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Abstract: The fast development of a worldly distributed
information, such as the World Wide Web (WWW), is one of
the major evolutions of present computer technology. Within
the TransDoc project, which aims at providing intelligent
vehicles for document access i a fully distributed information
system such as Intemet, we study the self-stabilizing
construction of quorums in order to ensure reliable document
access. Our approach consists of match-making the quorum
systems with the self-stabilization paradigm in order to ensure
mutual coherence of document copies and to guarantee some
fault tolerant behavior. In this paper two self-stabilizing
algorithms  for  constructing quorums are  proposed.
Performance evaluation driven with simulations and a
Markov chains modelling, show that such constructions
improve the quorums quality as the self-stabilizing quorums,
given their convergence property, automatically tolerate
transient faults and dynamic changes of the network.
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1. Introduction

The fast development of a worldly distributed
multimedia information, such as the World
Wide Web (WWW), is one of the major
evolutions of present computer technology. In
such a context, the underlying communication
network has a dynamic behavior. Sites may
disappear because of site or link failures, while
new sites may be introduced because of their
insertion. For the sake of performance and
reliability, the same document may be
duplicated on several sites, for instance in
proxies and mirror sites. Even though access of
a document for reading is much more frequent
than access for writing, it is necessary to ensure
a mutual consistency between document copies,
the "one-copy equivalence" property [Ray92],
and the availability of documents when failures
of sites or links occur.

Within the TransDoc project [CDF97],
[Chen98], which aims at providing intelligent
research vehicles to facilitate multimedia
document access in a fully distributed
information system such as WWW, we study
the issue of reliable document access in a
dynamic communication network in which
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failures of sites or links may occur [BBBCY7].
[BCY7]. Our approach consists of match-
making the quorum systems with the self-
stabilization paradigm [Sch93] in order to
maintain document consistency while ensuring
some fault tolerant behavior of the system.

Quorum systems are taken as a basic tool for
providing a uniform and reliable way to
achieving co-ordination in a distributed system
[Ray92], [Mae85]. [AA91]. On the other hand,
the self-stabilization paradigm aims at
designing distributed algorithms with the
ability of recovering spontancously from any
arbitrary state of the system, without any sort of
an intervention from outside [Sch93]. So, a
sclf-stabilizing system does not require any
initialization, tolerates transicnt faults and
adapts itself to the dynamic evolution of the
network. The self-stabilization property is very
useful for quorum systems in such a context as
that where sites may be inserted or crashed and
then recovered spontancously from an arbitrary
state. When the intermediate period between
two successive network topology changes, or
the time in between a recovery and the next
crash is long enough the system stabilizes and
the current quorum system is considered as
available. Our contribution in this paper is the
design of self-stabilizing quorum systems for
documents access [BBBC97], [BC97]. The
basic idea of constructing such quorum systems
consists of building some sclf-stabilizing
logical structure over the nctwork and of
compuling quorums using a topology
dependent  function.  Qur  constructions
[BBBC97], [BC97] are both based on a self-
stabilizing spanning tree. The first one uses a
composition function of quorums and gives a
sclf-stabilizing  arborescent quorum system.
The second one, which improves our first
construction, derives a logical triangle lattice
structure from the spanning tree, and defines a
self-stabilizing planar quorum system.

The dynamic system is subject to frequent
topology changes. Self-stabilization protocols
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for such a system should stabilize in between
two successive topology changes. Thus, the
stabilization time T 1s an important parameter
in the design of dynamic self-stabilizing
algorithms. Beside the classical criteria on
quorum systems such as quorum size. the
performance of the self-stabilizing quorum
systems is also evaluated in terms of self-
stabilization time 7, which is expressed by the
number of rounds the system takes to converge
to a state where a quorum system is correct, We
have evaluated, under a sequential demon, that
O(N?) rounds are necessary for the quorum
system  stabilization.  Furthermore,  the
stabilization cost introduced by this new
parameter is estimated on the assumption of a
stochastic model. The stabilization time
measures would rather quantify the quorum
system reliability, which is an appropriate and
important measure of performance, than its
availability.

The remainder of the paper is organized as
follows : Section 2 gives some nhecessary
definitions in the quorum theory and some self-
stabilizing paradigms. Section 3 presents our
two self-stabilizing quorum  constructions.
Section 4 defines the legitimate states and
proves the closure and convergence properties
of our two previous algorithms. Section 3
assesses the stabilization time, details the
quorum evaluation performance based on
Markov chains, and presents some simulation
results. Section 6 compares our results to other
related work and gives some concluding
remarks.

2. Quorum Systems and Self-
stabilization

Early work on quorum systems used voting to
define the quorums [Tho79]. The simple
majority system is an example of a voting
system [Gif79]. [MB85] and [Mae85] rclated
quorums to intersecting set systems and defined
coteries and the concept of non-domination.
Alternative protocols based on quorum systems
appear in [AA91] [Kum91].

Quorum systems have been used in the study of
distributed control and management problems
such as  mutual exclusion [Ray86], data
replicated protocols [SBDS85], name servers
[MV88], selective dissemination of information
[YGMB87] and distributed access control and
signatures [NW96).
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Generally, a system based on a quorum concept
works as follows : to perform some action, the
user selects in a transparent way a quorum and
accesses all its elements. The intersection
property guarantees that the user has a
consistent view of the current statc of the
system.

2.1 Quorums, Coteries and NDQ

Let us define the basic terminology to be used
in the paper.

A quorum system Q =[q;.Qp.....q] over a sel I

is a non-empty set where each element is a non-
empty subset of V and q; ng; =, i, j e {1....k}.

A coterie C over set I/ is a quorum system over
}” which is minimal under set inclusion. There
are no q.q; €C such that q' < ¢°.

A quorum system  Q dominates a quorum
system Q' if Q # Q' and if for every q €Q
there exists q € Q such that q —q. This
suggests the definition of a  non-dominated
quorum system, or NDQ for shorl: a quorum
system is non-dominated if there is no other
quorum system that dominates it.

2.2 Performance Criteria for Quorum
Systems

The performance of the quorum systems may

be evaluated according to several criteria :
quorum size |[Mae85], load [PW95] [NW94],
availability |Tho79)], [NW94| and failure cost
[Kum9l; Baz96]. As thesc criteria are
generally conflicting, there is no quorum
system construction that might be optimal with
respect to all of them.

e Size : small quorum size implies less message
sendings, thus reducing the communication cost
of the syster.

e Load : given a probability distribution on
quorums access, this parameter measures the
load of elements in handling recuests. If the load
is low, then cach element is less required, thus it
is free to perform other unrelated tasks.

e Availability - given that elements fail according
to some probability distribution, this parameter
indicates the probability that a quorum system is
available, i.e. there is a quorum that consists of
non-failed elements.

o Cost of failwes : it measures the overhead
message complexity due 1o failures. Informally,
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the cost of failures is the additional number of
elements that need be contacted when a failure
OCCUIS.

In this work, as we introduce the self-
stabilization property, the performance of our
quorum systems is also evaluated in terms of a
new parameter - the self-stebilization time T. T
can be considered as a measure of both the
availability and the cost of failures criteria.
Nevertheless the other criteria are briefly
discussed later.

2.3 Self-stabilization Considerations
2.3.1 Self-stabilization Overview

The self-stabilization concept was introduced by
Dijkstra [Dijk74] in the context of distributed
svstems. A self-stabilization system is a
distributed system which can be started in any
possible global state. Once started, the system
spontaneously regains its consistency. without
any sort of outside intervention. The self -
stabilization property is very useful for systems
in which processors may crash and recover
spontancously in an arbitrary state. When the
intermediate period in between one recovery
and the next crash is long enough, the system
gets stabilized. More formally, we define self-
stabilization for a system S with respect to a
predicate P over its set of global states where P
is meant to identify its correct execution. S is
sell-stabilizing with respect o P, if it satisfies
these two properties [GE90], [AGY93]: (i)
Closure: P is closed under the execution of S,
Le. once P is established in S, it may not be
falsified; (i1) Convergence: starting from any
global state, S 1s guaranteed to reach a global
state satisfying P within a finite number of state
transitions  [Sch93], [Dik74]. The states
satisfving P are called /egitimate states. These
two strong properties are used to theoretically
demonstrate  the ability of self -stabilizing
systems to tolerate  frawmsient failures and
dynamic topologies.

We introduce the model of failure that self-
stabilization can tolerate. A transient failure is
an event that may change the state of a system.
but not its behavior. We assume that the state of
a system is violable, whereas its behavior is not.
Transient failurcs may change the global state
of a system by corrupting the local state of a
process as represented bv memory or program
counter or by corrupting message channels or
shared memory. The self-stabilization property
models the ability of a svstem to recover from
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transient failures on the assumption that they
do not continuously occur.

2.3.2 Model of the Self-stabilizing System

We model our distributed information system S
by its communication graph G = (V) where
nodes 1 €17 are sites P, and edges i/} arc
undirected communication links between P; and
P;. Because symmetry is one of the factors that
prevent self-stabilization. we suppose that P is
a special site. and all the other sites are
identical.  When it is necessary, a self-
siabilizing leader election may be launched
[DIM97b].

As the paradigm of self-stabilization is very
general and does not depend on the
communication media used by the system's
sites. we have adopted the link register
model~[DIM90] in  which communication
between two adjacent sites /; and P; is achieved
by reading and writing two shared registers r
and r;. associated with the link between P; and
P, Site P; can read from register r; of any
adjacent site P; and write (o its own registers rj;
Roughly, in such a model one can imagine the
output message buffers as being sites link
registers. The link register model is a variant of
the shared memory model that is the ncarest
one to the reality where communication is
based on message passing. In [DIM97a] Dolev.
Israeli and Moran present a general scheme for
simulating any self-stabilizing shared memory
protocol by a self-stabilizing message driven
protocol. They implement read/write operations
by using a self-stabilizing token passing
protocol, and certify the correctness of
simulation,

Finally, we assume that sites are activated by a
demon' (scheduler) such that within each

| read and write are allowed

PO 1
for B

& anly read

e T
Figure 1~
'for more detailed aspects on demon one can refer to

IR AT
LEasnae g
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execution, each site occurs infinitely often. Our
failure model considers both the site and the
link failures. Sites fail by either stopping or
modifying temporarily the memory state, but
they never modify their own code. When a site
fails, the site and all incident links are ignored.
Link failures can also be memory corruption or
broken links.

3. Proposed
Solutions

Self-stabilizing

3.1 The First Self-stabilizing Strategy
3.1.1 Informal Algorithm Description

The basic idea for constructing a self-
stabilizing quorum  system  consists in
interleaving the hierarchical composition
function of quorums to a self-stabilizing
spanning tree. The spanning tree protocol is a
distributed Breadth First Search (BFS) protocol
rooted on a special site. The output spanning
tree is a BFS tree of the system communication
graph.

Let G(P,E) be a graph, and let P, be the root of
the tree. All the other sites are identical
[DIM90]. Each register is a record with four
fields: (1) rjj.father is a binary field equal to one
(resp. zero) if Pjis (resp. not) P's father in the
spanning tree, (2) ry.distance is an integer that
represents distance of P; from root Py, (3) ry.
coterie is the local coterie calculated in 7,
corresponding to the coterie of a subtree rooted
on P; and (4) rj.cotracine stores global coterie
corresponding to the spanning tree rooted on
Po. The cotracine field computed on the root is
propagated by copy all over the system and
stabilized later on. When a site executes its
code, it copies into its own registers the value of
the cotracine field from its father's register. We
can distinguish two behaviors : one for the root
and one for the other sites. Generally, the task
of a site P; consists in:

» reading its neighbors registers,
e looking for its father: the neighbor with the
minimal distance from the root,

o identifying its children among its other
neighbors,

e performing some local computation concerning
quorums acoording to its position on the tree,

e  updafing its own registers.
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The root will not execute the second and the
third tasks: the root does not have a father node
and all its neighbors are children. The content
of the fourth field, which is calculated on the
root site, will be propagated and stabilized by
copy all over the system, after a finite number
of steps.

Our algorithm uses a function called Compute-
quorums that computes, using local information
about the current spanning tree, a quorum
system.

Compute-quorums defines a quorum system
over a tree. A coterie is clearly defined when
the tree depth is equal to 1, otherwise quorums
can be calculated wusing an arborescent
composition function [Ray92]

When the tree depth equals 1 (a;: root ; a,, a,,
..., dn.. leaves), quorums are given by :Q =
{{ar.az}, {a,a3)... . {a2,83,...,80} )

4,

AN
SN T

iy i+ &I; — i,

Figure 2. For A Tree with Depth 1

Arborescent Composition Function

Let T, be the hierarchical composition function
that allows quorums composition over the
largest set of elements. We consider two sets of
quorums Q, and Q- defined over sets U, and U-
respectively, with Uy ~ U, = ¢ and x €U,;. To
construct a quorum system over Us = (U)\{x})
Us, we define T, as follows:

93/¥q1€Q,q2 €Qy:
(ql_{x}} vy ifxeq

q1 ifxeqp

Q3= TX(QI:QZ):

This composition preserves all quorums
properties. Q; and Q; can be sets of clementary
quorums, or quorums rcsulting from previous
compositions.

As constructing quorums is a self-stabilizing
spanning tree function, the resulting quorum
system is self-stabilizing too.
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3.1.2 The Basic Pseudo-code registers, computes quorums and updates its

o OWn registers.
The special site (the root) reads its neighbor

The root

DO forever
for all neighbors m do  \* reading neighbors registers *\
irmi — read(rmi ),
Q « {}
Q + compute-quorum;
for all neighbors m do  \* updating registers *\
rim — write (0,0,Q,Q);
0D

Each site other than the root looks for its father and children before calculating
quorums and updating its registers.

An other site P

DO forever
for all neighbors m do \* reading neighbors registers *\
irmi 4 read(rm:);
Q +«{}h \* initialization of local variables *\

first-found + false;
dist < min (irm;.distance) + 1.
for all neighbors m do  \* looking for father *\
if (not first-found) and (iry; distance = dist - 1)
then
father & m;
first-found « true;
Q + compute-quorum \* calcufation of the quorum system iy
for all neighbors mdo  \* updating registers *\
if (m = father) then
rim 4 write (1, dist, P, irfatheri-pathroot);
else
rim 4+ write (0, dist, P,irfatheri pathroot),;
0D

Fonction compute-guorum(i)

leaf-child = notleaf-child = fictitious-child « {};
for all neighbors m do
if (iry,; is a leaf ) then
leaf-child + leaf-child U {m};
else

notleaf-child « notleaf-child U {m};

for each j in notleaf-child \* fix a correspondent *\
fictitious-child + fictitious-child U {I}; \* fictitious child | *\

Q « simple-cotefie(i, fictitious-child U leaf-child);
for each ! in fictious-child
Q@ + composeT}(Q, ir;;.coterie),

return(Q);
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3.2 A Self-stabilizing Planar Quorum
System

We are improving our previous results and
propose a new construction of self-stabilizing
quorums based on a particular planar graph
[Baz96]: the triangle lattice. The basic idea
consists in using a self- stabilizing spanning
tree in order to dynamically organize the sites
of the network into a triangle lattice, giving to
cach site a unique number, and thus the
associated quorums. Besides the planar
quorums properties. those of having small size,
optimal load and high availability, the
advantage of our approach lies in that this new
construction of  quorums  spontaneously
tolerates transient faults and adapts to the
dynamic configuration of the network, because
of its self -stabilizing properties. The
performance analysis based on simulations
shows that the self -stabilization time of this
new construction of quorums is better than that
of our previous algorithm.

3.2.1 A Planar Quorum System Based on the
Triangle Lattice

Recently, Bazzi introduced in [Baz96] a new
class of quorum systems based on a particular
planar graph : the triangle lattice. In [Baz96], it
has been shown that quorum systems built over
such a structure have small size, optimal load,
and high availability.

The triangle lattice is a particular instance of a
planar graphs class. For each integer d, we

d? +d

define a triangle lattice consisting of

vertices connected as shown in Figure 3. We
first define the infinite triangular lattice : it is
the infinite graph whose vertices are points

D
from (i) or (1 +—,] +—] where i and j are
4 2

integers such that each vertex (x, y) of the
graph has the verlices(xﬂ-’l., y), (x— 1, y)_,

[Hl +l] (x_l +lj
z:y 2 3 z?y 2 2

[x+l -lj and (x-—i —l] as
Y72 5 B,

neighbors. The triangle lattice is a [inite

subgraph of the infinite triangular lattice whose

vertices  (ij)  salisfy0< )< and

2

j<i<d-—1- jfor some positive integer ¢. An

optimal quorums selection strategy —was
proposed in [Baz96].

Let G be a connected planar graph organized as
a triangle lattice. In such a structure, we
distinguish among three vertices a, b and ¢ as
shown in Figure 3 (b). A planar quorum
consists of a minimal path Py, (horizontal) that
connects (a...., b) and (a...., ¢), and a minimal
path P, (vertical) that connects P, and (b, ..., €).
The resulting quorum systems are coteries and
are non-dominated [Baz96].

3.2.2 Proposed Self-stabilizing Strategy

In this Section a strategy for constructing self-
stabilizing planar quorums over a general
graph, is presented. We do not make any
assumption on the system topology. The
principle of our approach is based on a logical
organization of the network into a triangle
lattice 7. According to our model, the vertices
of graph T correspond to the sites in the system
while the edges of 7' are logical edges which
must not necessarily correspond to actual
communication links between sites. Then the
planar quorums can be automatically deduced
from the logical structure.

a
x/ <}' AN

s s / —
b f/<?/\//\\\1>,‘..\;§ c

(b)

Figure 3. (a) Infinite Triangle Lattice ; (b) Triangle Lattice; d=3
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Principle

This Section deals with the problem of
constructing planar quorums without any prior
knowledge of the underlying communication
network. In a triangle lattice, a site can identify
the position of its neighbors with the help of
their coordinates as defined above. In our case
we use site numbers rather than coordinates.
The basic idea of constructing planar quorums
over a general graph is to logically organize the
graph as a triangle lattice, using a spanning
tree. This spanning tree allows the numbering
of all sites, which defines a unique order over
the sites of the network. A logical triangle
lattice is then built over the system using this
order. The position of a site, level and rank in
the triangle can be easily deduced from the
number that represents it. Each site can know
the numbers of its neighbors. There is a
geometrical progression that defines an
induction function between the site numbers.

Example

Consider G as a distributed system with ten
sites Py, ..., ,Py as depicted in Figure 4 (a). Let
Py be a special site. A spanning tree of the
network of which the construction is described
in the next Section is given in Figure 4 (b). The
generated paths are: {Po, Pi. Py, Pg}. {Po, P,
Ps}, {Po, P2}, {Po, Ps, Ps, Ps}, {Po, P, P3} to
which corresponds the following order : Py, P,
P‘;, Pg,Ps,PQ, P3,P5, P;\. P‘y.

Po. Py} { Py, Py, Pg, P53 } will define correct
planar quorums.

P ¥
NN,

Figure 5. The Corresponding Triangle
Lattice

Formally, let N, be the site number of a site ;.
The P; position in the triangle lattice can be
defined by determining both its level 4 and
rank » which can be calculated as follows:

d =k +1
{k +k<N}

:d—zdz +Nj k:[\/ﬁ'i]

As mentioned above, a quorum ¢ can
immediately be determined. It consists of a
union of a vertical path P}, and a horizontal one
P, given by the following expressions:

"
(P j

[ ® ¢

Figure 4. (a) The Communication Graph ; (b) BFS Spanning Tree

According to this order the sites can be
organized into the following triangle lattice:
sets {P1, Py, Ps, Ps }, {Ps, Ps, P2, Py }, { Ps, Ps,
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d?+d
Py ={Ni —(r=1).Nj ~(r-2)....Nj "_21}
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i i
PV:UH={] {un /uy <N}
where N is the network size supposed to be

1 : ;
known and u, a series whose general term is
given by :

i
U =il i +d+n
n n-1

Proposition 1 For each N, : q = P, u P,
defines a planar quorum.

Hence, according to the previous proposition,
one can easily build a planar quorum system
using a spanning tree. In order to compute an
adaptive planar quorum fitting the dynamic
evolution of a communication network. our
basic idea consists in building a self -stabilizing
spanning tree over .S, which allows to generate
the same order stored in each node : sifes are
numbered according to the order in which they
appear on the paths from root to leaves, Then
we obtain a logical triangle lattice. Planar
quorums follow by seclecting anv two sets of
nodes of which union defines horizontal and
vertical paths in the triangle. When sites or
links fail, the self -stabilizing spanning trce is
spontaneously reconstructed and eventually
leads to a new stabilized spanning tree which
generates the corresponding planar quorums.

We adopt the same communication model.,
Each register consists of four fields: (1) 7.
father is a binary field that is equal to 1 (resp.
0) if Pjis (resp. not) P's father in the spanning
tree, (2) 7y distance is an integer that
represents distance of P, from root Py, (3) 1y
path: it corresponds to a set of all possible paths
from P; to descending leaf sites on the tree, and
(4) ry. pathroot stores all possible paths on the
tree that start from the tree root P, and end on a
leaf site. Each site knows the site numbering
once it correctly gets the pathroor field.

The Algorithm

Thereafter follow the pscudo-codes of the root
site and of any other site. The special site (the
root) reads its neighbors registers and generates
all possible paths from the root to leaf
processes.
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4. Correctness Proof

Since the two constructions are based on a self-
stabilizing spanning tree, the demonstrations of
the self-stabilization property of the resulting
quorum systems are similar. In this Section. we
give the correctness proof of the second
algorithm. Recall that the basic idea is to
construct a self-stabilizing spanning tree from
which we derive some order between the sites.
Finally, a self-stabilizing planar quorum system
can easily be deduced.

To prove the sclf-stabilization property of
quorums, we first define the predicate that
specifies the legitimate states and then prove
the closure and convergence properties.
Predicate: Let P be the following predicate,
.V 1#0.3!]) such that :

Tij- Jather =1

|V k=] (i,k)GE, Ik . father =0

2.V (ij) € E: 1y distance = min y dlgl-
3V )peE:

{r:_i- path = {11k [Py leaf” process descending of Pl}

1;j- pathroot = {IOk ! Py leaf” process descending of i’()}

4.V jsuchthat (0, i) € E we have:

. father =0
;. distance = 0

(1) guarantees father unicity for each process;

(2) guaranteces that each P; is at minimal
distance from the root;

(3) guarantces numbering unicity;

(4) is a particular root property.
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The root

DO forever

for all neighbors m do
trmi + read{rm;);

P« {}

for all neighbors m do  \* inserting the root identity *\
for each q in ir,,;.path do

P+~ PU (P& q)

for all neighbors m do  \* up«dating registers  *\

rim + write (0,0, P, P};

\* reading neighbors registers *\

0D

For a site other than the root site, first it looks for its father and children, then
generates descending paths and updates its registers.

An other process P

DO forever
for all neighbors m do
irmi + read(rm,;);
P« {}; \* initialization of local variables *\
first-found ¢« false;
dist + min (iry,;.distance) + 1;
for all neighbors m do  \* looking for father *\
if (not first-found) and (ir,,;.distance = dist - 1)
then
father + m;
first-found « true;
else
if (i7,n;. father = 1) then
- for each q in ir,,; .path do
P+~ PU(P®q)
for all neighbors mdo  \* up-dating registers *\
if (m = father) then '
Tim + write (1,dist, P, irsatperi-pathroot);
else
rim - write (0, dist, P, ivgatheri-pathroot);

\* reading neighbors registers *\

\* inserting the identity *\

oD

The closure property is trivial. Convergence
property can be decomposed into two steps. We
introduce a first lemma to show that the
spanning tree will stabilize in a finite number
of steps, and a second one to prove that all
generated orders converge to the same order.
Finally we deduce from the two previous
lemmas, the self -stabilization characteristic of
our planar quorum system.

Lemma 1 The spanning tree is built in a finite
number of steps and stabilizes starting from
any initial state.
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Proof: The first lemma can be shown by
induction on the root excentricity that is
defined as : ey = {max dyj , 1< j< n} (dy;
being the shortest distance of P; from root Py).

Let d be an integer and H the induction
assumption defined as follows: H : V P; #P,

where dg; <d, P, converges to a state where :

(1) P; has a unique father, and
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(2) all distance ficlds store the minimal
distance of P; from Py, that equals the father's
distance plus one.

In the case of d=0, the graph is reduced to a
single node. H is obviously satisfied. Assuming
that H is true for a tree with a root excentricity
ep = d, we show that H is true for d+1.

Induction steps : considering a tree with a root
excentricity ¢, = d+1, we assume that P; is the
root tree. Given an infinite execution starting
from an arbitrary configuration. According to
the induction assumption, any process at
distance <d converges to a state where (1) and
(2) are satisfied. So, the subgraph formed by
the processes that are at distance <d from P,
stabilizes after a finite time.  Since any
execution can modify process states after
stabilization. and because there is at least one P,
such that its real minimal distance from P is
d+1, once executed its code, it increments its
father's distance by onec and thus reaches a
legitimate state where its distance is d+1.
Therefore, a spanning tree of depth d+1 is built
over G. According to the closure property, the
tree structure cannot be modified. O

The generated orders are improved while the
spanning tree is being constructed. However,
we consider the worst case in Lemma 4.

Lemma 2 : From a stabilized tree and an
arbitrary memory state , all generated orders
converge (o a same one.

Proof : We assume that a tree rooted on Py is
built over graph G. This means that properties
on the father and distance fields are satisfied,
As already seen, each P, must generate some
local paths stored in the fields ry. path of its
registers. The construction of local paths is in
fact a restriction of the problem over a
subgraph, which a spanning subtree rooted on
P; corresponds to. If we start from a state with
arbitrary order, a process that executes its code
can casily know its position on the tree: its
father, its children and its other neighbors.
Constructing local paths is to insert process
identity into all children paths. Thus, for a leaf
process local paths are restricted to its identity.
A process on level 1 of the tree has a set of
paths in the form (its own identity, the child
identity) and so on until the root. All possible
paths on the tree are generated in it and
propagated by copy all over the system.
Constructing paths is a tree function, and since
the spanning tree is self -stabilizing, these
paths will stabilize in a finite number of
transitions.
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Since each process activation implies the
destruction of illegal paths, the system will
reach in a finite time a global state in which all
generated paths are legal and correspond to the
spanning tree. Hence, the algorithm generates
some order that defines a sites self-stabilizing
numbering and consequently a self -stabilizing
triangle lattice. O

Proposition 2 A gquorum system built over a’
self-stabilizing iriangle lattice is self-stabilizing
itself.

Our quorum systems are first of all fault-
tolerant. They offer full and automatic
protection against all transient failures because
of the seclf-stabilizing algorithm which can
recover from any arbitrary configuration, no
matter how much the data have been corrupted
by failures. And they are also dynamic, because
computing quorums represents a topology
dependent function. After the occurrence of a
topological change, the system runs for a while
until its topology stabilizes and then converges
to a new solution.

5. Performance Analysis of
Quorum Systems

Constructing quorums is a spanning trec
dependent function which is self -stabilizing.
So, for performance analysis purpose, we focus
on the self-stabilizing time. This Section
makes an estimation of the number of steps to
be taken so that the quorum system should
stabilize. It is a difficult task to do not only
because of the fact that it depends on the graph
characteristics and the assumptions made on
the algorithm execution, but also because there
is no detection of stabilization, i.e. it is not
possible to observe from within the system that
a legitimate state has been reached. It is also
difficult to know how long it will take for the
system stabilization.

Nevertheless, on certain assumptions, we can
have an idea of estimating the number of steps
necessary to converge to a legitimate state. In
the beginning a naive computation of the
stabilization time is made. Then in order to
validate our theoretical predictions, we make
use of a simulation that estimates the self-
stabilization time for different network
topologies.

Finally, we model the stabilization problem
with the help of the Markov chains theory. On
the one hand, we describe how the
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characteristics of a system with the best
stabilization time can be defined. On the other
hand we explain how to get an idea of the
capacity of a given system in terms of time
taken to stabilize. The idea of these empirical
measures is a local checker that validates the
stability situation [BAV91], [Var92]. Thus, if
the protocol is in an inconsistent state, some

components of the system will be able to notice

this fact locally. We describe the legitimate
state of the system in terms of local predicates.
In a shared memory model, a local predicate is
any predicate that only refers to the state
variables of a pair of neighbors. If all local
predicates hold, the system is stabilized. Recall
that the protocols that are locally checkable but
work on a tree topology. can be stabilized in
time proportionally to the height of the tree
[Var92],[GVGYS].

5.1 Standard Computation of Self-
stabilization Time

The number of steps the quorum system needs
to stabilize depends on the graph characteristics
and the demon under which the system works.
The evaluation of this number will be restricted
when a sequential demon is used. In a general
case the situation is more complicated, for
example when using any centralized demon,
the sites can be activated in an arbitrary order.
Nevertheless, with a distributed demon the
results are better as many sites can be
simultaneously activated.

Let e be the root site excentricity which gives
the distance of the longest path from root ¢ =
Max {dy; 0 <i < N} (dy is the minimal distance
of P; from the root), and N the network size
giving the number of sitess. We define a
sequential demon as a centralized demon in
which the number of steps between two
activations of a site is at most 2*N.

For the two constructions which are based on a
spanning tree, the sites behavior will be the
same. The difference between our two
algorithms lies in the quorums computing
function. The algorithms have the same
stabilization time in terms of the number of
steps. For example, the lower bound of the
stabilization time of the second construction
can be evaluated when the best sequential
demon is supposed, reducing the self -
stabilization time as much as possible. In such a
case, the leaf sites first get their correct partial
paths of the spanning tree. With another wave,
these correct paths are propagated to their
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father sites, and so on, until the root site. It
takes e*N steps. Once the root site obtains
paths from its children, these partial paths are
completed and propagated to its sons, then its
grandsons, and so on, until the leaf sites. Thus
the complete propagation takes other N steps.
The total number of steps is then (e+1)*N
under the best sequential demon.

Under a general sequential demon, the number
of steps is O(N?). Indeed the time necessary to
reach a legitimate state includes a time O(N*e)
for constructing the spanning tree plus a time
O(N) for computing and propagating the paths.
Given ¢ < N-1, the total number of steps
necessary for stabilization is O(N?).

Proposition 3 Using a sequential demon, the
number of steps necessary for the stabilization
of quorums is O(N°).

To validate our predictions, we make some
simulation experimentations that estimate the
self-stabilization time for different network
topologies.

5.2 Experimental Results

To validate our quorums constructing technique
and to compare our theoretical predictions, we
have carried out some simulation experiments.
The tests for self-stabilization are done for some
classical topologies when a general demon is
used, and are compared with the stabilization
time of the best sequential demon. The
simulation results show how the number of
stcps required for the stabilization wvaries
according to the network size,

Graphs 6./, 6.2, and &3 show the evolution
curves of the number of steps necessary for the
stabilization of our algorithm according to the
network size. Each graph contains two curves.
The upper curve gives the stabilization time for
some classical topologies under a general
sequential demon, while the lower one exhibits
the same stabilization time when the best
sequential demon is used, giving the lower
bound of the stabilization time.

In Graph 6.3, we can observe that the upper
and the lower curves coincide for a star. That is
due to the fact that all sites but the root site
have the same characteristics, and therefore the
stabilization time does not depend on the
demon. The number of steps is just a linear
function of N, as e is constant.
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Figure 6. Results of Simulation

For a ring, the excentricity, which is [N/2],
linearly increases with the network size, the
stabilization of the algorithm takes about N¥e,
i.e. N%/2 time as confirmed by Graph.2.

Graph 6.4 illustrates the number of steps
required for stabilization when a general
topology is used. We have kept the special site
excentricity as constant e=6. We can see that
the lower bound shown by the lower curve is
proportional to the network size. The upper
curve will exhibit results when an arbitrary
sequential demon is used. We can see that the
number of steps the system takes to stabilize is
approximatively linear with the network size.

Based on the stabilization time, which is an
important parameter in the design of dynamic
self-stabilizing systems [BBBC97], we have
also compared the two self-stabilizing quorum
systems in terms of quorum size, load and
availability.
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Considering the simulation results, this
comparison shows that the second strategy is
more interesting in terms of stabilization time.
As planar quorum systems are immediately
deduced from the logical structure built over
the system (sites do not perform any quorum
computing),  this  strategy  considerably
improves the self -stabilization time. However
one may overlook this advantage if the
comparison is based only on the evolution of
the number of steps required for stabilization.

On the other hand. according to the criteria of
quorum size, load and availability of sites, the
so constructed quorum systems are much better,
because they are non -dominated, and all

quorums have the same size =+/2* N , where
N is the network size. This is a desirable
property that provides a balanced system.
Quorum systems are available beyond the
stabilization period.
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5.3 Modeling Using Markov Chains

To evaluate the reliability and the performance
of our system we use the Markov chain concept.
For this we propose a stochastic model |Bui92],
which describes the evolution of the system
through a state-machine approach.

This type of modeling let us study the system
behavior, and, subsequently, deduce some
optimality criteria. First it consists of selling a
network model as homogencous and finite as
Markov chains in a steady state functioning,
and of defining, by an analytical resolution, an
optimal functioning rule that guarantees the
best stabilization time. Finally, the estimation
of probability terms of the transition matrix
can be done using statistical results of
simulation,

A Markov chain is a discrete-time stochastic
process defined over a set of states S in terms
of a matrix P of transition probabilities. Set S is
either finite or countably infinite. The
transition probability matrix P has one row and
one column for cach state. The Markov chain is
in one state at any time, making state-
transitions at discrete time-steps 1 = 1, 2, ... .
Entry Mj in the transition probability matrix is
the probability that the next state is /, given the
current state i. An important property of a
Markov chain is the memorylessness property.
The future behavior of a Markov chain depends
only on its current state, and not on the way it
took to get to the present state. More formally,
this property can be stated as follows:

Ve, P{X 41 =/ Xo =ig, X1 =ip,.... X; =i} =

P{Xy41 =j/ X =i}
X is the state of the Markov chain at time .

5.3.1 Proposed Stochastic Model

Our stochastic model based on the approach in
[Bui92] is represented by a network of N
processes Py, Pi,...Py,. Each one defines a
homogencous and finite Markov chain. The
behavior of a process P, is a random variable
which satisfies the memorylessness property X*
which is finite and time-nondependent. The
associated Markov chains are ergodic and
without cycle. We obtain a network of
homogeneous and finite Markov chains X°, X',
.., X" in a steady -state functioning. The
parameters of such X* are :

State space : X consists of three states. A
process Py can be in either
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1. stable state : the system is locally
stabilized ; quorums are correct and
available. We use a local checker
that validates the stability situation,
or

2. not-stable state : the process
behavior has not been stabilized yet
and the quorums computation is in
progress. Quorum systems are
considered as non available, or

[F%)

out-of-service state ; the
corresponding site is down (fail
stopping) which induces a change
in the current topology.

Transition matrix: M* depends on a parameter

P = (O P & 7)) € [0.1]" . The
corresponding staic automaton is given by :

Figure 7. The State Automaton for Py,

So, at any moment, X" is susceptible of
being in one of the three states (1)
stable, (2) not-stable and (3) down.
These states are all recurrent and have
the same period equal to 1. There is
one ergodic class without cycle, so the
system is in a steady -state
functioning.

For the sake of clarity, this evaluation
takes into account the following two
assumptions, otherwise it induces a
large state space: (1) We only consider
the physical site failure, any other fault
can occur, (2) site failures are not
frequent, and a process Py can never
fail when it is in nstable state. Thus,
the transition matrix M* has the
following form :

l-ay -0 O Ak
Mk=| gy -8k O
0 re -7k
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Initial law : Xnk, which is not indispensable, we
nevertheless suppose that initially all processes
are in nstable state.

5.3.2 Optimization Problem

An analytical resolution of the problem consists
in expressing it as an optimization problem.
This allows the determination of a theoretical
rule which will guarantee the best operation of
the system, and a design of which
implementation draws near this rule. The
problem of the "good" functioning system is
based on some optimality criteria, which are
represented by optimization (maximization or
minimization) of some functions "guiding" to
the system functioning. We define such a
function F called choice function of parameter
p = (p1 .p2...., Px) Where pr = (o, PBi, O 1) €
[0,1]°, of which components are the transition
probabilities corresponding to Py.

This function optimization consists in finding
the optimal rules M, These rules are called
optimal if their p render the choice function F
maximum (resp. minimum), when the
optimality criterion is the maximization (rcsp.
minimization) of F. A rule is called bad if its p
makes the choice function F maximum (resp.
minimum). when the optimality criterion is the
minimization (resp. maximization) of 7. A rule
which is not bad is called judicious. Optimal or
judicious rules of functioning are "good"
functioning rules.

In this context, the optimization problem
consists of minimizing the time a process takes
to return to a stable state. A function F' is
designed, which must be optimized, for finding
the optimal rule(s).

min F = mmZT —mmz ka(J

k=1 n=1

(m)
where f lkl is the probability, which starting

from a state 1 (stable), Py returns to for the first
time after n transitions, i.e:

fk(n} _p Xit+n =1, Xg #1,
s=t+1,..,t+n-1/X; =i

According to the above state automaton, the

ko
general form of f 11 s given by :
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(D
f“ =0
(2)
f;] —Qk/jh
(n) n-2
f]kl =0x(1- B )" " B +arBrrk
n-3 —3-p
Y (1-71)°(1- A ) n=3
p=0

the goal is to find the optimal py that minimizes '
Prop=(f1(0),12(0),£3(0).£4(0)) where 8[0,1].

By optimizing the stabilization time for each
process, the global time of system stabilization
will be reduced.

5.3.3 Estimations of A Site Behavior

In practice, the Markov chains are used as a
tool for estimating some unknown parameters
of the system concerned using the results of the
Markov chains theory and some empirical
measures, We have designed some procedure
attempting to determine the characteristics of a
given system and thus to give an idea of its
capacity in terms of time it needs to stabilize.

To estimate the probability values of the
transition matrix, we consider My , defined as

a two-dimensional transition matrix associated
with the randomized variable Y* given by:

Yi(w) = (i, 1) © X1(o=1) and X (o=1")
Obviously, Y* is also a Markov chain.

In studying the processes behavior from the
pairs (i,i") we want to remark the number of
transitions from one state to another and the
length of time it goes from one state fto
another.

Thus we can use the following result, if the
initial site is in a steady -state functioning, the
two- dimensional one too and we can apply the
"strong law of large numbers”. We establish
that:

li g ==
1m —L& 1=
n—+oo I Tl

.. | N
lim — = aimjj

n—+w
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n
where nj;= )1 {(i.0)) [Yt (a))] is the number
t=1

of direct transitions from state i to state j, for
3
the initial process (X ) and nj.= Z n ji(a)).
=t

When the observance period # is long enough,
: njj L

we consider that —is a good approximation

nj

1
of m; and that — 1is a good estimated value of
a1

le , the return time to the stable state for some

process P.. We can thus approximate the global
time the system neceds to stabilize. In the
following an application of which results have
an interesting interpretation in terms of the
Markov chains theory, is presented.

Example
Let us consider as an example a small system

with five sites Py, Py, P,, Ps, P4 connected as
follows:

Figure 8. The Communication Graph

We use a simple probabilistic model of the
failures and repairs in the system. For the sake
of simplicity, we suppose that the root P, is a
powerful (strong) site which is never down. All
other sites may fail independently. We assume
that failures and repairs follow a Poisson
distribution with parameters 2, and A,
respectively. And we assume that failures are
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transient, that they are crash failures (i.e. a
failed site stops function rather than functions
incorrectly).

We use the /local detection paradigm. The
essence of this paradigm is in defining a local
condition based on the state of a site and its
immediate neighborhood. such that the system
should be in a globally legal state if and only if
the local condition is satisfied on all nodes.

We have chosen to study the behavior of a local
site, as P; for example. In order to estimate the
expected number of steps necessary for its
siabilization, its evolution has been observed
over a large time interval and the number of
transitions between states has been counted.
Using a sequential demon, the transition matrix
M' estimated by

Ml =] 00541 09459 0

0.9883 0.0104 0.0013]
0 00099 09901

confirms the stationary distribution of X, given
by:

vi,j lim m{" =q;j>0

n—+oo

We obtain

. ~ 1(n)
ImM =

n—+oc

0.7421 0.1605 0.0974

[0.7421 0.1605 0.0974}
0.7421 0.1605 0.0974

The expected return time to a stable state for

site Py is given by Ty = LAIn this case our
a1
empirical measures estimate this parameter by
(1.4). T, is the local stabilization time of P;.
Calculating this time for each site P, under the
same conditions, allows that the global time for
the system stabilization is estimated. In this
case, sites being activated in a sequential order,
the global time corresponds to the sum of local

stabilization times for all sites T= )", Ty .

6. Concluding Remarks and
Perspectives

Within the TransDoc project, we have proposed
two self-stabilizing strategies for constructing
quorum systems for reliable document access in



fully distributed information systems. Besides
the good properties of planar quorums in terms
of load and size, the advantage of our approach
is in that the construction of quorums
spontaneously recovers from transient faults
and is self-adaptive to dynamic modifications of
the network, thus providing high availability.
Furthermore, both theoretical performance
evaluation and experimentation show that our
proposition is an efficient one.

6.1 Related Work

The work on quorum systems considers many
questions about fault tolerance. Several authors
[AA91], [Baz96], [RL92] have proposed
different strategies of fault tolerance for
constructing quorum systems. In planar
quorum systems [Baz96], Bazzi introduced a
failure procedure which tries to go around the
failure region while constructing a horizontal
path. Unfortunately this solution is not adaptive
and cannot tolerate network changes there
where sites are dynamically inserted. Another
limitation of this strategy is when a failure
occurs: both size of quorums and load are high.
Considering the network organized into a tree,
Agrawala and El Abbadi [AAY91] constructed
quorums by selecting paths from the root to
leaves. When a failure occurs, they replace the
failed site by a set of sites that belong to a path
starting from this site and ending on a leaf.
This proposition considerably increases the
communication cost: a large number of
messages and large quorum size. Furthermore
their solution only tolerates a restricted number
of failures and is not resilient to leaf failure.
Generally, their algorithm suffers from poor
failure resilience. Furthermore, the load of sites
is not fairly balanced in the solution since the
root site belongs to all quorums. Maekawa has
proposed to construct "quorums” by imposing a
logical structure on the network. In spite of the
small quorum size, Maekawa's protocol only
associates one quorum with each site. This
makes the protocol be non -tolerant to failures
and reduces the availability of the system. The
construction used in [RL92] assumes some
predefined order of sites to characterise a grid
based quorum. In spite of its dynamic aspect this
solution is not optimal in terms of quorums size.

6.2 Perspectives

We have applied our sclf- stabilizing quorum
construction to resolve several concrete
problems within the TransDoc project. The first
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one is a reliable document access control for
ensuring the "one copy equivalence" property.
Within the same project we have also studied
an application on information retrieval in
global information systems. In the following we
set out the guidelines of these two applications.

1. A global information system such as World
Wide Web (WWW) is a very dynamic
system. It is difficult for the user to keep up
with the fast pace of information
generation. We have information providers
that look for interested users and we have
users that seek relevant information. The
aim is to find a strategy to perform the
matching and to establish the flow from
providers to users. A quorum systems
based solution is  the  selective
dissemination of information servers (SDI)
[YGM87]. A document (resp. user profile)
must be sent to one or more "document
quorum” (resp. "profile quorum") servers.
The non-empty intersection of quorums
guarantees that a profile misses no
documents.

2. Inan open information system, a service may
be provided by more than one server. A client
asks the system for a particular service by
means of its name and not by its address
because servers may be mobile. Thus before
the client sends his request, he has to locate a
server that provides the desired service. In a
previous work we have proposed several
multi-agent based dynamic request placement
strategiecs [CRBY7|, [Ram97]. Actually, the
mechanism that translates the name of a
service into an address in the network can be
dealed with quorums. Each server s posts at a
set of nodes P(s) the address where it resides.
This information is locally stored in each
element of P(s). To request a service, the
client selects a set Q(c) and queries each one
of its elements. If P(s) and Q(c) are quorums,
any element of P(S) ~ Q(c) which is not
empty, can return the address where the
service is available.
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