Introduction to the Formal Design of

Real-time Systems

by David Gray
Applied Computing

Springer-Verlag London Limited, 1999, XIII p. + 461 p.

ISBN 3-540-76140-3

The target is customary: software engineering,
in one of its most complex and often
approached subdomains: concurrent and real-
time systems. The weapon — felt as hard to leamn
and cumbersome to handle - is rather
infrequent: formal design -~ methods. The
conceptual distance between the disciplined,
closely controlled and well-established world of
mathematics and the effervescent and ever-
increasing jungle of realtime application
development is huge. No wonder, the low hit
rate — so far. This book may possibly change the
overall picture.

The volume is divided into four main Parts
(here “divided” is meant in its purely technical
sense; in fact, the book strongly binds those
parts together).

The first Part has two chapters, introducing and
defining the problems associated with the
correct design of the systems focused upon. The
first Chapter, Scene Set, brings in the key
notions of model, abstraction, atomicity,
algebra, transition, concurrency, real-time, etc.,
like in a well-written play, where cach happen-
ing is motivated by previous ones; moreover, it
“stimulates awareness of the pitfalls of
concurrent systems design”. The second
Chapter, Concurrency and communication,
after identifying the problems, explores several
paths of modifying existing sequential
programming languages to address them — both
in design and implementation; the solution
spectrum ranges from simple critical section
guards, through to monitors. Though, in its final
subsection, a genuine “Review and Rethink”,
we find the necessary wamning: “these
programming solutions, while of use as methods
bv which to navigate, are of marginal use to de-
signers attempting to satisfy a proof obligation™.

The second Part “introduces the process
algebra SCSS in a multipass fashion”. The
informal overview of the asynchronous algebra
CCS (Calculus of Communicating Systems), in
the third Chapter, Message Passing, is based
on the idea that “with formal models for the
sequential bits we need only add a model of

Studies i Informatics and Control, Vol. 8, No. 2, June 1999

message passing to create the design method we
seek”; one of the conclusions is that “central to
the success of this framework was deciding how
the sequential bits should communicate”. This
overview is followed in the fourth Chapter by
a formal and comprehensive description of such
algebra’s synchronous counterpart, expressed in
the chapter’s heading: Synchronous Calculus of
Communicating Systems, capturing the issucs of
synchrony and timing, by means of a concept of
global (discrete) time. It is pointed out that the
“SCCS design strategy is a constructional one”
(the most relevant example: software
interrupts). The same framework is used for the
specification and the design supposed to meet it
(both system behaviours are captured in terms
of labelled transition systems). Proving their
sameness is handed over to the third Part,
consisting of the fifth Chapter, Equivalence. In
spite of its succinctness (only 32 pages) this part
is very dense: after clearing up the meaning of
equality, equivalence, and congruence it ex-
plores the role of observation (“two systems are
equivalent when no observation can distinguish
them”). To check if two agents behave the same
if they engage in the same actions, they are
compared by bisimulation (each agent simulates
the other). The bisimulation relation over
expressions is proved to be also an equivalence
one.

The fourth and final Part, “the one which the
students like best”, consists of two Chapters.
The sixth, Automating SCCS, brings into focus
the concurrency workbench, “a tool to support
the automatic verification of finite-state
processes”. The last Chapter, Proving Things
Correct, launches “a more flexible way of writ-
ing specifications”, based on modal logic
(specifically, Hennessy-Milner Logic), adding
to process algebras, formulas over agent
properties (describing their behaviours).

At the end, before the substantial References
and J/ndex, two Appendices: the first
recapitulates “some of the more useful SCCS
propositions”, the second looks at the “notation
used throughout the book™.

157

Hopefully, this condensed passing through the
content can sustain the claim that, without being
a “philosopher’s stone”. “formal methods |...]
rather than replace traditional methods, they
complement them™.

Thus, bevond its obvious utility as a course
book - the intended audience includes
undergraduate and graduate students — the book
is a premeditated bridge over the deep — and old
— gap between software engineers. considering
that rigorous techniques, as the author puts it
“were thought foolish and unnecessary” and
those few computer scientists believing that “if
you cannot write down a mathematical behav-
iour of the system you'rc designing. vou don’t
understand #t”. Whether the engineers will
massively follow the proposed path, is vet to
prove. Perhaps other concurrency workbenches,
more user-friendly than the exposed one.
“which, unfortunately, emplovs a notation
which, constrained by the lowest common
denominator of character-oriented interfaces. is
rather idiosyncratic” will strengthen the impact
of such endeavours. Nevertheless, undoubtedly.
in this regard. the book has an almost ecumenic-
al role to play. And it succeeds, duc 10 a most
outstanding feature: its fascinating cducational
eminence. Among several facets able to
substantiate such a hazardous assertion, just
three convincing aspects:

— the pictures are so many, so diverse. so closc to
the tum of phrase. so taken on board by the text it-
self, that they have neither mamber, nor caption.
And. for sure. they don’t need it. because they are
simply another way of wrting: the whole
becomes a kind of nultimedia on paper.

— the (sometimes. forgotten) art of choosing, the best
examples — both simple, relevant and “isomorph-
ic” to the particular topic — is breathing and
animates the entirc book. For instance, the process
of purchasing a stamp from a machine is
modelled initially on page 15, but afterwards the
same example is given many times throughout
the book. in a host of reworkings, marking the
headway of the very undertaking,

— like m anv well-written tutorial, complexity is
added stepwise. However, here the steps are so
small that you hardly notice them. It resembles a
crescendo in a symphony, or — 1o choose a
comparison closer to the subject we talk about —
the growth of a silicon monocrystal. An example
of this “loud speaking the thoughts™ the six
successively improved solutions of the mutual-
exclusion problem, ending with the Dekker
algorithm. are nonetheless followed by two
others, proposed as simplifications.

Thus, onlv the system complexity is perceived.
the cognitive one is fading away. In this regard,
the generous redundancy is quite helpful (some
repetitions are aimed at those not “reading the
text linearly™). Therefore, it is no surprise that
“all of the students who followed the original
modules took to the formalism like ducks to
water”. Moreover, it can be expected that “the
premise that most practising software writers
are more craftsmen than they are engineers”
will vanish or, at least. become obsolete.

The compelling intelligibility — remains
unaffected by the few technical “taskbuilding”
errors; some examples, 10 be put right in a next
edition: predicate instead of proposition (logical
evaluations. pp. 253 -254), associative swapped
over with commutative (the laws of Abelian
monoids, p. 319), minor programming errors
(mistaken variable types, p. 67. p. 90).

To summarise, the book seems to be successful
due to the author’s approach; indeed, “the
involvement of nastv things like discrete
mathematics” becomes palatable. even nice,
because, instcad of {trying to “digitalise”
designers., Grayv took the other wav round: he
“humanised formulas™. And it worked.

Boldur Barbat

Studies in Informatics and Control, Vol . 8, No.2, June 1999

