obtain a discrete time system with the
same steady -state behaviour. Under the above
assumptions, transition probability of the states
is only dependent on the current state and has
nothing to do with the states before. So the
process is a Markovian one.

In the next two Sections we will discuss the
models under RS and LBFS respectively.

3. Modelling Networks Under
RS

Transition probabilitics over infinitesimal time
slot At can be derived as follows:

Piijomm. 1 jmm(A)=AAt+0(At)

When b, is empty, b, can be processed as long
as b, is not full.

Piijimo, i1 j+1,mo i=0, <1 (A =10 At+of Ar)

If neither b nor b4 is empty, then b; can be
processed with the probability 0.5.

Diigimm, 1741 mmli>0j<i1(A) =05 At+o(At)
When by is full, b3 may not be processed for the

sake of preventing blocking. So b, can be
processed.

Db mH-1), G141 me 1, HA) 50 merr1 (A1) =g At + o At)
Other transitions are similar to the above.
We can construct P as follows:

Define:

Hy
Ry 05,

03441 {1
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Ha
A% = Ha ;
L ﬂl HxH
054,
1.
2 = 05,
L H2lgm
[0 Hj
0
A= .
3 1
L 0 i, 75
0 05u,
i 0
A 3= ]
054,
L 0 HxH
[ *
u *
A04 = EF 5
= Hy * HxH
[ %
05u, *
b= 4
L 05p, * HxH

where * represents the diagonal elements of P,
keeping the sum of each line being one.

Then define:
Ay
D, = o
Al HxH
0 A%
/\12
D, =
Al
0 AH=<H
_A04
00 A%
D%y = .
0 0
Az A 4 pgon
A04
Als
iy . 7
Al3 f
0 0
i AN's A4 ——

nA'4
0
Fy LI A3 .
0 1
As Naju gy
Ala
Al3
Dy, = .
Ay
L A5 Alg HxH
and
DYy,
D, D'
4, = B
D1134
D, D" HxH
0 D,
4= .
2 D,
0 HxH
D%,
B, = D, D%
D, D34 -
AQ:/U,

I is the unit matrix of the corresponding
dimensions.

Finally we get the canonical form of QBD type:

By, A, 1
AZ Al AO

P= o H. O (1)

L ) il

P is stochastic. That is:

Aje+Aje+ Aye=e
2

Boe+A0€ =€

e is the all 1 column vector of the corresponding
dimensions.

Define

A=A +A+A; (3)
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The stability of P is largely dependent on A
First several properties of P and 4 can be given,

Property 3.1 Set of states J of the queueing
network in Figure 1 is irreducible under RS.

Proof: P is irreducible if and only if all the
states of it are communicating[9].

First we show that state (0,0,0,0) is reachable
from an arbitrary state in J.

Pligimnx0.0007 Peigmmiim0 P i moxi0my i 0myiz00)
XP1.0,0¥1.04.0)

XPi,0.0.01,0,0,00580,0,0,0(0,0,0,0)

>(0-5F4)"(_0-5P3 Y(0.5244Y"(0.5,£2Y (0523 (0.5 44
(0.500) 115 11d'

>0
So we can take (0,0.0.0) as an intermediate

state. Let us prove that the arbitrary state
(i j.m,n) can next be reached from (0,0,0,0).

P0000Xijmnr PO.000K jrmn000R i form nOO 0K mnO0)
XP (i+7+m,n,0,0)(i+7+m,0,n,0)

Pt monouiesm00m Xm0 mxmOn NP imOnkOmn
XPGij,0.m i jmmi

> (1 Y05 ) (16Y'(0.514Y"(0.516)"(0.5 14 Y
>(). ad

Property 3.2 Matrix 4 is irreducible and
stochastic.

Proof: by defining 4, we can explain it as the
transition probability matrix of the system in
Figure 2.

s W
M, M,
Figure 2

There are two stations and three buffers. Infinite
parts are assumed to be stored in M and only
through A can they reach b, . M, has two
functions. One function is 1o release parts to b,
at the mean rate of s , the other one is to

process parts in b;. When b; is not empty, M,
releases parts to b, with the probability 0.5, and
processes parts in bs with the probability 0.5. A%,
is similar to that in Figure 1. Their processing
rates are (b, [, Uy TESpECtively.

Set of states of this system is G={(j,m,n), j<c,,
m<cs;, h<cqy. We can see that every state in G

can reach (0,0,0). Assume / denotes the
transition probability.

P m, 0,007 P15,y 02K G m,007,0,09 K P 5.0,00,0,0)
>(0.543'(0.514)"(0.514Y"(0.5 Y (0.5 (0. 525
>()

And the arbitrary state (j,m,n) can be reached
from (0.0,0).

10,00 mmr>P0,0,0%m,0,00 XA, 0000,m0 XA 0. 010, 0.1K
10,0,m)0m,0,m5 1 m.0,10.mm PO )., )
>1"(0.5 ) 157(0.54)"(0.52)™(0.5 11 Y

>0

So 4 is irreducible.

Since P is stochastic, from (2) and (3) we have
Ae=e. That is, A is stochastic. O

If P is positive recurrent, the invariant
probability vector X ={X,, X1, ...Xi., ... }(X;is of
dimension of /) of P satisfies

X=X i>=0 )

where R is the minimal non-negative solution of
quadratic non-linear matrix equation

R*A, +RA, + 4, =R (5)

Theorem 3.1 If 4 is irreducible and stochastic.
it has the invariant measure 70, satisfving

nA=mn, me=1. (6)

Proof: Since A is stochastic, we have Ae=e. That
is (4-Ne=0. Then (6) has non-zero solutions
720,

It is well- known that all the states are positive
recurrent provided one state is positive recurrent
in an irreducible system. Since 720, then 7>0.0
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Corollary 3.1 [6] If 4 is irreducible and
stochastic, then irreducible P is positive
recurrent if and only if

A >nAL (M

and equation

(8)

Xo(By + RAy) = X
X, -R)le=1

has positive solutions X, where x is the
invariant measure of 4.

Theorem 3.2 If 4 is irreducible and R is
positive, then B[R]:=By+RA, is irreducible. If (/-
R) is invertible. B[R] is stochastic. If both
conditions exist, Eq (8) has a strictly positive
solution.

Proof: From their definitions, we can write 4
and B[R] as :

D105 4 Ag D,
b D' w Al Dy
A = D5
D%, Ry 1Dy Ry2 Dy
Dy D34 +Ry,D; Ry 2Dy
B[R] = s

where R; is the iXjth submatrix of R after
dividing R into HXH submatrices. If comparing
the two matrices, one can sce that: 1). Elements
under the diagonal are the same. 2). Since R;; is
nonnegative, so R;:[J; has the same sign(+ or 0)
as D,. So above the diagonal, B[R] has positive
elements no less than 4. 3). The elements on the
diagonal have the same sign.

So B[R] is irreducible if 4 and R are positive.

The second part of Theorem 3.2 can be found in
[6].

D Ny & A4 o
D, D% + a1
3

Ry 1D

Ry 1Dy

D0134 + R3,2[)1

From Theorem 3.1, when B[R] is irreducible
and stochastic, B[R] has an invariant measure
and (8) has positive solutions. a

Theorem 3.3 The queucing system in Figure 1
with semi-infinite buffer capacities is positive
recurrent under RS if and only if

(M +mo+.. 1) ¥D >0 9

Proof: Invariant measure of 4 can be written as
a=|m.m,....my|. If substituting 4, and A, in (7).
together with e =e, we get (9).

From Theorem 3.1 A is irreducible and
stochastic, so (8) has positive solution by
Theorem 3.2. The second part of Corollary 3.1
is satisfied. Then Theorem 3.3 is proved. [

Given a set of parameters, we can judge the
stability of the system by means of Theorem
3.3

Ry g 1Dy

D2 [)0134 +RH,H—1[)I_

The numerical algorithm to compute R is as
follows. You may find it in [6].

Set R g=0

Re=(AsRi, AJI-A " (10)
Stop substitution when the deviation between R,
and Ry, is less than £ (10 will be enough for

COmMmMon usage).

Invariant probabilities of P can be solved by (8)
provided P is positive recurrent. Other static
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performances of the system can be solved on
this basis.

Fortunately P is irreducible under RS. But this
is not always the case. In the next Section we
will model a system which is reducible.

4. Modelling Network Under
LBFS

Similarly to the procedure in Section 3, we can
get transition probabilities of this system under
LBFS in an infinitesimal time interval Ar.

Piijomm, it jmm(AL) =AAt+o(At)

Only when b, is empty can b; be processed.

Piimon i1 j+1,m0) i>0j<i (A= At+o(At)

When b, is full, b3 may not be processed for the
sake of preventing blocking, Nor can b, be
processed since b5 is not empty. Only b, can be
processed at this time.

PijomHAfigm -2 | m=ol A= st + 0(At)

Before constructing the transition probability
matrix, some properties of it can be given.

Property 4.1 State (0,0,0,0) can be reached
from the arbitrary state in J when the system is
under LBFS.

Property 4.2 State (i,j,m,n) cannot be reached
from (0,0,0,0) if either of the following
conditions is satisfied.

1lm>1, 2j+tmtn>H.

Proof. First we notice that the system has the
following characteristics:

C1. When n>0, b; may not be processed. That
is, it is impossible that the number of parts in b,
increases if n>0.

C2.When m>0, b, may not be processed. So it is
impossible that the number of parts in b;
increases if m>0.

From C2 we know that m may not further
increase as soon as it increases from 0 to 1. That
is, m<1 provided m=0 in the beginning,

From C1 we know that j may not increasc as
soon as n increases from O to 1, which is only

possibly companioned with m decreasing from 1
to 0. Then j+m+n may not further increase. The
maximal number of parts in b5, b3, b4 is

H-1+1=H. O

Theorem 4.1 G:= {(i,f,m,n), m<1, jtm+n<H },
which is a subset of J , is absorbing and
irreducible.

Proof: Denote G’ as a complementary set of G
inJ.

In order to prove that & is absorbing we need to
demonstrate that states in & cannot reach G’ . If
this does not hold, there will be some state ye G
which can reach ge G’ with the probability 4>0.
Since y is reachable from (0,0,0,0), then g is
also reachable from (0,0,0,0). This is a conflict
to Property 4.2. So & is absorbing,

For simplicity, we shall write ’A—B’ when B is
reachable from A in the following context.

Obviously (0,0,0,0) is reachable from the
arbitrary state ve G .

On the other hand, we have:

when m=0,
(0,0,0,0)—>(1+,0,0,0)-(/,7,0,0)—>(,n-1,1,0)—>
(0,+n-1,1,0)—(0j+n-1,0,1)—(0,4,0,n)

when m=1,
(0,0,0,0)=(ntj+1,0,0,0)—(+1,1,0,00>(+1,
n-1,1,0)—(0,+n,1,0)—(0,+n,0,1)—(0,
Jj+n-1,1,1)->(0,/+n-1,0,2)—(0,/,1,n)

So G is irreducible. d

The states of the system will converge to & with
the probability 1 regardless of the original
states. So only G needs be considered when the
static performances are concerned. Next we will
construct the transition probability matrix F
consisting only of subset G .

Define
Hy
A= 0 . ;
0 HxH
My O
A, 0 s
My lygvm
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[0 /—:)3 . 1)034
= DY D!
A o Dl @ Ayl PR S
0 H-1 H-1
L HxH D" 72 D
- 2 34 TwT
*
/\4=”4 N where
: - T=H+H+H+H-1+H-1+H-2+
L Au4 HxH

H-2+.+1=H+2H -1

where * represent non-zero diagonal elements. ) ) .
And and Ap=Al, [ is the unit matrix of the

corresponding dimensions.

D%4 = [A“ f ] . Then the transition matrix F of subset G has the
Ay A, : )
canonical form of :
Di34 - A4([1'—!+1,f[—!+1) . -, BO AO
Ay(H=-i,H=i+1) AJ(H-i,H-D) A4, A, 4,
i=1,....H-1. e 4, A 4y (I
DY = A(H H) 0
0 AHH=-D|
By is the same as A4, except for the diagonal
‘ A(H —i+1,H -i) 0 clements determined by
D' =
0 A(H—i,H-i+1) Aje+Adie+ d,e=e
Bye+ Aye=e
i=1....H-2.
Theorem 3.1 and Theorem 3.2 are also suitable
I3, o catunns of 0 i for this Section. As their Proof follows the same
2 ’ method as adopted in Section 3, it is omitted
0 0 here.
- |FHD columns  of 0 AFH+)|  Similarly we can have the following theorem.
& >
0 0 Theorem 4.2 The queueing system in Figure 1
. with semi-infinite buffer capacities is positive
=2, =1, recurrent under LBFS iff
where A{/k) represents the submatrix of the nAse>h (12)

first / lines and the first & columns of A,;.
An equivalent expression of it is

Then define
- _ M pomp > A, where
2H columns of 0 l9| e -
5
k=j2H +1)-2% 1, H(2j+1)-
o =1k =1
_ St
47 38U J B
ﬁﬁ‘ =1
L 0 T

where 4- is defined in Section 4 and x is the
invariant measure of 4 in Section 4.

Proof: Substituting the expression of 4, in (7)
leads to the result. O
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5. Examples

After constructing the transition matrices, the
system stability should be judged according to
Theorem 3.4 and Theorem 4.2. Then R should
be computed according to Eq (10). If the system
is stable, its invariant measure can be computed
by (8).

In queueing networks, the mean queue length is
significant. In this context the mean queuc
length can be evaluated as:

H-1H-1H-1
i*'T T % x
0 j=0m=0n=0

L]:

M8

i

=], om TR0 =1
ly= ¥ J*E E X x
j=0 i=0m=0n=0

where x;, is the kth eclement of X,
k=i *H*+j*{*+m*H+n. Formulas of L; and L,
are similar to L,'s.

Example 1. Set the parameters as
=== =2.5/11, A=1/11, H=4.

RS: the system is stable.

LBFS: the system is unstable.

Example 2. Set the parameters as
=== u=3/13, A=1/13, H=3. Both systems
under RS and LBFS are stable with these
parameters. And further we have:

RS: [~[3.2910,0.8154,0.7435.0.6763]

LBFS: £=[5.4860.0.8032,0.3444,0.3908].

Example 3. Under RS, set the parameters as
=1=2.6/11.2, p=pu~2.5/11.2, A=1/11.2.

When /=3, the system is unstable.

When H=4, the system is stable. The mean
queue length is

L=[8.6010,1.4158,1.3125,1.1581].

Example 4. Under LBFS, set the parameters the
same as those in Example 2.

When /=3, the system is unstable.

When H=4, the system is stable. The mean
queue length is

L[=[43.7438,1.4252,0.4032.0.5139].
Numerical results show that

1. Performances under LBFS arc lower than
those under RS. In Example 1, with the
same parameters, the system is stable under
RS but unstable under LBFS. In Example 2,
also with the same parameters. the mean
queue length under RS is less than that
under LBFS.

We conjecture that with the svstem in Figure 1
under LBFS, the capacity of b5 is equivalent to
be restricted 1o 1, so parts in b, are often
delayed. This may prolong the delay of parts.

But this is not always the case. In another
system with the route M| —oM,—M —M,. we
have shown that LBFS is better than RS. So we
can safely say that the scheduling effects of
policies also depend on the structure of the
system.

2. The system is apter to be unstable when
there are lower capacities.

In Example 3 and Example 4, the svstems are
stable when F=4, but unstable when AH=3.
These results show that the systems with
insufficient capacities are liable to be unstable.

We also conjecture that static performances get
always improved when the spectral radius of R
is smaller. To prove this, further research should
be done.

6. Concluding Remarks

In this paper, we developed queueing models of
re-entrant  lines under RS and LBFS
respectively. Conditions of stability have been
given and an algorithm for static performances
was derived.

It is for the first time in the study of re-entrant
lines that numerical results of performances can
be explicitly worked out. This demonstrates the
effectiveness of non-linear matrix cquation
theory in solving complex stochastic networks.

Also numerical results show that the scheduling
effects of policies largely depend on the
structure of the system. Static performances
have something to do with the capacities of
buffers and the arrival rate together with the
processing rates. Further results necd a more
elaborate consideration. This method will
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certainly highlight the control of various
complex networks.
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