A Practical Approach for Integrating Cognitive
Modelling Techniques into the Development Process

Costin Pribeanu

National Institute for Research and Development in Informatics

8-10 Averescu Avenue,

71316 Bucharest

ROMANIA

e-mail: pribeanu@u3.iciro

Abstract. The multi-disciplinary nature of HCI broadens the
scope of software engineering in order to face the user
oriented design issues. This paper aims to present a theoretical
framework for integrating cognitive modelling tedmiques into
the development process. Based on a simple example the
paper demonstrates how traditional task analysis can be
detailed up to the cognitive analysis of the user performance
and leaming with a reasonable specification effort.

Keywords. human-computer interaction, task analysis,
cognitive modelling techniques

Dr. Costin Pribeanu graduated in Economic Informatics
from the Academy of Economic Studies in Bucharest in 1982
and took his Ph.D. degree in 1997 from the same Academy.
He is author of a number of published papers and technical
reports in the area of computer graphics. human-computer
interaction and GIS.

1. Introduction

In the last decade as a result of joint research
projects in psychology, ergonomics. human factors
and software engineering, there emerged a new
field of investigation- human-computer interaction
(HCD). Its aim was the design of user interfaces
based on cognitive ergonomics principles and the
modelling of users and of tasks they are delegating
to computer.

Despite the proliferation of cognitive models
and their associated analysis techniques there
are still few cases of their being used in real-
life projects. Carroll (1991) explained this
situation as the effect of a “schismatic relation”
between research in the base science and
technology of user interfaces development.
Haan, Veer & Vliet (1991) have tried to
identify the usability problems of modelling
techniques themselves. Nielsen (1994)
identified an “intimidation barrier” raised by
the complexity of the HCI field which
discouraged developers in using others but
traditional methods for the design and
evaluation of user interfaces.

More recent approaches draw on developing
task analysis techniques like GroupWare Task
Analysis [Veer. Lenting and Bergevoet, 1996]
and supporting tools like Euterpe [Welie, Veer
and Eli¢éns, 1998a] which both originate from
HCI and cthnography. Although these methods
show a better integration into the software life-

Studies in Informatics and Control, Vol. 8, No. 2, June 1999

cycle it seems they lose the evaluative power of
cognitive models as to the might-be difficulties of
using or learning how to operate an interface.

The purpose of this paper is to offer a theoretical
framework and make a practical approach that
could help the integration of the existing cognitive
modelling techniques into the development
process. The paper focuses on task analysis and on
the idea that in an iterative development process
predictions on user performance and learning can
count as evaluation criteria.

The mula - disciplinarity of HCI requires an
overall perspective on the interaction process.
That is why the next Section is intended as a
contribution to a theoretical framework for
HCI. which addresses associated disciplines
and highlights typical activitics such as task
analysis, cognitive modelling and evaluation.

As Monk and Gilbert (1995) pointed out, a
crucial problem for an effective integration of
human-computer interaction into the software
life cycle is that of linking requirements to the
implementation through a useful and usable
specification. Section 3 proposes a more
detailed framework. to integrate two types of
coguitive modelling techmiques into the
development process. The first type enables the
cognitive analysis of user performance and
shows how analytical evaluation based on
cognitive modelling can be used as a stopping
criterion in task decomposition whilst the
second enables the evaluation of how easy it is
to learn an interaction method.

Using cognitive analysis in real-life projects is also
a question of practice. Section 4 presents a case
study for task analysis. The example refers a
public administration system but the situation is
illustrative to many other systems. Based on a
hypothesis of inadequate wuser performance.
Sections 5 and 6 make a cognitive analysis for the
estimation of execution time and ease of leamning.
Although simple, this practical approach
demonstrates how cognitive modelling techniques
are actually inserted into the development process
with a reasonable specification human effort.

131

2. A Theoretical Framework for
HCI

Human-computer interaction is an inter-
disciplinary area of research and design
practice. Not only have constitutive disciplines
such as psychology. crgonomics. human
factors and software engineering contributed (o
its devclopment. but also did so other
disciplines such as linguistics. sociology,
cthnography. management. industrial design
and typography. Such a theoretical background
obviously provides a large amount of
knowledge the user interface designers need
understand, thus making their work much more
complex.

Working in an inter-disciplinary field requires a
common understanding in order to take advantage
of the expertise. In order to communicate, any
“intimidation barrier” should disappear. Therefore
a common understanding of some basic concepts
and a general framework for their integration
should exist. This means to know where and how
different models and techniques are to be inserted
into the software life -cycle and how this inclusion
could help the development process.

A well-known approach in building an inter-
disciplinary framework for HCI is the task-artifact
cycle [Carroll, Kellog and Rosson, 1991]. This
framework draws on the idea that design is an
iterative process which goes on mainly based on
the emulation of previous work. People using an
artifact are re-defining the task which the artifact
has been created for, which in turn yields new
requirements. Hence the necessity for designing
a new artifact.

The need for integrating inter-disciplinary
concepts into the development process points to
the idea of a software life-cvcle. The framework
presented in Figure 1 is based on the task-
artifact cycle as a paradigm for the evolution of
cognitive artifacts but also highlights typical
activities for HCI- like task analysis, interaction
scenarios design or dialogue specification.

In order to develop human computer interfaces a
task analysis has to bc carried on. Task
requirements are being refined through cognitive
analysis that relies on some cognitive model of the
user. The cognitive models simulate different
interaction scenarios that are optimised with
respect to ergonomic criteria. Based on the
interaction scenarios, the dialogue specification is
possible. The implemented artifact will re-shape
the user task, and so further evaluation in the
context may reveal new requirements and the cycle

132

will restart.

This framework also highlights a third layer: the
disciplines that contribute to the foundation of
human computer interface design. In developing
user interfaces, general ergonomic requirements
should be as much satisfied as cognitive
ergonomic issues should be solved. The cognitive
ergonomics based on psychological constraints
will thus broaden the scope of task analysis to
mental processes involved in using a cognitive
artifact.

As pointed out in [Prnibeanu, 1997], the
management plays a mediator for specific
knowledge, depending on the task domain and the
general knowledge required for delegating a task
to the computer. Recent approaches to task
analysis, say GroupWare Task Analysis |[Veer,
Lenting and Bergevoet, 1996] [Welie, Veer and
Eligns, 1998b] implicitly admit that the way
people are performing their tasks is closely related
to the organisational structure they are in.

3. A More Detailed Framework

Previous to any implementation activity, more
dialogue options should be considered in order to
devclop the interaction scenarios. The development of
interaction scenarios is done within an evaluation loop
bv designers who plan the optimisation of task
delegation to the computer using various dialogue
design options. Therefore, the general framework for
interaction shown in Figure 1 should be scen as an
iterative development process where the relationship
between task analysis and cognitive modelling is
essential.

Task analvsis is a specific concern for HCI of
which goal is to creale cognitive artifacts for
supporting the wuser tasks. It roughly
corresponds to system analysis in software
engineering, save for the target system which is
human interacting with computers. The
difference lies in the cognitive nature of the
artifact computer [Norman, 1991] that has the
capability of displaying and manipulating
information in order to support a representation
function. In such an instance the study of
humans performing a task should also include
the cognitive processes and knowledge they
need to carry on that particular task.

A cognitive model is an abstract device that simulates
user behaviour [Howes, 1995]. In this

Studies in Informatics and Control, Vol. 8, No. 2, June 1999

HUMAN-COMPUTER INTERACTION

TASK DOMAIN

coghitive modeiiing desig

task analysis

mteraction scenatios
dialogue structure

n
l implermentation

SOFTWARE ENGINEERING

task artifact
]
MANAGEMENT user «— - ERGONOMICS
evaluation Lse -

PSYCHOLOGY

Figure 1. Theoretical Framework for HCI

respect. the model is assigned a goal, an initial
state and a final state, producing a sequence of
operators that describe the predicted behaviour.
The representation is further used in order to
make different types of predictions. Given the
prediction type. Simon (1988) distinguished
two categories of models:

s performance models. aiming to describe the
behaviour of the user who performs a given
task using a computer;

e compelence models, that refer the
knowledge a user has to possess in order to
delegate his task to a computer.

The representation produced by performance
models describes the predicted behaviour of an
ideal user (who does not make errors) up to the
level of physical and mental operators. The
representation takes the form of a goal hierarchy.
For example, the GOMS model (Goals, Operators,
Methods, Sclection), elaborated by Card, Moran
and Newell (1983), describes the user knowledge
and behaviour in terms of goals to be
accomplished, operators involved, methods of
interaction applied and sclection rles for
choosing the appropriate method.

In order to evaluate usability from the point of view of
learning, an analysis of user knowledge should be
carried out. Delegating tasks to computer is another
task itself. therefore some representation of how this
could be done is needed. In order to assess learnahility,
Reisner (1981) used a BNF grammar while Pavne and
Green (1986) emploved a set grammar named TAG
(Task-Action Grammar). These competence models are
oriented towards the decomposition of tasks up to action
level and aim to predict the ease of leaming an interface
by evaluating different forms of consistency in task-action
mappings.

In order to take advantage of the evaluative
power of cognitive models, task analysis and

Studies in Informatics and Control, Vol. 8, No. 2, June 1999

cognitive modelling should enter a closer
relationship. The framework presented in Figure 2
integrates two types of cognitive modelling,
techniques into the sofiware life- cycle. This
approach views task analysis as a continuum
process that refines task specification according to
cognitive ergonomics criteria.

MANUAL
SYSTEM

Dialogue
Options

-

optimize
task
structure

task decomposm'orﬂ

performance —
el d dialogue
i options
impose _
cognitive | | @0a! higrarchy
conztraints
redesign L
existing learnability
computerised analysis
system| increase
dlslogue L i
consistency ‘fas“(action mappmg[

COMPUTERISED s 1' wa
SYSTEM ‘—[e '”“]

Figure 2. A Framework for Cognitive Task
Analysis

The first task specification in the Figure is the
result of a task decomposition. It shows how
tasks are split into sub-tasks and the sequence
of their being performed. Typical interaction
sequences are analysed in more detail through a
GOMS- like representation. This enables the
optimisation of the interaction structure with
respect 1o execution time and mental workload.
If the predicted performance is not acceptable
then either the dialogue options should be
revised or task design should be re-considered.

Detailed dialogue design needs the mapping of

133

tasks onto actions the user has to perform in
order to operate the interface. A useful
representation is a task-action grammar like
BNF or TAG that, in order to improve
learnability, enforces the dialogue consistency.

This methodological framework is
useful for both the analvsis of existing
systems and the design of a new
system. As the next Scctions will show.

e add a new client record to the alphabetic
index:

e create a new land book;

e open the land book;

delete a parcel from the land book;

0. Do parcel
splitting

Plan 0 Do 1-2-3

to refine the representation in order to

&% i s 1. Prepare 2. Perform 3. Update
get a deeper insight into the user’s task land book for splitting registers
becomes possible with a reasonable operation operation
specification human effort. —_— T
Pian 2: Do 1. Foreach new parce!
Do 2-3. Do 4-EXIT
4. Task Analysis 1. Delete 2. Add new 3.Erter 4. Close
old parcel parcel to idertifier and land book
land book attributtes

Dix et al (1993) distinguished threc main
approaches in task analysis, each one

focussing differently: task decomposition,
knowledge-based techniques and entity-relation based
analysis. A well -known analysis technique is HTA
(Hierarchical Task Analysis). developed by Annett
and Duncan (1967). based on the hierarchical
decomposition of a task into small pieces
corresponding to intermediate goals.

As Sheperd (1995) pointed out, HTA is still a
valid approach to task analysis. The framework
described in the previous Section, seems 10
have HTA as the best candidate for task
decomposition for at least three reasons:

e it is a simple and flexible method that does
not depend on a methodological context:

e it cnables the representation of a task
hierarchy that could further be detailed as
a goal hierarchy using an GOMS- like
analvsis;

e although HTA is task -oriented and
sometimes user -oriented, it still
maintains a strong relationship with
traditional software engineering.

In order to demonstrate how the framework
could actually be used, an example from a
public administration system will be taken.
Typical tasks there are legal registration of land
parcels, the splitting or merging of parcels
belonging to the same landowner, transferring
the ownership of a parcel from one person 10
another. In order to perform the tasks other
sub-tasks should be considered according to the
intermediate goals identified:

e search for the client in the
alphabetic register and note the
land book numbsr (if any);

134

Figure 3. Task 0: Do Parcel Splitting

¢ add a new parcel to the land book:
o update the land book register.
e update the alphabetical owners’ register.

For example, splitting of parcels into two or more
plots is done according to the diagrammatic HTA
representation depicted in Figure 3.

An intermediate task identification is an
iterative process. In order to better realise the
user task, an overview of the activity is needed.
Note that some tasks may be independent tasks
in a given work context while intermediate
tasks in another. This aspect is important for
providing a consistent structure of tasks within
the task domain. A tabular representation using
HTA for the same task is given below. The
representation consists of small task units
performed in order to achieve a goal and of

plans that specify the conditions under which

these tasks are to be executed.
0. Do parcel splitting
Plan 0: Do 1-2-3
1. Prepare the land book for
operation
2. Perform splitting operation
3. Update registers
1 Open the land book
Plan 1: Do {-2-3-EXIT
1. Open the territorial register
2. Identify the land book number
3. Open the land book
2 Perform splitting operation
Plan 2: Do 1. For each new parcel do 2-
3. Do 4-EXIT
1. Delete old parcel
2. Add a new parcel to the land book

Studies in Informatics and Control, Vol. 8, No. 2, June 1999

Bl

3. Enter identifier and attributes
4. Close the land book

3 Update registers

Plan 3: Do 1-2-3-EXIT
1. Update the land book register
2. Update owners register
3. Close the territorial register

Such a representation is device independent and it
is advisable to be so for at least the first level goals.
This proved useful [Knowles. 1991] since it
rendered the analvsis portable for both manual and
computerised perforinance. As Knowles points out
there are device independent and device dependent
knowledge. each piece of knowledge being a
source of cognitive complexity for the user. Given
the importance of the two types of tasks in real -
life systems . the usability of the whole work
system has to be considered.

A minute decomposition is done according to
the P x C rule [Annett and Duncan, 1967} that
estimates the efficiency of proceeding on with
an analysis based on the probabilitv of a non-
satisfactory performance and the cost of a non-
satisfactory performance. Further
decomposition of tasks requiring extra effort of
analysis, is only done provided there are
reasons for anticipating current performance as
non -acceptable. Typical reason is an error-
prone situation that could lead to scrious
consequences such as: inconsistent interaction
methods, problems with learning the task
delegation or execution time constraints. To
save time, a cost-benefit estimation is useful in
all these cases.

5. Prediction of the Execution
Time

This Section further decomposes the task
discussed in the previous one. Although using
HTA makes it easy to further decomposc a task,
no underlying cognitive architecture is available to
provide some measuring techniques of actual
performance such as the estimation of execution
time. So, an GOMS- like analysis technique will
be used for a more detailed analysis. Then the
execution time will be predicted based on the
metrics provided by KLM [Card, Moran and
Newell, 1983].

A related GOMS cognitive analysis technique is
NGOMSL (Natural GOMS Language) developed
by Kieras (1994). In this technique the goals
hierarchy is mapped onto a method hierarchy that
associates a method with each goal that
corresponds to a “natural” structuring of the task.

Studies in Informatics and Control, Vol. & No. 2, June 1999

Using NGOMSL makes possible a more
structured and detailed representation of user
behaviour and some analvtical evaluation of the
memory workload.

The task of splitting a parcel can be done many
ways, according to dialoguc options and the
strategy chosen by the wuser. This task
description in Figure 3 is based on manual
registration. ITn a computerised system, there is
no need to delete the old parcel since its data

could be changed.

Suppose that the user has four functions
available at parcel level: add a new parcel,
delete a parcel, copy a parcel and edit parcel
data. If the parcel is split into two pieces, he
can rely on either the add new function, or copy
function. In a NGOMSL notation, these
alternatives could be represented as follows.

Method for goal: Perform parcel
splitting — Add New Method
Accomplish goal: Select old parcel
Accomplish goal: Edit old parcel data
Accomplish goal: Add new parcel
Return with goal accomplished

o to ~

Method for goal: Perform parcel
splitting — Copy Method

Accomplish goal: Select old parcel
Accomplish goal: Edit old parcel data
Accomplish goal: Copv parcel

Edit new parcel data

Return with goal accomplished

ok Wt~

For each goal defined, an interaction method is
specified.
Method for goal: Select parcel

MouselMove [parcel record]
LButtonClick
Return with goal accomplished

ot~

Method for goal: Edit parcel data

MouseMove [AddNewButton]
LButtonClick

MouseMove [parcel identifier’s last
character]

LButtonClick

Keyin [/1 or /2]

Keyin [Enter]

Keyin [parcel area]

Kevin {Enter]

Return with goal accomplished

v~

SR MR

o 9

Method for goal: Add new parcel
MouseMove [AddNewButton]
LButtonClick

Keyin [placement]

Kevin [Enter]

Keyin [parcel identifier]

e S T

6. Kevin [Enter]

Keyin [parcel area]

8. Kevin [Enter]

9. Return with goal accomplished

Method for goal: Copy parcel

I. Mouselove [CopvButionf
2. LButtonCiick
3. Reiurn with goal accompiished

KLM (Keystroke Level Model) is a lower- level
model elaborated by the same authors as GOMS's.
It provides the predicted execution times for
different tvpes of operators. Thus an NGOMSL
representation can be analysed from the point of
view of overall execution time for a given
interaction scenario and makes it possible to
optimise the task. In this respect. KLM could be
seen as a lower -level GOMS model in which
GOMS operators like MOUSE-MOVE are further
decomposed into physical and cognitive actions.

sclect parcel = PB{parcel record]
edit parcel data =
PB|ButtonEdit] PBlidentifier
field] HK|/1 or /2}
K{[Enter]
Klarea]K|Enter]|H[mousc]
add new parcel = PB[ButtonAddNew]
HK [placementi]K{Enter]K{identifier[K[Enter|
K|area]K|Enter]H|mouse]
copv parcel =
PB[ButtonCopy|

The operator H(home) represents hand switching
between mouse and kevboard. P(position) and
B(button) means positioning of mouse and
pressing a mouse button. M (mental) is the
operator for mental preparation of an operation
(for example looking for a device on the display or
searching in a displayed list for a given item) and
K(Key) for pressing a key. For a more complete
list of operators and associated execution LmEs.
see [Card. Moran and Newell, 1983].

In NGOMSL each statement is assumed to be a
production rule for a cognitive architecture of the
user and is assigned 0.03 sec in the execution time
estimation. This takes into account the decision
time spent for loading a method or returning to the
calling one and applies for such control statements
as “Method for goal”. “Accomplish goal” or
“Return with goal accomplished” in the
representation above. Therefore. the execution
time is calculated as the sum of the statement time
and the operator time.

T Method AddNew = 5%(0.05 =0.25 sec.

A Method Copy = 6%0.05= 0.3 sec.

T add new parcel = 10%0.05+ 1.1+0.2+
0.4+14*0.28 +0.4 = 6.72 sec.

136

T leet parcet = #F0.05+1.1+0.2= 1.5
seC.

K adit parcel data™ | (F0.05+
11402+ 1. 1+0.2+0.4+ 9*%0.28+0 4 = 6.32 sec.

T copyparcel = 4¥0.05+1.1+0.2= 1.5 sec.

The user typed text was assumed to be |
character length for the placement area and 3
characters for the idenufier area. After
modifving the old parcel. the new parcel differs
only with respect to the last character (a
conventional notation that states that the new
parcels arc identified as Oldld/1 and Oldld/2).

Total TIME nethod AddNew =
0.25+6.72+1.5+6.52 = 14.99 sec.

Total TIMe wpethod Copy =
0.3+1.546.52+1.5+6.52= 16.34 sec.

This means that the first method is faster and
should be adopted. The execution time
variation is due to the user's need for selecting
the record in advance of editing it. However. if
the execution time is not satisfactory. adding
new design options, say a specialised button to
perform this function, could be thought of.

6. Estimation of Ease of Learning

The models that describe and analyse the
knowledge a user needs to translate a task into
physical actions, employ a formal grammar in
order to assess difficulties in learning to operate
the interface. The basic idea of these cognitive
models is 1o look for different forms of
consistency proved to improve the learnability
of the interface. Non-uniform (i.e. inconsistent)
interfaces require additional rules in order to
handle exceptions or special cases and make
the interface more difficult to learn.

TAG [Payne and Green. 1986] relies on simple
tasks defined as task units that do not include
iterations or other control flow elements. The
representation contains wo main parts: a
dictionary of simple tasks and the rule schemas.
Rules are based on features that capture the
regularities of the task grammar. In the tasks
under consideration an example of such
regularity is the positioning of the mouse to a
target object like combo box button, scroll
button or owner name in the list.

In order to evaluate the learnability of each
alternative, this Section re-analyses the two
methods in the task context. For the first
alternative (Add New Method), the representation
1s as follows:

Studies in Informatics and Control, Vol. 8, No. 2, June 1999

Dictionary of simple tasks
SelectFunction [object = AddNew
Button]

SelectFunction [object = Edit Button)]
SelectRecord[record= given record|
EnterText{text = given text|
ModifvText|[position = given char
position. text = given (ext|

Rule schemas

1. SelectFunction [object] — move-
on|object] + Click

2. SelectRecord|record] — move-on

[record] + Click

EnterText{text] — key-injtext] + key-

in[Enter]

4. ModifyText{position. text] — move-
on[target char] + Click +
EnterText|text]

3. *Move-onfobject= AddNew Button]
— MouseMove| AddNew Button]|

6. *Move-on|object= Edit Button| —
MouseMove|Edit Button]

7. *Move-on{object= record] —
MouseMove|record]

8. *Movec-onjobject= target char] —
MouseMove|target char)

5]

A comparison with the NGOMSL representation
reveals that saving in the execution time between
entering data for a new parcel and changing the
existing data is partialiy due to the fact that only the
last two characters of the parcel identifier need be
entered However. this requires extra learning effort.
as represented by the rule schema 4 (Modify text).

The second method is slightly different.

Dictionary of simple tasks
SelectFunction [object = Edit Button]
SelectFunction [object = Copy Button]
SelectRecord[record= given record]
EnterText[text = given text]
ModifyText[position = given char
position, text = given text|

Rule schemas

1. SelectFunction [object] — move-
onfobject] + Click

2. SelectRecord|record] — move-on
[record] + Click

3. EnterText|text] — key-inftext] + key-
i|Enter|

4. ModifvText[position, text] — move-

onftarget char] + Click +

EnterText|text]

*Move-on|object= AddNew Button]

—> MouseMove[AddNew Button]

6. *Move-onfobject= Copy Button] —
MouseMove[Edit Button]

7. *Move-on[object= parcel record] —
MouseMove[parcel record]

h

Studies in Informatics and Control, Vel. 8, No. 2, June 1999

8. *Move-on|object= target char] —
MouseMove|target char|

In order to assess learnability. Pavne and Green
recommend counting first the number of simplc
task rules schemas. and then, if the comparison
reveals the same number, the total number of
rules including re-write rules should be
counted. Re-writing rules as 5, 6. 7 and 8 in the
representation above denote “action variables”
[Payne and Green, 1986] that are derived from
the current goal. These rules are included in the
grammar in order to describe the lexical
elements of the grammar although they share
the same syntactic form.

Anyway. this example shows no difference in
learnability for the two methods. In both cases
the user needs to know how to select a function.
a given record. a given field and how to enter
data. How many times a simple given task will
actually be performed is of no interest for
learnability. This means that for the task
concerned only the execution time can be used
in making the optimum design decision.

7. Conclusion

The paper presented a theoretical framework
for HCI that highlighted the multi-disciplinary
nature of HCI and showed the way how typical
activities such as task analysis and cognitive
modelling got inserted into the software life-
cycle of the interaction process design. This
framework was intended to give practitioners
an overall perspective of the HCI.

The relationship between task analysis and
cognitive modelling was investigated. as a key
concept in developing more practical user
interfaces and a framework that integrated
cognitive modelling into the task analysis
process, was proposed. Two types of cognitive
models were included in this framework as
complementary devices for task analysis:
performance models enabling the estimation of
exccution time. and competence models
enabling the evaluation of learnability.

A simple case studv demonstrated how a task
hierarchy resulting from an HTA representation
could be mapped onto a goal hierarchy using
NGOMSL and how the resulted specification
could be evaluated for the execution time. Then
the goal hierarchy was mapped onto simple tasks
the user had to learn in order to delegate his task
to the computer and the task — action grammar
was analysed in order to assess learnability.

137

Although task analysis carried on within this
methodological framework requires an extra
specification, it is a reasonable design effort
rewarded by an improvement in the final
product usability. Not only will the wuser
interface be casier to learn and faster to operate.
but also will the design options and the user
recommendations be documented on an
analytical cvaluation basis.

REFERENCES

ANNETT, J. and DUNCAN, K., Task Analysis
and Training Design. OCCUPATIONAL
PSYCHOLOGY. 41, 1967, pp.211-227.

CARD, S. K.. MORAN.T. P. and NEWELL, A,
The Psychology of Human-Computer
Interaction, LAWRENCE ERLBAUM
ASSOCIATES, Hillsdale. NJ, USA 1983,

CARROLL. JM.. Introduction:The Kittle-
House Manifesto. in J. M. Carroll (Ed)
Designing Interaction - Psvchology at the Human-
Computer Interface. CAMBRIDGE
UNIVERSITY PRESS, 1991, pp.1-14.

CARROLL, JM., KELLOG. W.A. and ROSSON,
N.B. The Task - Artifact Cycle, in JM.Carroll
(Ed) Designing Interaction - Psvchology at the
Human-Computer Interface, CAMBRIDGE
UNIVERSITY PRESS., 1991, pp.74-102.

DIX, A.. FINLAY, J.. ABOWD, G. and BEALE.
R., Human-Computer Interaction, PRENTICE
HALL, 1993.

DE HAAN, G., VAN DER VEER, GC. and VAN
VLIET, J. C., Formal Modelling Techniques in HCL
ACTAPSYCHOLOGICA. 78. 1991, pp. 27-67.

HOWES, A., An Introduction to Cognitive
Modelling in Human-computer Interaction. in
A Monk and N.Gilbert (Eds.) Perspectives on HCI
— Diverse Approaches, ACADEMIC PRESS,
London, 1995, pp.97-120.

KIERAS, D. A Guide to GOMS Task Analysis,
Technical Report, University of Michigan, USA, 1994

KNOWLES, C.. Can CCT Produce A Measure of
System Usability?. in D. M. Jones and R. Winder
(Eds.), People and Computers IV, CAMBRIDGE
UNIVERSITY PRESS, 1988, pp. 291-307.

MONK., A. and GILBERT. N.., Introduction,
in AMonk and N.Gilbert (Eds.) Perspectives

138

on HCl - Diverse Approaches, ACADEMIC
PRESS. London. 1993, pp.5-17.

NIELSEN, J., Guerrilla HCI: Using Discount
Usability Engineering To Penetrate the
Intimidation Barrier, in R. G. Bias and
D. J. Mayhew (Eds.), Cost-Justifying Usability,
ACADEMIC PRESS, Boston, MA, USA, 1994,

NORMAN, D. A., Cognitive Artifacts. in J. M.
Carroll (Ed.) Designing Interaction - Psychology
at the Human-Computer Interface, CAMBRIDGE
UNIVERSITY PRESS, 1991.

PAYNE | S. J. and GREEN, T.R.G.. Task Action
Grammars: A Model of the Mental
Representation of Task Languages, HUMAN-
COMPUTER INTERACTION, 2. 1986, pp.93-133.

PRIBEANU, C., A Framework for the Design of
Human-computer Interaction Structures in
Economic Applications, INFORMATICA
ECONOMICA, Vol.l, No.2. 1997, pp.88-94
(in Romanian).

REISNER, P., Formal Grammars and the
Design of An Interactive System, I[EEE
TRANSACTIONS ON SOFTWARE
ENGINEERING. 7. 1981, pp.229-240.

SHEPERD. A., Task Analysis As A
Framework for Examining HCI Tasks. in
AMonk and N.Gilbert (Eds.) Perspectives on
HCI -~ Diverse Approaches, ACADEMIC
PRESS. London, 1995, pp.145-174.

SIMON, T., Analysing the Scope of Cognitive Models
in Human-computer Interaction: A Tradeofl
Approach. in D. M. Jones and R Winder (Eds.) People
and Computers IV, CAMBRIDGE UNIVERSITY
PRESS, 1988, pp. 3561

VAN DER VEER, G., LENTING, F. and
BERGEVOET, A. J. Groupware Task
Analysis — Modelling Complexity, ACTA
PSYCHOLOGICA. 91, 1996, pp.297-322.

VAN WELIE. M. . VAN DER VEER, G.C. and
ELIENS, A, Euterpe - Tool Support for Analyzing
Cooperative Environments, 9th European
Conference on Cognitive Ergonomics, Limerick,
Ireland, August 24-26, 1998.

VAN WELIE, M., VAN DER VEER, G.C. and
ELIENS, A. An Ontology for Task World
Models, Proceedings of DSV-IS'98.
Abingdom, UK, June 3-5, 1998.

Studies m Informatics and Control, Vol. 8, No. 2. June 1999

