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Abstract: The paper presents some approaches in modeling
and control of unmeasurable or hardly measurable
technological plants. Hybrid modeling is described using First
Principles (FP) models, Fuzzy Logic - based (FL) models and
Neural Network (NN) models. Different kinds of aggregations
are exanuned - linear combination, Hammerstein-like models,
Gain Scheduling models. The results of comparative analyses
of the behaviour of different models are presented, which show
higher accuracy of best hybrid models with 6-10 % according
to Mean Square Error (MSE). Some problems of advanced
Inference Control (IC) implementation using hybrid models,
are discussed. Applications of hybrid modeling as well as
Inference Control of industrial plants are described - steam
boiler mill-fan and dust preparation system, hot strip mill
runout table cooling system modeling and control.

1. Introduction

The control of technological plants, in which
basic controllable parameters cannot be
measured directly, or of which measurement is
expensive or/and very incorrect, is a complex
problem. Typical examples are final products
composition control in mass transfer apparata
and chemical reactors; control of a large
number of metallurgical aggregates because of
the unmeasurable liquid metal temperature,
composition of metal pan and slag, temperature
along the cross section of thick bodies; control
of aggregates in cement, glass, pulp and paper
and food industries. In these cases the solution
is of the type of Inference Control [1.6,9].
Model based control technologies find ever
larger application in continuous technological
processes [2,8,13,14,15]. To a large extent this
tendency concerns cases in which Inference
Control is necessary for output or intermediate
controllable parameters. The twenty vears
development of this method has shown the
dominant significance of the creation of precise
enough models in order to use them for the
formation of indirect feedback [14].

In plants with measurable output parameters
the model-based control places moderate
requirements on model accuracy. because the
system corrects its behaviour at every step of
the predictive control. When the controllable
variables are unmeasurable, a significant model
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error would lead to bad control quality or
instability. Indirectly measured parameters
allow to partially correct the dynamic and static
behaviour of the control system, but with a
precision limited by the model error.

The requirements for cost- effectiveness, eco-
conformity and security impose that in cases of
Inference Control better solutions are also
sought for. They basically aim at two directions
- model precision improvement and
development of new control methods. This
paper treats some of these recently developed
problems [2,3,4,5]. Main attention is paid to
hybrid mathematical models. The combination
of First Principle (FP) models with Fuzzy Logic
(FL) based models as well as with Neural
Network based models, is discussed.

FP models transform the space of the input
variables into one- or multi-dimensional space
of the output variables using a set of equations
usually derived from material and energy
balances, physical and chemical laws, various
mathematical  relations,  constants  and
parameters. Some of the model parameters need
be estimated on the basis of real experimental
data. Fuzzy (F) models are a particular case of
"black box" models. If compared with FP
models, they require reduced input space of
variables. Either type could contain different
unmodelled part of the plant behaviour. Thus it
is expected that an appropriate combination of
them could improve the accuracy of the
resulting hybrid model.

The standard implementation of NN as a black-
box approach could be noticeably improved if
hybrid NN models incorporating a priori
knowledge of the plant were used. The a priori
information is based on the first principle (FP)
models of the plant or its parts. Such hybrid
models can be structured various ways. In
[Psichogios and Ungar, 1992] the FP model is
used as a non-parametric estimator of
unmeasured process parameters. The standard
multi-layer perception (MLP) structure is
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augmented by direct linear connections between
the input and output layers [Haesloop and Holt,
1990]. Johansen and Foss (1992) implemented
the FP models through NN with memory to
present the unmodelled dvnamics during the
learning process. In [Su and McAvoy, 1993]
NN with a Hammerstein model type structure is
suggested that speeds up the learning. A rather
different approach is that of applying fuzzy
techniques in black-box models [Lindskog and
Ljung,. 1996] that will not be discussed here due
to its diverse nature.

The aim of this paper is to describe some
recently obtained results in inferential hybrid
models design , being ablc to perform on-line
estimation of directly unmeasurable process
variables on the basis of available current
indirect information from the plant.

2. First Principle / Fuzzy Logic
Based Models

The main element of every hvbrid model is
First Principle (FP) dynamic model derived
according to fundamental physical and
chemical laws. FP models are well- established
in various fields of engineering - process
industries, metal industry, power generation,
manufacturing, etc. First Principle models are
usually non-linear and could describe
adequately the plant behaviour in the full range
of operational conditions. Unfortunately some
FP model parameters are not accurate enough
and should be estimated and/or adapted based
on experimental data, provided by special tests.
A variety of Fuzzy models could be integrated
with FP models to create a hybrid model
depending on:

. input variables (type and number);
e output variables (full scale or difference).

Every Fuzzy model should be preliminarily
tuned using off-line optimization because of the
lack of current data for continuous or periodical
correction of model parameters.

2.1 Sequential Hybrid Model

An approach in which the hybridisation is
carried out by a fuzzy gain scheduling
procedure over a limited number of FP model
parameters is presented in Figure 1. A SEL
selector is used to considerably reduce the
original input space x to a respective input
space xp of the Fuzzy Parameter Estimator
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(FPE). The tuning of the fuzzy sels parameters
is carried out by a non-linear optimization
procedure (OPT), which is further described
into more detail. Once the model parameters
have been tuned, the First Principle model is
used only for an on-line estimation of the
unmeasurable output variable of the plant y.
Re-tuning is accepted to be done periodically,
but on the basis of another set of inferential
information.

|
- Plant [—3 ! |

Inputs | xF 1\\ i
——e = SEL —— FPE T~ OPT )

X

l Parameter H

1 i y

mi

-

—————=' First Principles Model

Figure 1. A Fuzzy Gain Scheduling
Procedure of FP Model Parameters

The problem here is to restrict as much as
possible the number of FP model parameters
which will be determined currently by fuzzy
gain scheduling.

2.2 Parallel Hybrid Model Using
Fuzzy Input-Output Model

The structure of parallel FP model and Fuzzy
Input-Output (F10) model is presented in Figure
2. The inferentially predicted output yHm2 is
proposed to be a weighted linear combination
of two outputs:

e |V
B gy B

"~ SEL —» POmdel /1 —

Figure 2. Parallel FP and FIO Model

¥ = By + (- By O M
where yF P m and yF IOm are the outputs,
predicted by the First Principle model (FP) and
the Fuzzy Input-Output model (FIO)
respectively, and [ is a weight coefficient to be
optimized.
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The preliminary FIO model is optimized
according to the scheme depicted in Figure 3.

After FIO models and weight B are optimized
by particularly considering experimental data,
both FP and FIO models work on-line in
parallel using the current direct measurable
input information x.

[ v

|
—— Plant |—O—1
InputsJ - "_;\ e
ra iy f o
F VAR S
—= SEL —= FIO fhodel | :
| OPT

Figure 3. Optimizing Procedure for FIO
Model

2.3 Parallel Hybrid Model Using
Fuzzy Difference (FD) Model

The structure of this hybrid model is shown in
Figure 4. In parallel there is the work gain
scheduled according to Figure 1. First Principle
model with Fuzzy logic based model, which
output estimates the difference AymFD between
plant output ¥ and FP model output yF P i

AP =Y = Yl ¥ (2)
v,
(T 1
—— HAat —0
3 P +
| oy R
) . N—— W G
X | ) " Y
_ I+ Y -
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Figure 4. Hybrid FP - FD Model

The tuning of Fuzzy Difference (FD) model is
presented in Figure 5. The deviation £ between
the plant - FP model mismatch e and the FD
model output AymI"D

£ =€ - AymFD 3

is the driving force for optimizing the OPT
procedure, to be discussed in the next Section.
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After the off-line FD model tuning based on
particular experimental data, the predicted
output of hybrid First Principle - Fuzzy
Difference model (FPFD) yHm3 i1s calculated
as;

-

Figure 5. Tuning of Fuzzy Difference
(FD) Model

-va3 = ymFP + AymFD 4)

The SEL selector has the same function as in
Figure 2: to reduce the input space of the FD
model.

2.4 Multiple Fuzzy Models Approach

A set of FIO or FD models is proposed for
being used in forming the hybrid models
described above. As shown in Figure 6 below,
a Rule Based Selector (RBS) is incorporated
into the scheme which switches on the most
appropriate FIO/FD model.

Each of the FIO/FD models possesses its own
input subspace xg and is tuned according to
Figure 3 and Figure 5 in order to become

! Inputs

I 1
Rule Based Selector

0 o
[

FIQFDmodel  FIOFDmode

2 L

Figure 6. Multiple Fuzzy Models Approach
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optimal for corresponding operation conditions.
Provision of enough data for the multiple fuzzy
model tuning gets a serious problem when the
number of special experiments must be
restricted.

3. Neural Network Based
Modeling  of Parameter
Dependent Plants

Here a parameter kind of technological plants is
under consideration - plants with models
depending on internal or external variables.
The basic structures for parameter dependent
plants modeling are presented in Figure 7,
where

s

(8}
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The specific role of parametric disturbance is
described in Figure 8, where in corresponding
schemes

a) ¥ is an  independent
parametric disturbance,

b) u (k) = ¥ is at once a control
variable and a parametric disturbance.

This contribution takes into account different
cases in Figure 7 and Figure 8 in which
functional transformations are realised by NNs,

NN Based Modeling of Parameter Dependent
Plants

Artificial NNs, mostly with feedforward
sttucture with backpropagation (BP) and

s

e |
R YT

u ¥m
' H(z.a( ¥ k1 T
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Figure 7. Parameter Dependent Plant Structures: (a) Compact, (b) Gain - Scheduled, (¢) GS
with Relax

a) Compact model where both
control variable » and parametric
disturbance ¥ are simply considered
as two inputs and are treated

identically in  the  estimation
procedure;
b) Gain-scheduled model with

static parameter forming part P, and
l 2

Hiz, )

(a)

recursive NNs, are widely used in non-linear
svstem modeling and identification [Haesloop
and Holt, 1990; Su and McAvoy, 1991; Junge
and Unbchauen, 1996]. Here the first type of
structure has been chosen in the case of static
or quasi-static parametric disturbance (¥ =
Y,) or NN with outer feedback, that could be
presented as an extension of the standard MLP-

W=y

u Ym
Ly

" Hz, ¥)

(b)

Figure 8. Parametric disturbance characteristics: (a) independent, (b) dependent

dynamic linear or non -linear signal
part H.

C) Gain-scheduled model with
parameter relaxing, where model
parameters a; (), i=1, n and b;
(¥ ), i=0, m are prefiltered via the
linear time-invariant block G.
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type NN [Su and McAvoy, 1991].

Of course, the two plant inputs # and ¥ have
to be sufficiently rich to excite the dynamic
properties of the non-linear plant. This can be
achieved by generating and putting additive
signals during on-line learning, and by keeping
the amplitude of these signals within the
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process limits.

Data Acquisition and NN Structure

Two basic situations could be seen in
parametric dependent plants:

The parametric dependence is (or can be)
maintained at a constant stepwise changed
value ¥ = ¥, Model identification for every ¥,
could be done and further multi-model
parameter approximation was possible. In this
approach only the “frozen” parameter
Gepnndent model could be obtained. If using the
received model in operation conditions with
fast changes of the parametric disturbance ‘¥,

the predicted output value y,  will mark
significant error [Hadjiski, 1979].
l_[!
— NN a, (V)
b, (V)
u T -
—— . Bw.z')
Aaty).z!)
{a)

state  information under many different
operation conditions. This could be an
important source for the estimation of static
plant  characteristics, but  for  global
identification specially dynamic data are
recommended. However, in most of non-linear
dynamic  identification  approaches, the
abundance of easily accessible stcady state data
is not considered. Under real conditions a plant
can be mildly perturbed from normal operation
conditions. Given the above discussed
difficulties, a  separate  procedure  of
identification of static and dynamic parts of the
plant model has been found suitable [Su and
McAvoy.1993].

In a Hammerstein model a static non-linear
operator ¢ is placed in series with a dynamic
linear operator " (Figure 10a). The following

Figure 9. Gain-Scheduled NN-Based Models:
(a) with Static NN, (b) with Static NN and Linear Relaxing Filter G(z)

This type of data is suitable for NN learning in
the gain-scheduled models presented in Figure
9. A static NN approximates the dependency
between plant parameters a; (), b; (‘¥) and the
“frozen” parametric disturbance ¥ (Figurc 9a).
Control variable u is transformed via input -
output or state spacc linear or non-linear
dynamic operator H.

Figure 9 presents an additional linear
transformation of NN output parameters a, (‘F),
b, () in order to model a really existing
“relaxing period” of plant parameter changing.
Linear time invariant filter G(z) will be
identified by an additional procedure.

4. Hammerstein like Models

Advanced SCADA and a distributed control
system usually store a lot of amount of steady
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equations can be written:
(k)= p{x(k)) (5)

k) =W 0k = ooy (k= n) Bk =1, bk —m)  (67)
or
V=W (k= = RCE = 1) ke —m) (677)

where y,y, are plant and model outputs.

X
- N -
ul G
1
5 b

Figure 10. Hammerstein type Models

a) with Linear Time Invariant Operator W
b) with Parameter Dependent Operator G
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Narendra and Parthasarathy (1990) pointed out
that a NN could be used as a non-linear
operator in Eq(5). Su and McAvoy (1993)
proposed a procedure for training ¢ -operator
on the basis of steady state data. The linear
operator is usually represented by a discrete
dynamic transfer function or an ARMA time
invariant model.

For the more complicated case in which
operator W is linear but parameter dependent, a
model structure of Hammerstein type has been
proposed by Hadjiski and Kalaykov
(1997)(Figure 10b). The following equations
can be written:

B(k) = E(x(k))
x; (k) = Qx(k)
Ful k)= G (y(k=1) . y(b=njiu(k=1)...u(k=m);B(k))

(8)

N

or

Tnl k)= G (= Vgl =1 )iul k=1 )yt k= );B( k)
(8"

where

Bk) - varying parameter of dynamic operator

G'.G"

Q(e) - selecting vector Q=(1,0,0,...,0)

u = x, - control action

For example, dynamic operator G could have
the next form:

b (x(k)

G(z,8) = C(x(k)). L2 ——— 1O )
Sa(x(knz"
=0

Simulation experiments in [Hadjiski and
Kalaykov, 1997] have proved that the structure
in Figure 10b separates the static non-linear
operator from the dynamic operator, and the
training of a Hammerstein-like model is much
faster than the training of a fully non-linear
neural network dynamic model of parameter
dependent plants.

Static operator ¢ (Figure 10a) and ¢ (Figure
10b) could be derived by using several
techniques:

e First Principle (FP) models

¢ Regressions

o Neural Networks

o Fuzzy Logic based models

The Decision will depend on many factors:

e degree of understanding of internal plant
mechanisms (chemical, physical)

e complexity

e abilityy, quantity and quality of
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measurements
e availability of expert knowledge about the
plant
o level of uncertainty
The main idea underlying the approach is the
use of a hybrid architecture for Hammerstein
type model ., taking into account the above
mentioned factors as well as the following
control system synthesis.

By Hammerstein like models the gain-
scheduled control strategy could be generalized
and placed within a more rigorous
identification and control framework.

5. Applications

5.1 Steam Boiler Pulverizing System
Modeling

Due to strong requirements for stability,
efficiency and fast reaction of the boiler,
pulverizing is a crucial process for steam
generators  firing low-rank lignites. A
simplified scheme of the pulverizing control
system is represented in Figure 11.

Raw coal from bunker 1 through proportioner 2
falls via shaft 3 into the fan mill 4 together with
furnace gases supplied for coal drying. Coal
dust after separator 3 is directed to burner 6 as
an air-gas-fuel mixture. The output variable of
the pulverizing system (PS) is AGFM
temperature 6,,

ST P
| s>
A\ .
N | i

Figure 11. Boiler Pulverizing System

The developed model of PS is given in Figure
12, Tt has three parts:

1. Inference preprocessing part (IPP)

2. Static neural network (SNN)
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3. Linear dyvnamic part (LDP)

O

Opp: i

Figure 12. Pulverizing System MISO
Hammerstein-type Hybrid Model

The input variables for neural network are:

* 4, - furnace outlet gas temperature

* @, - excess of air in outlet furnace gases
(estimation)

e (- caloricity of the raw coal (estimation)

e 7 - working time of beater wheel after
current repair

e I"-total ventilation of fan mill (estimation)

e 3 - throughput capacity of fan mill

Inference preprocessing part (IPP) contains

three IPP blocks trained to estimate the input

variables for NN: &,,0 and V7. H, is a

functional block. /- infers Q on the basis of fan

mill capacity B, boiler efficiency and block

boiler-turbine power N. H, is realized as a non-

linear dynamic filter in order to coordinate the
signals B and N.

Membership functions of input and output
variable fuzzy sets are presented in Figure 13.

V' [hm*/h]

Q [kcal/kg]

Figure 13. Input and Output Variable
Membership Functions
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Inference preprocessing  :Static neural network ¢ | Linear
Ay /(5 . dynamics

In accordance with these membership functions
M=125 rules have been extracted from special
experimental data received by TPP “Bobov
dol”, Bulgaria. As NN, a Multi-layer
Perceptron (MLP) is used. After reasonable
data scaling a backpropagation learning
method has been implemented. Figure 14
illustrates  the mneural network structure
optimization with one (Figure 14a) and two
hidden layers (Figure 14b).

J L‘“‘T_“——_ —————
B34}
| NN(6,n.1)
912 !
310 K
0,08 P
0os b
|
e o
i oo 0
ER oo s 2 G e 4
7w v e U 12 13
a

i

‘l..t"‘ u“""{.ﬂ NN(6‘6H’])

0,03 Y
Y

e
|

0,025

i gt I
I 1
|
i S 5
b
Figure 14. Neural Network Structure
Optimization

a) One Hidden Layer

b) Two Hidden Layers
Simulation results show that the second hidden
layer does not improve the NN accuracy. This
NN, with a single hidden layer with 9 neurons,
has been accepted, e.g. the MLP has the final
structure (6,9,1). Simulation of the tuned neural
network with testing data proves the high
accuracy of the hybrid static part of the
Hammerstein type model - the RSE is less than
1.3 %.

Dynamic operator /" has been derived by using
LSM on the input data » and output 4, in the

form:

W(p)= (10)

1
(Tp+1?

5.2 Multimodel Based Inference
Cooling Control System for Hot Strip
Mill Runout Table

The process of cooling a metal strip during its
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movement on the runout table of a hot strip
mill (HSM) is of paramount importance for the
whole technological cycle of the mill, because
here takes place the final forming of the
microstructure of metal, that defines its
mechanical and physical properties. It is very
important to know at each moment of time the
temperature distribution inside the strip, so
that, if there are any deviations from a
previously given optimal cooling curve, the
necessary corrective control actions should be
performed. However the technological process
does not allow on-linc measurements of the
temperature on the runout table. Only two
temperatures are measured - at the beginning
(®,) and at the end (®,) of the table, when it is
practically impossible to operate any change in
the metal microstructure, therefore in its
characteristics and quality. That is why a
predictive model should be built, capable of
finding the strip temperature distribution and,
based on it, appropriate control actions should
be taken, so that the error between the optimal
cooling curve, used as a setpoint, and the one
predicted by the model temperatures, is
minimal. The type of this control is determined
by the significant time delays between the
control action and the temperature change. This
leads to a feedforward control along the length
of the runout table. At the same time, a local
control system is suggested, that considers all
the process constraints and disturbances, and
providés feedback information about the
difference between the predicted by the model
and the measured coil temperatures at the end
of the table. In this way a new type of
hierarchical combined feedforward / feedback
control system is designed, to include global
determination of the temperature profile along
the table’s length and local cooling constrained
control, based on the Quadratic Dynamic
Matrix Control (QDMC) algorithm.

The diagram of the water cooling system is
shown in Figure 15. The metal sheet
(thickness 2-16 mm, initial
temperature @, = 940° - 980 °C) exits
the finishing group and enters the %
cooling zone. In order to reach a final
temperature of 620° - 640 ° C, the
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cooling process is carried out by I :[i i®”

v |

- A water curtain with continuous
control action - u,, placed between the two
groups of curtains with two-position control.

The following technological parameters are
continuously measured:

e initial temperature of metal @,
e final strip temperature @y
o  metal sheet thickness h;

e sheet's speed during its movement on the runout
table v;

o total cooling water flow rate G;

e oooling water flow rate in the ocontinuous
controller Gy.

Control variables are the temperatures at each
point of the runout table @, i=1+g.

Basic disturbances are:

h - strip's thickness, which varies with the
changing working conditions on the hot strip
mill;

@, - initial temperature, which changes due to
different rolling conditions and the different
heat temperature in the heating furnaces;

v - speed of movement, that changes at the end
of each sheet to compensate the metal cooling
by the atmosphere;

G - the cooling water flow rate, that changes
significantly depending on the pressure in the
feeding pipes. Nominal parameters of the
model are valid for nominal values of the
volume of cooling water in the curtains with
two-position control.

Having in mind the gradual importance of
precision in the temperature profile's adequacy
along the sheet's length, the following weighted
integral-quadratic criterion is proposed:

1} | Uy iur 3U

means of two types of control actions:

- Water curtains ug, uy, ...,
up_1 and upyy. divided into two groups. The
water curtains of this type have only two values
of the control action: u=0 - the curtain is turned
off: u=1 - the curtain is working.
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Figure 15. Water Cooling System on the Runout

Table
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g s
1= Y B(®’-®)* > min (11)
1

where @ - mean integral temperature of

cross-section i, used as a setpoint; @, -
computed by the model mean integral
temperature of cross-section i along the strip’s
length (i=1, g); g - number of cross-sections
along the strip’s length.

The solution of problem (11) is subject to the
vector of control actions u=(u,,us,....u;)" at each
time step, 1 is the number of cooling water
decvices. This is a typical problem of non-linear
programming. Given the limited time for strip
movement on the runout table. the solution of
the optimal problem (11) must be produced
under severe time restrictions, To accelerate the
calculating procedures, parallel computing
might be used [Hadjiski et al, 1994].

Several types of mathematical models can be
used for this process:

a) Global mathematical models, that predict the
whole metal cooling process along the runout
table.

b) Local mathematical models, that describe the
temperature field along the strip thickness in
one cooling zone, and consider metal's
temperature deviation under the influence of
technological disturbances - thickness, speed
and initial temperature, as well as the cooling
water flow rate.

Global mathematical models could be of two

types:

1. Analytical - that permit a quick calculation
of the temperature along the strip's length.
Here the strip is referred to as a thin body
with appropriate corrections. This model 1s
appropriate for control in on-line mode.

2. Numerical - that make it possible to
compute the temperature profile along the
sheet's thickness, and to minutely trace
how it changes during the movement along
the runout table. This model is precise and
detailed, but too heavy and slow in order to
be used for control, because the time
necessary for calculating the temperature
field is longer than the physical time,
which the cooling process takes place in.

Local models could also be divided into two
groups:

1. Analytical - based on ordinary differential
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equations. Their disadvantage lies in that
they cannot cope with the strong non-
lincarities of this process. The error,
especially within the temperature interval
700° - 800 °C, is enormous. That is why
they are not useful here.

2. Numerical - based on partial differential
equations, thev predict the temperature
distribution correctly and cope with all
non-linearities and disturbances.

Thus two types of mathematical models remain
to be used for control - global analytical models
and local numerical models. Both of them are
based on the nonlinear transient heat transfer
cquation :
or) /e
B v (12)
and the following initial and boundary
conditions:

¢ (O)p(®)

= %A.(@)
X

©{(0,x)=04(0,x) (13)
06
—k(@)a—:aa(@)s ~2m) (14a)
X
oe
“MO—=0 (B —Oy ) (14b)
ox

where «,,a, - coefficients of convective heat
transfer with air and water [W/m2 °ClL @s -
surface temperature of the strip, °C: @ -
ambient temperature of air. °C: @, -

temperature of water, °C; x - space coordinate;
x = y for the global analytical model - it
computes temperatures along the strip’s length.
x =z for local numerical models, because they
determine the temperature field along the sheet
thickness. One dimensional heat transfer is
concerned, because the heat fluxes along the
strip length and width are insignificant,
compared to the one along its thickness. Heat
losses from heat transfer to the rolls are taken
into consideration by the heat transfer
coefficients. The metal thermophysical
properties - thermal conductivity %, specific
heat capacity ¢ and density p - are non-linear
functions of temperature. The dependencies for
the heat transfer coefficients have been
determined for several cases — air cooling and
water cooling.

Global analytical model
The analytical mathematical model considers

metal sheet as a thin body [Hadjiski et al,1996].
In this way a fast cooling process model is
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developed, capable of determining the
temperature distribution along the table length
and specifically on its end for a very short time.
It is developed by considering two assumptions
- that the temperature field along the strip
thickness is homogeneous and that it moves
with a constant speed. Here the model with
larger dimension is approximated by a model
with lower dimension, but the precision of
calculated temperatures is maintained. With the
help of this model the differences between the
predicted and set point temperatures are quickly
determined and a correction control action is
performed in time.

B=B+B,+B, +B, (19)

L., A, B,-matrices, counting the effect of
change in strip speed,

L,. A,, B,-matrices, counting the effect of
change in strip thickness;

Ls, Ag, B - matrices, counting the effect of
deviation in the cooling water
flow rate.

The interaction between different models - the

global and the local ones - is shown in Figure

16. The global model computes the temperature

distribution along the table’s length. It also

determines the optimal heat transfer
coefficients o for each water curtain. The

Global model

Local model | l Local model i

L.ocal model |

Figure 16. Interaction Between Global and Local Models

Local numerical model

The partial differential equation of heat transfer
(12) with the mentioned initial and boundary
conditions is solved by means of the finite
difference method, using an implicit scheme.
Following Hadjiski et al (1996), the solution of
the heat transfer model without disturbances
(v=const, G=const, h=const) can be
expressed by the following matrix equation:

Lx(k +1) = Ax(u)+ Bu(k) (15)
When there are deviations from the nominal
cooling conditions caused by some external
actions such as change in speed v, thickness h,
cooling water flow rate G. the mathematical
model (15) is no more adequate. It is necessary
to complete it with the external disturbances dv,
8h, 8G.

In general, the mathematical model of the
cooling process can be presented in the state
space as follows:

Lx(k+1) = Ax(k)+ Bu(k) (16)
where the corresponding matrices are:

L=DL+L,+L, +L, 17
A=A+A,+A, +A, (18)
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procedure for model parameter adaptation is
described in Hadjiski et al (1996). The so
computed temperature is made available to
local models as surface temperature ®_ and

together with o; forms their boundary
conditions. Local models work in the following
way: the boundary conditions for each of them
come from the global model. Initial conditions
are given only to the first of them and
according to Eq (8) it finds the temperature
distribution in metal at each time step in the
first cooling zone. The temperature field at the
end of the first cooling zone serves as initial
conditions for the second one, etc. A sequential
computational scheme is followed.

The scheme is based on continuous running of
a mathematical model of the metal strip cooling
process, which calculates the criterion (11) for
different combinations of control actions. The
general cooling control problem is divided into
two hierarchical subproblems:

e global control, which gives positions (on/off) of
the position control actions;

e local control, which determines the continuous
control action u,

The whole control system sticks to the idea of a

continuous estimation of the local and global

models’ parameters. The proposed scheme

combines the principles of adaptive parameter
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estimation and of guaranteeing the control
system robustness.

The global control problem is solved by an off-
line minimization procedure (Eq (11)). Here
the optimal reference cooling curve is
determined by technological demands on the
cooling process, and is previously known for
cach quality of steel. The difference between
this temperature curve and the computed by the
global model one is smoothed through the
solution of an optimization problem, that finds
the best combination of control actions, thereby
the desired performance of the control system is
attained.

The local feedback system is based on the
Predictive Model Based Constrained Control
Scheme.

6. Conclusions

Hybrid models allow to gather basic knowledge
by means of First Principle models, expert
knowledge through Fuzzy Logic models,
peculiarities from models' history by means of
Neural Networks, as well as results from linear
identification procedures. This improves the
precision of modeling , which is particularly
important for inference control.
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