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1. Introduction

Data stream mining in medical applications such 
as those related to the COVID-19 pandemic 
is an interesting topic of research nowadays. 
COVID-19 was first reported at the end of 2019 
in Wuhan (Hebei province, China). It has triggered 
a serious change in global health systems. Also, it 
has affected various people causing serious health 
crises around the world (El-Shafeiy et al., 2020).

Data streams are ordered sequences of items 
that arrive in time order. In many applications 
of information systems, the volume of data may 
be massive and unbounded. Most researchers in 
recent times focus on mining frequent patterns 
from data streams. Data mining algorithms over 
data streams show a trade-off between processing 
time and accuracy (Borah & Nath, 2017). 

Data stream mining is one of the very attractive 
research areas, which is gaining a lot of importance 
in various application domains. It links two areas 
of research, i.e., data mining and data stream 
(Khine & Win, 2020). 

The common algorithms for the data mining process 
cannot be used directly for data stream mining because 
data streams have the following characteristics: 

	- Data stream is a massive and unlimited 
sequence of data that is continuously 
generated at a rapid rate;

	- Memory utilization for the data stream 
mining process should be restricted, although 
new data items are continuously generated in 
a data stream;

	- The newly generated data must be processed 
in less than a fixed duration to produce an 
updated data analysis result, to be used 
immediately on demand (Shin et al., 2014).

Frequent pattern mining is one of the main 
research topics in the data stream mining due 
to the higher memory requirements and huge 
computational costs. It has wide applications in 
real-world domains such as the medical field, 
monitoring of patient routines, environmental and 
weather data, business intelligence management, 
weblogs, and web page clickstreams (Nasreen et 
al., 2014; Djenouri et al., 2018). 

The current compact representations of Frequent 
Patterns (FP) are the Closed Frequent Pattern 
abbreviated as CFP and Maximal Frequent 
Pattern abbreviated as MFP, which can be 
utilized in streaming data (Reddy & Govardhn, 
2017). The MFP assures a more efficient pattern 
of compression with additional compact forms 
in comparison with the CFP representation (Cai 
et al., 2017). It is a more effective method for 
enhancing time and space consumption over data 
streams (Qu et al., 2013; Cai et al., 2020). 
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Different types of window models have been 
proposed in the literature. Frequent pattern 
mining from the data stream using window 
models (Borah & Nath, 2017) are shown in Figure 
1. The type of window model is determined by 
the characteristics of the data streams. In most 
real-world applications, frequent pattern mining 
algorithms in data stream prefer to deploy their 
mining process based on either the damped 
window model or the sliding window model (Qu 
et al., 2013; Zhang et al., 2019).

Figure 1. Data stream window models (Borah & 
Nath, 2017)

This paper approaches the issue of mining 
correlated maximal frequent patterns. The task is 
to discover all the correlated maximal frequent 
patterns from the data stream. This is achieved 
by using one of the interestingness measures 
called the bond measure. The bond verifies the 
importance of the association between items in 
the same pattern.

First, this paper proposes a Compressed Maximal 
Frequent Pattern based on Damped Window 
over a data stream, which is abbreviated as the 
(CMFP-DW) approach. The proposed CMFP-DW 
approach uses data stream mining techniques to 
generate maximal correlated frequent patterns 
from the data stream. It mainly relies on the 
extraction of maximal frequent patterns, which 
speeds up the generation process, especially 
in the data stream. The resulting maximal 
frequent patterns generated through the proposed 
approach are correlated, which aims to enhance 
their accuracy in comparison with the previous 
Compressible-prefix tree (CP-tree) algorithm 
(Shin et al., 2014). The bond measure is one of the 
interestingness data mining association measures. 
This measure can be utilized in stream data mining 
because it investigates the correlation between 
frequent pattern items. The aim of employing 
the bond measure is to ensure that the respective 

items are correlated (Fournier-Viger et al., 2020; 
Fournier-Viger et al., 2016). 

Secondly, the aim of this paper is to enhance 
memory usage. There is a considerable need to 
efficiently manage the limited internal memory 
space in order to store, delete or update unbounded 
incoming data streams. Experimental results 
performed on the COVID-19 dataset confirm 
the efficiency and correctness of the proposed 
approach against the CP-tree algorithm (Shin et 
al., 2014). The generated patterns are exploited 
in many real-world applications, which require 
reliable, accurate frequent patterns. According 
to the COVID-19 dataset, the generated frequent 
patterns are being exploited in order to detect the 
COVID-19 cases across the world.

The remainder of this paper is structured as follows. 
Section 2 reviews the related works. Section 3 
introduces the proposed CMFP-DW approach for 
generating correlated maximal frequent patterns. 
Section 4 discusses the experimental study and 
results for the selected COVID-19 dataset. Finally, 
the conclusions and possible future directions are 
presented in section 5.

2. Related Work

Data stream mining has turned out to be an active 
area of research interest for database researchers 
over the last few years. Little research has 
been done on enhancing semantic meaning and 
accuracy of generating frequent patterns from the 
data stream. 

The frequent pattern mining methods proposed 
in traditional data mining do not fit properly in 
stream data (Zhang et al., 2019). Many traditional 
data mining methods scan databases multiple 
times to mine frequent patterns, for example 
the Apriori algorithm, FP-Growth algorithm, 
and others (Reddy & Govardhn, 2017). Apriori 
algorithm scans the transactional database 
multiple times. FP-Growth algorithm utilizes a 
compacted FP-tree structure. Both algorithms 
require a high memory consumption and more 
than one scan of  the transactional database, which 
is not suitable for data stream mining (Schlegel et 
al., 2011). In a paper survey (Ramírez-Gallego et 
al., 2017), the authors summarize the contributions 
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of pre-processing techniques to data streams. It 
also refers to both existing algorithms and open 
challenges related to data streams. Frequent 
pattern mining approaches and challenges have 
also been discussed by Borah & Nath (2018). 
Their paper discusses diverse challenges in 
streaming data when dealing with dynamic or 
incremental datasets.

Several interestingness measures have been 
proposed by the literature on statistics and data 
mining for evaluating relations between items. 
That is important in recent research on association 
or correlation in pattern mining (Wu et al., 2010). 

One of the most important research topics of 
data mining is to obtain dependable results for 
generating interest patterns from data. Various 
interestingness measures exist in pattern mining, 
such as Support, Confidence, All-Confidence, 
Cosine, lift, F-Measure, bond, etc. (Saraswathi 
& Nagadeepa, 2018), (Somyanonthanakul & 
Theeramunkong, 2020). It is very important to 
select appropriate measures of interestingness 
according to their role in data mining applications 
(Sharma et al., 2020), specifically for generating 
frequent patterns from data streaming. Those 
generated patterns are used in the various decision-
making processes to achieve more reliable results 
(Afriyie et al., 2020; Kuznetsov & Makhalova, 
2018). Bond is one of the most interestingness  
measures with regard to data mining (Fournier-
Viger et al., 2016; Fournier-Viger et al., 2020). It 
can be utilized in stream data mining because it 
investigates the correlation between items in the 
same pattern.

Research in mining patterns from streaming data 
categorizes them according to three window types: 
landmark-window-based mining, sliding-window-
based mining, and damped-window-based mining 
(Ghatage, 2015; SiddaReddy et al., 2014).

2.1 Landmark Window Model-based 
Streaming Approaches

A proposed algorithm called lossy counting is 
exploited for discovering frequent patterns from 
streaming data. The algorithm requires a higher 
amount of time and a large memory space (Manku 
& Motwani, 2012). The identification of frequent 
patterns from uncertain data stream mining using 

the landmark window is discussed by (Leung et 
al., 2013). The landmark window model may 
prove to be ineffective, as frequent patterns are 
highly time sensitive.

2.2 Sliding Window Model-based 
Streaming Approaches

The proposed Moment algorithm is employed 
for mining closed frequent patterns, but it works 
with scanning the dataset multiple times (Chi 
et al., 2004). In the work of Lee et al. (2014), 
the authors proposed an algorithm for mining 
Weighted Maximal Frequent Patterns (WMFPs) 
over data streams. This algorithm applies weights 
to the mining process to reflect recent information 
over the data stream. The major limitation of this 
algorithm is the amount of time necessary for 
discovering frequent patterns.

2.3 Damped Window Model-based 
Streaming Approaches 

estDec is the proposed method for data stream 
mining to adaptively find recent frequent 
patterns across the online data stream (Chang 
& Lee, 2003). In the work of Shin et al. (2014), 
the authors proposed CP-tree for maintaining a 
compressed prefix tree structure in order to find 
maximal frequent patterns from streaming data. 
The major limitations of the CP-tree are still the 
accuracy of frequent patterns generated and the 
memory space usage.

2.4 Tilted Time Window Model-based 
Streaming Approaches

FP-stream is an incremental algorithm for data 
stream mining. This algorithm maintains the tree 
data structure in order to represent and discover 
frequent patterns of the data stream. Several 
experiments have been performed to prove the 
effectiveness of this algorithm. The drawback of 
this algorithm is the high processing time (Borah 
& Nath, 2017). 

Finally, it can be concluded that existing methods 
do not guarantee that the discovered frequent 
patterns from streaming data are reliable with 
regard to the problem of semantic meaning and 
correlation between items in the dataset. The 
previous methods employed are not effective in 
generating frequent patterns from critical data such 
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as the COVID-19 dataset in the medical healthcare 
domain. Also, memory and processing time are 
critical challenges for current data stream mining 
algorithms. In this paper, the bond measure is a 
type of interestingness-based data mining measure 
of association that is utilized for dealing with 
streaming data, since a frequent pattern having a 
high bond is considered not just frequent, but also 
contains items that often co-occur.

3. The Proposed CMFP-DW 
Approach

The proposed Compressed Maximal Frequent 
Pattern is based on Damped Window over a data 
stream, which is abbreviated as the (CMFP-DW) 
approach. Given a data stream, the proposed 
approach generates correlated maximal frequent 
patterns from the data stream. The CMFP-DW 
approach follows the basic structure of the CP-
tree algorithm (Shin et al., 2014). The main 
steps for generating correlated maximal frequent 
patterns from the data stream are indicated in the 
flowchart diagram in Figure 4, as well as in the 
pseudocode in Figure 5. The proposed approach 
can be described as follows:

Input: Data stream (Ds) and thresholds, i.e., 
minimum support threshold (min_supp), minimum 
significant threshold (min_sign = 0.1 * min_supp), 
minimum merge threshold (min_merge), merge 
gap threshold called delta (ծ), d (decay rate), and 
minimum bond threshold (min_bond) are the 
inputs for the CMFP-DW approach.

Step 1: Given the set of thresholds, the total 
number of transactions in the current data stream 
(Ds) is updated by adding new ones. 

1Ds Ds= +                                            (3.1)

Step 2: Update the item count of items to the 
itemsets, and then the tree traversal method by 
restructuring nodes to lexical order of items. This 
phase determines the following:

	- Updating the decay rate (d) for each item;

	- Check items, if min_supp of item < min_sign 
threshold, then pruning it; 

	- Determine the splitting or merging method 
between itemsets based on min_supp, min_
merge, and delta (ծ) thresholds.

Step 3: The insertion of the set of items for each 
transaction is performed by updating the item 
count for each transaction. Then, add them if they 
are not stored in a tree.

Step 4: The maximal frequent patterns are 
generated using the compressed prefix tree, which 
mines the frequent patterns with one dataset scan 
as shown in Figure 2. Forced pruning is applied 
periodically to remove infrequent nodes.

Figure 2. Search space domain  
(Salem & Abdo, 2016)

Step 5: Generating interestingness-based 
correlated maximal frequent patterns, by utilizing 
one of the interestingness data mining measures 
called bond measure (Fournier-Viger et al., 2016; 
Fournier-Viger et al., 2020). The bond has a value 
in the interval [0,1]. A high value means that the 
itemset is correlated. The goal of using a bond 
measure is to ensure that the items in an itemset 
are correlated. The relationship between support 
and bond measures is illustrated in the diagram 
in Figure 3.

Figure 3. The relationship between support and  
bond measures

For example, if an itemset from the COVID-19 
dataset of the form {Province/State: Hubei, 
Country/Region: Mainland China, Confirmed: 
68135} features a high bond, this usually means 
its items appear together and are confirmed for 
68135 COVID-19 cases. The itemset {Province/
State: Hubei, Country/Region: Mainland China, 
Confirmed: 68135} may appear many times in 
the dataset, but its items may not be substantially 
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related, as such, it is advisable to use the bond 
measure to check this. 

( ) ( )      Bond X Support X where X is itemset≥   (3.2)

The following is the equation of the bond 
interestingness measure: 

( )( )
( )

_
_

Conjunctive Support XBond X
Disjunctive Support X

=
  
(3.3)

Conjunctive_Support (X) = how many 
transactions contain all the items of X together.  
                                                                       (3.4)

Disjunctive_Support (X) = how many 
transactions contain at least one item from X.  
                                                                       (3.5)

Figure 4. The proposed CMFP-DW flowchart

Figure 5. The proposed CMFP-DW algorithm

4. Experimental Study

An experimental study is presented with the purpose 
of validating the proposed CMFP-DW approach 
using a real-world dataset. The performance of the 
proposed CMFP-DW approach is evaluated for 
critical applications such as medical applications. 
The analysed dataset includes a massive amount 
of daily-level information about the COVID-19 
pandemic. This information is related to the 
number of COVID-19 cases across the globe from 
January to July 2020. The characteristics of the 
COVID-19 dataset are shown in Table 1. UTC is 
the abbreviation for “Coordinated Universal Time”.

Table 1. Characteristics of the COVID-19 dataset

ID Attribute name Type Description
1 SNo Numeric Serial Number

2 Observation 
Date

Date/
Time

Observation date as 
mm/dd/yyyy

3 Province/State Text Province or State

4 Country/
Region Text Country or Region

5 Last Update Date/
Time

Last update date/time 
in UTC

6 Confirmed Numeric Cumulative number of 
confirmed cases

7 Deaths Numeric Cumulative number of 
deaths 

8 Recovered Numeric Cumulative number of 
recovered cases
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The proposed approach was utilized to generate 
correlated maximal frequent patterns from this 
dataset. These patterns become accessible to 
decision-makers in medical systems and allow 
them to take accurate decisions. 

The following factors are employed in order to 
evaluate the efficiency and accuracy of the CMFP-
DW approach: min_supp, min_sign = (0.1 * min_
supp), min_merge, ծ, d, and min_bond. For the 
proposed CMFP-DW approach, d = 1 and min_bond 
= 0.5 in all experiments. The proposed approach is 
evaluated by using several measures, including:

	- Accuracy in extracting correlated maximal 
frequent patterns;

	- Memory consumption;

	- Response time measurement.

4.1 Experimental Setting 

Experiments were conducted using a real 
COVID-19 dataset from (SRK, 2020) namely the 
Novel Coronavirus 2019 Dataset. This dataset 
includes around daily information on the number 
of COVID-19 cases worldwide from January 
to July 2020 provided by the World Health 
Organization. The COVID-19 dataset described 
has a size of 65535 and it includes 8 columns. 

The implementation of the proposed approach 
used Java (JDK1.8) programming. The application 
was tested on a device of the type Intel(R) Core 
(TM) i7-8550u CPU @ 1.80 GHz 1.99 GHz. Also, 
the proposed approach runs in the main memory, 
it requires 8.00 GB RAM and can run on the 
Windows 10 operating system. Each experiment 
that was conducted has been repeated for at least 
five times, and the average is reported here. 

4.2 Experimental Results

This subsection of the experimental study presents 
and analyzes the results obtained by the proposed 
approach. Also, the performance and efficiency 
of the CMFP-DW approach are compared 
to that of the CP-tree and estDec algorithms 
(Chang & Lee, 2003; Shin et al., 2014)it is very 
important to confine the memory usage of a data 
mining process. This paper proposes a CP-tree 
(Compressible-prefix tree with regard to mining 
correlated maximal frequent patterns from the 
COVID-19 dataset. 

Experiment 1  

The objective of this experiment is to evaluate 
the accuracy of generating correlated maximal 
frequent patterns. It also aims to measure memory 
space usage. The values of accuracy and memory 
space usage for frequent patterns generated by the 
proposed CMFP-DW approach are compared with 
those obtained for the CP-tree algorithm (Shin et 
al., 2014) over the COVID-19 dataset. The setting 
for experiment 1 is indicated in Table 2.

Table 2. The setting for Experiment 1

Setting Min_supp Min_sign Min_merge Delta
S1 0.01 0.001 0.01 0.01
S2 0.02 0.002 0.02 0.02
S3 0.03 0.003 0.03 0.03
S4 0.04 0.004 0.04 0.02
S5 0.05 0.005 0.05 0.01

Experiment 1-a: Accuracy of generating 
correlated maximal frequent patterns

This experiment measures the accuracy of 
generating accurate and dependable maximal 
correlated frequent patterns. As it is shown in 
Figure 6, the total number of generated frequent 
patterns is indicated on the y-axis in case of 
changing threshold values such as min_supp, 
min_sign (0.1 * min_supp), min_merge, and delta 
(ծ) on the x-axis. It can be noted that the proposed 
approach always generates accurate correlated 
maximal frequent patterns compared to the CP-
tree algorithm (Shin et al., 2014). 

Figure 6.  The total number of  
frequent patterns generated
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For example, in Figure 6, at min_supp = 0.01 
and min_sign = (0.1*min_supp), the number of 
patterns generated by the CP-tree algorithm is 
174, in comparison with the number of patterns 
generated by the proposed CMFP-DW approach, 
that is 31.

Experiment 1-b: Memory space usage for  
generated patterns

In this experiment, the results from Figure 7 show 
the memory space usage of patterns generated by 
the proposed CMFP-DW approach in comparison 
with the CP-tree algorithm (Shin et al., 2014)it 
is very important to confine the memory usage 
of a data mining process. This paper proposes 
a CP-tree (Compressible-prefix tree. The x-axis 
includes multi-threshold values such as min_supp, 
min_sign (0.1*min_supp), min_merge, and delta 
(ծ). The y-axis represents the amount of memory 
measured in megabytes (MB). This experiment 
shows that the use of the CMFP-DW approach 
for generating frequent patterns brings about an 
improvement in the memory space usage, as it can 
be seen in Figure 7.

Figure 7. Space complexity measurement with 
regard to the COVID-19 dataset

Experiment 2: Efficiency in extracting 
correlated maximal frequent patterns

The efficiency of the proposed CMFP-DW 
approach in extracting correlated maximal 
frequent patterns is analyzed in comparison 
with that of the CP-tree algorithm (Shin et al., 
2014). The results for the selected dataset are 
shown in Figure 8. In case of changing the value 
of the min_supp threshold, Figure 8 shows the 

efficiency of the proposed CMFP-DW approach 
in reducing the number of correlated maximal 
frequent patterns generated in comparison with 
the CP-tree algorithm (Shin et al., 2014). As it 
is shown in Figure 8, different values are set 
for the min_supp threshold and the values of 
other parameters are set as follows: min_sign 
= (0.1 * min_supp), min_merge = 0.05, delta 
(ծ) = 0.01, and bond = 0.5. It can be noted that 
when increasing the min_supp threshold, the 
number of correlated maximal frequent patterns 
is decreasing.

Figure 8. Correlated maximal frequent patterns

Experiment 3: Number of nodes generated 
for different values of the ծ threshold

This experiment determines the total number of 
generated nodes by changing the values of the 
delta (ծ) threshold, as it is illustrated in Figure 9. 

Figure 9. The number of nodes generated with 
different values of the delta (ծ) threshold
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The delta (ծ) ∈ (0,1) and the values ​​of other 
parameters are set as follows: min_supp = 0.03, 
min_sign = (0.1*min_supp), min_merge = 0.03, 
and bond = 0.5. Based on the results obtained, 
it can be concluded that by increasing the 
value of delta (ծ), more nodes can be merged. 
It is recommended to the value of the delta (ծ) 
threshold in order to enhance the accuracy of 
generated correlated frequent patterns. As it is 
shown, when delta (ծ) = 0.01, the total number 
of nodes amounts to 2744 nodes. By increasing 
the value of the min_merge threshold, more nodes 
can be merged. For example, if delta (ծ) = 0.7, the 
total number of nodes amounts to 2680.

Experiment 4:  Memory space usage for 
different values of the min_merge threshold

The experiment aims to measure memory usage 
for the proposed CMFP-DW approach if the 
min_merge threshold is changed, as it is shown in 
Figure 10. The values of other parameters are set 
as follows: the value of delta (ծ) and min_supp is 
fixed for 0.01, min_sign = (0.1 * min_supp), bond 
= 0.5, and min_merge threshold ∈ (0,1). As it is 
shown in Figure 10, the min_merge takes different 
values. As more nodes are merged, memory space 
usage is also reduced. When the min_merge value 
is higher, fewer nodes are merged, and the amount 
of memory usage increases. 

Figure 10. Measuring memory usage for different 
values of the min_merge threshold 

Experiment 5:  Measuring response time for 
different values of the min_merge threshold

This experiment determines the required 
processing time in the case of different min_merge 
values, as it is shown in Figure 11. The response 

time decreases as the values of the min_merge 
threshold increase. The proposed approach 
performs better because the increase of the value 
of the min_merge threshold reduces the merging 
between nodes. The min_merge ∈ (0,1) and the 
values of other parameters are set as follows: min_
supp = 0.01, min_sign = (0.1*min_supp), delta (ծ) 
= 0.01 and bond = 0.5.

Figure 11. Measuring response time for different 
values of min_merge threshold

Experiment 6:  Comparison between estDec, 
CP-Tree, and CMFP-DW 

This experiment aims to compare the proposed 
CMFP-DW and two other existing approaches, 
namely estDec (Chang & Lee, 2003), and CP-
Tree (Shin et al., 2014). The three algorithms use 
damped window model streaming. As it is shown 
in  Figure 12, the proposed approach outperforms 
the other two algorithms with regard to saving the 
memory space. 

Figure 12. Memory usage for estDec, CP-Tree and 
CMFP-DW
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Discussion of results 

Experiments with the proposed approach show that 
it always produces a smaller number of frequent 
patterns, but these patterns are more accurate. 
The generated frequent patterns are correlated 
with maximal frequent patterns. Experiments also 
show that the CMFP-DW approach outperforms 
the other two algorithms with regard to the 
space complexity of the frequent patterns that 
are generated. This reduction leads to a better 
performance with respect to memory usage and 
response time. In all experiments, the transactions 
related to the COVID-19 dataset were inserted one 
by one in the sequence of data in order to simulate 
the online data stream environment.  

5. Conclusion 

Due to time and memory constraints, some data 
preprocessing techniques are required to access 
each data element at most once. This paper 
presents a compressed maximal frequent pattern 

based on a damped window model over a data 
stream (CMFP-DW). The CMFP-DW approach 
generates correlated maximal frequent patterns 
using one of the measures of interest, called a 
bond. The CMFP-DW approach is validated and 
evaluated on a real-world COVID-19 medical 
dataset. The experimental results validate the 
efficiency of the CMFP-DW approach against 
the CP-tree algorithm. The CMFP-DW approach 
obtains good results with regard to various aspects 
such as accuracy in extracting correlated maximal 
frequent patterns, memory usage, and response 
time measurement. Finally, the aim is to propose 
an approach for mining data streams by using 
concept drift.
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