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Abstract: Boolean input systems have become important n
the eleatrical industry. These systems mainly include power
supply associated with converters and electric motors. In this
paper we present a method for controlling Beolean input
systems by using Artificial Neural Network. This method is
based on classification of system variations associated with
input  configurations. The supervised backpropagation
algorithm is used to train the petworks. The training of the
Artificial Neural Network and the control of Boolean input
systems are presented.

The design procedure of control systeins is implemented on a
non-imear system. These results are applied to an electrical
system composed of a synchronous motor and its power
converter. The control of this system is performed on its speed.
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1. Introduction

Recently there has been increasing interest in
the development of efficient control strategies
to improve dvnamic behavior of power
converters. The behavior of such svstems is
controlled by the switching ON and OFF of
components such as thyristors or transistors.
Among classical controllers which have been
widely used there is the well-known P.W.M
(Pulsc Width Modulation) approach. This
technique consists of controlling the process,
using mean input values [1]. [2], [3]. The
regulation is often achieved by a P.I1D
controller, showing good performances when
disturbances are verv small. On the contrary,
when disturbances are large, the results of
regulation become unsatisfactory. In practice.
this method appears to be highly sensitive to
the variation of system parameters.

Other techniques such as the classical Sliding
Mode Control (SMC) [4]. [3]. [6] try to
optimize the system response. This technique is
characterized by discontinuous control actions
on Variable Structure Svstems (VSS) whosc
structure changes upon reaching a set of
switching surfaces. The switching instants are
determined by appropriate sliding surfaces
(switching surfaces) which are chosen to
achieve a desired dynamic response. Sliding
Mode Control for multi-input systems is used to
control electronic  converters. The most
distinctive feature of a Sliding Mode Control
system is its robustness to parametric
uncertainty and external disturbances. However
it is very difficult to choose sliding surfaces in
Multi Input Multi Output (MIMO) cases.

Artificial Neural Networks have been proved
extremely useful in pattern recognition |7} [8]
and control systems [8]]9]. In this paper we
propose an optimized neural network to control
Boolean systems. At the beginning of the paper.
a quick review pointing out the problem of
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Boolean input systems is made. We then show
how a multi-laver Neural Network is able to
control the state of a switching circuit and to
provide the control output which ensures that
the trajectory is followed in the state space.
This methodology consists of four parts. First,
we determine the initialization of the Artificial
Neural Network. Secondly data processing and
filtering, which consist of reducing noises and
disturbances. are discussed. The third part of
this method deals with the ncural network
structure and the on-line training algorithm
used to obtain a satisfactory network, which
gives the correct control to apply on the system.

The proposed method has been implemented in
simulation on a synchronous motor and its
power converter in order to drive speed.
Simulation results show a good responsc of the
converter circuit with iis load and confirm the
validity of the neural approach.

2. Boolean Systems

Consider the svstem modeled by the state
equation :

o= of (x,u) (1)
T
where X = (x, ------ xn) eM” is the state
T m
vector, and ¥ = (Ml ------ um) € {O,l} the

input vector composed of Boolean variables.

The input vector # can take any configuration
[10] among 2" different vectors Config (u)
containing Boolean values such as :

0

Between two commutations, the input ¥ is a
constant vector.
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3. Boolean _Control
Artificial Neural Networks

Using

The aim of the studv is to apply Artificial
Ncural Networks to switching systems. To this
end we use the principle formulated in
(11](12]. We give a brief summary of this
approach here. The goal is to determinc the
sequence of Config (u) for vector u for
which the state vector reaches a desired state,
denoted as X ;.

Let us consider a vectorg representing a
position error vector defined as follows :

E=X,;-X, (2)

where X, is the current position of the plant in

the hyperplane associated with the state space
and x, is the target. We calculate vector

{V} associated with (x)I for each

1

configuration Config, (u) associated with the

current position X

()= f (xp,Conﬁgj (u))
(3)

When a configuration Config, (1) is applied

to the system during a time [ . the current state
evolves in a particular direction. Among the

direction set V,. we choose vector V; such
that the error position is reduced. Consequently

the configuration Config,(u) can be deduced.

0 1 1 1 I
0 1 0 0 1
0 0 1 0 1
1 0 0 1 1
m+1lm+2m+3 i am

This procedure is illustrated by the example

shown in Figure 1. where X cR*and

uelol}’.
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Figure 1. Control in the State Space

In that case. vector V4 is the best direction

toward the desired state. V, corresponds to the

1
control  Config,(u) = . applied to the
process.

The disadvantage of this method is that of the
knowledge of the model that is required to
determine vector V,. We aim to solve this
problem bv using Artificial Neural Networks,
exploiting their ability to control systems
without any explicit knowledge of their models.
The objective of the network is to find the
configuration 7 such that the current statc
converges toward the desired state. This
network is defined to establish the relationship
between the control and the direction of the
system evolution.

Structure of the Artificial Neural
Network

Artificial Neural Networks can be defined as
highly connected arrays of ncurons [8]. The
internal structure of a neuron is shown in Figure 2.

The internal activity of a single neuron
computes the weighted sum of the inputs e,

(net) and passes this sum through a non-
linear function f . according 1o :
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n
net=Y we +w,

i (4)
[ o= flner)

€

€2

Input ¢

Output ©

f= weight

€

[
Bias !

Figure 2. Neuron Model

Another term called the bias term w, 1s
associated with this sum. The function f uscd

as a non-linear function is, for example. a
sigmoid function given by :

1
f(net) = ——— (5)
f+e™

A layer is a set of elementary neurons. The
neural networks used here are basically lavers
of neurons connected in cascade. with one input
layer, onc or more hidden layers and onc output
layer. The input layer is the scnsory organ for
the Artificial Neural Networks. Each neuron in
a laver is connected to an adjacent neuron layer
with different weights. Each neuron. except for
the neurons of the input faver, receives signals
from the neurons of the previous layer.
weighted by the interconnect values between
ncurons. Conscquently the output laver
produces an output signal. The calculation of
weights is performed with the learning
algorithm, which is presented in the next
Section.
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To obtain the relationship between the different
configurations and the state cvolution. the
network needs a minimum of three lavers. The
dimension of the input layer corresponds to the
number of state variables to control. The output
laver size is defined bv the number of
configurations such that each node is associated
with one configuration. The choice of the
number of hidden layer nodes is a compromise
between efficiency and accuracy. Satisfactory
results are obtainable if the number of hidden
layer nodes is equal to the number of output
nodes. The defined network achieves a

classification of the 2" configurations. The
basic structure of a three-laver Artificial Neural
Network capable to satisfactorily perform the
Boolean control is shown in Figure 3.

Input layer

Hidden layer

wp; - the ith bias weight of the output layer.

Clearly, the matrix form of the net output is

y=E(W{F(ve+1,)) +W,) 7

with

F(NET) = lf(netl) f(netz) “e f(ne!z,,, )}T

where net, is the weighted sum of the z th
neuron, and

NET =net;y nety --- nerz,,,}r

Output layer
Weights

Figure 3. Scheme of An Artificial Neural Network

The propagation of the data is performed as
follows. For the ith neuron of the output layer,
the value y; has the following shape :

Vil = .f[z[wij.f(i‘J)'kek +“’b,1] + wb.r]]

(0)

where :

e; . kth input of the network.

vy © the interconnection weights between the
input and hidden layers.

vy, - the jth bias weight of the hidden layer.
w; : the weights between the hidden and
output layers.
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b e

Y= :2 » €= 2 ’Wz[wif]>
Yym e,

V= [vjk], W, = [Wb,;] and
V, = [vb,J].

Initialization
To initialize the network and the weights, two
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mcthods are proposed. In the case where the
training has alrcady been done once, the
weights of the network are to be initialized as
the latest used weights. Otherwise initial
weights are chosen as small random numbers.

Secondly, the initialization step is necessary to
acquire a set of measures to obtain initial
training data which are defined in the next
Section. This initialization is realized by

applving each configuration Cr)rgﬁg,, (u) for

= {1---2"‘} to the process r limes, in order

1o ensure that each configuration is used at least
once. The acquisition of the measures is done at

a sampling time Tc. Consequently this

initialization lasts 2"7T,. The network

learning and plant control can only start after
completing this preliminary step.

Data Processing

This Section presents the data processing which
consists in defining suitable input-output
training data of the neural network. Since the
aim of the network is to provide the
relationship between the state variations and
the configurations applicd to the plant, the
input training data are defined as the state
variations.

For each configuration 7 a slate variation vector
1s determined as follows :

(ax,) W =(x,) O -x, (-1 @

where (Ax p)‘(k) denotes the state variation
!

at instant & when the configuration i is applied
at the instant & — 1.

However, this computation is sensitive to the
measurement noise. To reduce the noise
influence, a data filtering is necessary. The
easiest and most efficient method is to perform
for each configuration i the average on r
variation vectors. For convenience, we denote

{Ax p} ~ as the set of the r latest state variation
!

vectors of the configuration i, and the

associated average as {Ax 1p} . This procedure
1

is performed on-line. Hence, at each sampling
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time a new state vector variation (Axp) (k) is
1

acquired. The set {A\f p}_ and its average have
?
then to be updated.

An illustration of this processing is provided
below, in which we considerx, eR?,

ue {0,]}2 and r = 3.

(o),

Figure 4. State Variation for Each
Configuration 7 = {1.--4}

The results of the average {AY 5 } are the input
T

data of the network. At this point. we have also
to determine output data, which are used to
train the neural network. By definition, the
network is such that its ith output is associated
with the configuration /. Therefore the desired

output vector, also called target vector ( yd ),_ is

choscn as follows :

d : .
: y; =1for j=i,
(yd), =| | with {77 _
S y; =0 otherwise

©)

Finally we deduce pairs of input-output data for
each configuration i. For convenience, we

o b b )
(A N e
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define a set S of samples given by !
Training Algorithm

The training problem consists to adjust online
the weights using the set of data S The
learning  strategy is based on  the
backpropagation algorithm [8]. The principle
is to minimize for every input-output pair
denoted (e,y”f) of the set S, the quadratic

criterion J defined as :

|
‘] = Eannann

where the error vector €, is given by the

difference between the desired output yd and
the neural network output ) obtained for the

input €.

Enn :.}"d 7-})

The algorithm used to minimize this criterion
is based on the well-known gradient descent
method, which gives for a weight w the

following adaptation law :
A o
W=
Mow

with 1 the learning gain which influences the
weights convergence speed.

Applving this algorithm to the network
weights, we obtain the gradient vectors denoted
&, and &, :

of \net ) ) 1ely
lfr(”grz): f( z _ €

onet (1 4 ore: )2
(1
* denotes the HADAMAR product.
Thus, the adaptation laws are :
( > -+ > r T
W;Jew = Wa.'d’ T ns w [}4 (Le L L’b )]
I/’/.b,m!w = b.old + nba W (12)

K Vora +n5v[€]T

new

\Iflb.new = Vb,m’d + nbal'

The learning gain for the bias weights isn,
with 1, <M. so that their variations are not

too large with respect to the weight variations
of Wand V.

At each sampling time k, the weight matrices
W, W, V and J, are updated with the
adaptation laws (10) and (12) for all the input -
output pairs of set S. even if only one pair

[{Axp}ij(}’d),) of S is modified at the kth

instant. The interest of using all the training
data is to accelerate weight adaptation and to
improve the learning rate of convergence. In
addition. the advantage is to rcinforce the
learning of the network and the classification of
the 2™ configurations. So the disappearance or
the reduction of one class is going to be
avoided. With this training strategy. the
presented network can be successfully used to
control switching systems.

Initialization and Learning Procedure

(10) step 1 - fork=0.
with
(NET) (net,)  f'(net,) ( ) i If learning h be
F'ANET :[ "\net "\net, "\net , ] - earning has never been
4 )/ } 4 = performed, then initialize weights

the derivative of F(NET) . where f ’(netz)
is the derivative of f* with respect to net; :
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randomly. Otherwise load the
previous weights.

- Measure xp(k) .

- Set i=1 and apply Config, ()
during the sampling time T..
step 2 fork=1to 2"r-1.
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- Measure Xx p(k) and compute the

variation (Ax p), (k).

- Update the average mi, and
set S with the new input-output
i fae ], 0))
-Set i =kmod2” +1 and apply
Config, (u) .

step 3 - for k= r2"

- Measure xp('k) and computc the

variation (A\c P) (k).
- Update the average {Ax p}.. and

set .S with the new input-output

paie( {ar,} () )

- Update the network weights using
the updating equations (10) and (12)
for the 2™ training pairs of set S.

- Go to the control procedure to

determine the control Config, (u) .

Control Algorithm

This Section presents the control law, whose
aim is to reduce the error between the desired
and the actual state of the system, by finding
out the right configuration to apply. As
previously established, the neural network is
defined to provide the relation between cvery
configuration and the system state variations.
Consequently, the learned neural network
performs the classification of the 27
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configurations depending on the input vector e.
Definition : Given an » input vector e, it
belongs to the class denoted €, if y; is the

component of maximum value of the output
vector y.

ecC, if y >y Vizj
with  y=FW(F(re+7,))+ )

W
WV
Max S,
Y
Yo

Figure 5. Determination of the ith Class

An example of the classification performed by a
necural network with two inputs and four classes
is given below !

e

G ¢

Figure 6. Neural Network Classification

i=1{1--4}



This classification is used to choose the
configuration which best reduces the tracking
error. which is written as follows :

E=X4—X, (13)

where x, is the desired state and x, the process
state.

By then applying this vector £ to the network
input, we obtain an output vector y whose
component of maximum value gives the class of
£ . Knowing this class., we can deduce the
matching configuration and the associated
control vector.

Control Procedure

step 1 . Compute the position error €

step 2 : Compute the network output v
with € as input.

step 3: Determine the maximal
element v; of y to deduce the right class / to
choose.

step 4: Select the control vector
Config, (u)

step 5 . Apply the control vector to the
switching system during the sampling time T..

4. Application to A Synchronous
Motor

Presentation

The application has been performed in order to
evaluate the performance of the proposed
Boolean control algorithm. The system used to
obtain the simulation results is composed of a

SNS NS\
0 o

54\55\55\

Figure 7. Electric Scheme of Inverter-
Svnchronous Motor
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synchronous machine and a power converter
(Figure 7). The power converter is constituted
of six switching transistors (S| Sz, S3, Si, Ss, Ss)
and supplied by a continuous voltage £, The
synchronous motor design comprises 3 wires to
the stator and 3 wires to the rotor.

In this approach of the problem of motor
control. a mathematical model of the system is
required to simulate its behavior. By taking the
statoric currents, the angle and the velocity as
state variables the mathematical model of the
svstem [13] is given by :

pe

di, R ¢ L

. _—L1a+ 7 w sin(6) + LH“

di, R ¢ 1
-:ﬁw:_zzﬁ—Ta)cos(G)+zuﬁ

qo _

7 =0

do [ 9y I~

Z = —7(o+ _,)_(1‘5 COS(B) = Slﬂ(@)) = 7

(14

lq .i, are the equivalent statoric currents after

the reduction of the model. 6 represents the
rotor angle relative to a statoric fixed reference
frame. @ is the velocity of the synchronous
machine. ¢ + Tepresents rotoric flux amplitude.

u,and u, are the voliages applied to the

stator, These voltages are determincd by
Boolean values such as :

The different items #, for i =1,2---6 are the
Boolean associated with the six transistors of
switches (Si. S, ....... Se). #, =0 if the i®
transistor S; is in the OFF state and ¥, = 1if

it is in the ON state. For electrical reasons, they
are linked by the relation :

u, +u,,=1fori=123

Studies in Informatics and Control, Vol. 8. No. 2. June 1999




_[.
In all that follows u:[u, i, 713] is
considered as the input vector of the system.

The other parameters are defined as :
R : Statoric resistance
L : Statoric inductance

E, : Voltage applied to the power
converter

. J: Friction and inertia of the rotor
C, : Opposing torque

Qur aim is to control the synchronous machine
in order to obtain a desired velocity @ , [14].
The tuning of the welocity © of the

synchronous machine is performed by using a
non-linear velocity equation.

== et
(15)

To control the system to the desired angular
speed @, we can show that it is sufficient to

control the statoric currents, and to provide
them as two waveform sinusoidal reference

Reference
Currents

PI

currents defined as in Eq 16 .

(i ref =i, sin(B)

igref =i, cos(B) (16)

By substituting these reference currents into Eq
(15). we find :

dew f
—_— et gL T ]7
daJ Y . i

it can clearly be deduced from this equation

that the velocity regulation depends on the

ampiitude i, of the reference currents. For

example. for a constant desired speed
doy

(® =0, and —— = 0), the amplitude i, is :

ct

o

i, = d%—m d%—a (18)

The scheme proposed for speed control is
shown in Figure 8. The motor speed regulation
is simply achieved with a feedforward action
combined with a well-known proportional-
integral (P1) controller. The interest of the
feedforward is to improve the dynamic control
performance. This compensator will then
enable that  satisfactory performances are

E,
y J
Artificial
Neural E Inverter
Network k!

pil

System

Figure 8. Controller Block Diagram
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reached for this application. The gains of the PI
are chosen such that the response is fast and
with a low overshooting for the nominal
conditions. With this controller to reduce the
error between the reference signal © , and the

process output @ , the control law of the
current i, is expressed by :

- _ S ; 3 o
==\« K —w)+— - —
Io p wq+ Koy -o) T. j(wd w)dt |+ Py

v ig
(19)

For the application concerned. the PI controller
gives satisfactory results with the gains chosen
as follows :

K=5and 7;=2.

The reference currents i ref and igref of

statoric wires are generated by the relationships
(16) and (19). previously described.

The phase currents i,. is and i, are measured
and reduced in two components of current I

and 7, of an equivalent two-phase machinc.

These components are compared to the
reference currents imref and iBl‘ef . The

outputs of these comparators are the input
controls € of the neural network, and the

currents i, and 7 are the inputs for the

learning of this network. The control process is
now constituted by two regulation sub-systems.
one for the speed control. and the other for
tuning the currents.

The main objective of this work is that the
system tracks a trajectory in the state space.
The desired trajectory is imposed here by the
current references i ref and igref . This

objective is achieved by using the artificial
neural network, previously described.

Simulation Results

The MATLAB-SIMULINK simulation software
has been used to study the response of the
electrical system. The complete drive was
simulated in C. modeling the real time
dvnamics with an 100ps time step. The

equations of the complete drive have been

116

resolved by the fifth Runge-Kutta order method
for the numerical integration. The three-phase
inverter has been simulated considering ideal
switches and the synchronous machine has
been simulated by the state equation (14) with
the following parameters :

R:2Q2
L:200 mH
Eo:380V

f :008N.s
J:0.02kg.m2
Cr:0.8N.m
g 1 Wb

The structure of the neural network used is a 2-
8-8 structure (two inputs. ¢ight neurons in the
hidden laver, and eight neurons in the output
laver). The sampling time of the ncural network
is 0.2 ms, which corresponds to a 5 khz
switching frequency. This sampling period is
chosen according to the dvnamics of the system
and the frequency limitation of the components.

Due to the inverter structure (Figure 7), the
motor behavior for configurations | and 8 is the
same, which means that data of classes 1 and 8
overlap. In general. classes that overlap or
surround each other cannot be separated
Consequently classes 1 and 8 have to be
considered as being identical. To overcome this

problem. target vectors (yd)1 and (yd) g arc

chosen as follows:

d
W
with y¢ = yd =1

0
L}’:

(20)

This new definition of target vectors does not
influence the neural control algorithm since
configurations 1 and 8 are equivalent with
respect (o the motor drive.

The neural network is trained by the previously
presented lcarning algorithm, and with the
above target vectors. The learning rates T and

M, are respectively 0.1 and 0.01. which
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ensures both a fast and

adaptation.

stable  weight

We have also to take into account the measure
noise effect which cannot be neglected in power
electronics. Indeed. measures provided by
typical sensors are inherently affected by noisc,
which is generally assumed to be white. Their
magnitudes for the current sensor. the position
sensor and the speed sensor are respectively
supposed to be equal to 0.1 A, 0.005 rad and
(.05 rad/s. To reduce their effect. we use the
filtering method defined in the Data Processing
Section with the coefficient ~=10.

To illustrate the learning procedure. the time
required for the network to perform a correct
classification of the 2" configurations is
discussed. Under the previously defined
simulation conditions. the weights evolve from
random initial weights to satisfactory weights
in less than 0.4 s. So, in this example. about
2,000 complete iterations are necessary. when
performing the learning for the first time. This
stage occurs ouly once since the following
network initializations are done with saved
weights. Therefore. as shown in Figure 9. the

learning procedure based on the
backpropagation algorithm. and the control
derived from the network vicld good results.

After this preliminary learning. the neural
network and the overall controller are ready to
control currents and the motor spced. Figures
10 and 11 show the actual and the desired
currents obtained for a speed reference ramp
increasing from O up to 40 rad/s in 2 seconds.

In order to provide a quantitative evaluation of
the performance and accuracy of the proposed
scheme. we calculate the criterion defined as
the mean of the absolute magnitude of errors
between actual and desired values, Despite the
noisc mecasurements and the Boolean switches,
currents will converge towards the reference
currents precisely. The mean absolute errors for
i, and I, are respectively about 0.12 A and

o

0.13 A. Such an accurate rcgulation of these
currents is absolutely necessary to obtain a good
speed regulation. We further examine the
ability of the proposed controller to track a
specific desired speed reference. The results are
shown in Figure 12.

Actual and reference currents i,

4 T T T T T
Reference current iyref

2 —

0 .
) Actual current ¢, i
-4 | 1 1 i 1

0 0.2 0.4 0.6 0.8 1 .2
Actual and reference currents j
4 L] . T N T T !
Reference current iyref

2 -

0 .
5 Actual current iy d
“4 i 1 A L Il

0 0.2 0.4 0.6 0.8 1 e
time (sec)

Figure 9. Actual and Reference Currents for the First Learning
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Reference current i,

5 il T T T L] T T T T
0
-5 1 I 1 L 1 1 1 I 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (sec)
Actual current iy
5 T ] T T T T ) T T
0
_5 1 i 1 1} i 1 '} ] 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (sec)
Reference current j
5 T T T ¥ T T T ] T
or o
-5 1 1 1 L A 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (sec)
Actual current jg
5 T T T T I T =1 T T

time (sec)

Figure 10. Actual and Reference Currents for A Ramp Input
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Actual and reference currents j, and § in state space
T T T .

3 1

Figure 11. Actual and Reference Currents in State Space for A Ramp Input

90
w (rad/sec)

BO

70

60

S—

-

i / \

so0f
/ N

40 7

30 / 1

20 /

10 1
o

-10 —
(] 4 2 3 4 B & 7 8 8 10

time (sec)

Figure 12. Actual and Reference Speed

The desired speed ©, is followed with a

maximum absolute error lower than 1.1 rad/s.
The mean absolute error over the simulation
interval is 0.51 rad/s. However, between the 4™
and the 7" seconds (® 4 = 80 rad/s). the mean

absolute error is only about .05 rad/s. It is thus
possible to verify on the speed tracking being
efficient and accurate,

The network analysis is achieved by mapping
classes with respect to the input variables e. In
the center of Figure 13, we notice that classes 1
and 8 overlap as explained before. The other 6
classes are well separated and, as shown in
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Figure 13. Neural Classification

Figure 14. the class boundaries are clearly
sharp. Indeed the network outputs y; vary
swiftly between the low level 0 and the high
level 1 of activation.

These results exhibit the ability of the network
to perform a good classification of the 2"
configurations. The Boolean control law based
on this network therefore provides high and
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consistent performance.

Natwork output y

Figure 14. Maximum Network OQutputs

S. Conclusion

In this paper a method of control using
Artificial Neural Network is proposed for
systems with Boolean inputs. An appropriate
neural network structure with an adequatc
initialization method and cfficient data
processing have been developed to deal with the
problem of controlling nonlinear switching
systems.

The initialization step and the data filtering
give. despite the measurement noise, a set of
satisfactory training data . These procedures are
necessary to improve the nctwork learning,
This latter is based on the backpropagation
algorithm, which is a relatively low cost
computing method. and so. it is ecasy to
implement in real time. This learning
algorithm is applied on-line, at each sampling
time. to the complete training data set. The
obtained advantage is an increase in the weight
convergence rate and the reinforcement of the
classification. Finally, this classification is used
to deduce the Boolean control law.

The effectiveness of this approach is confirmed
by simulation results obtained with a
synchronous motor as application system. The
dominance of the neural network is to control
the system without exact knowledge of it
Online adaptation considerably improves the
robustness of the system with respect to
parametric changes. In conclusion. the
proposed artificial neural network shows high
performance and good control accuracy for
switching systems.
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