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Abstract: Deadlock is a critical problem in the control of
Automated Flexible Manufacturing Systems. Namely, when a
deadlock occurs, the flow of jobs is permanently inhibited so
that operations on parts may not be performed. That is why an
efficient control policy must avoid deadlock without imposing
unnecessary restrictions on part loading and routing,

In this paper we generalize the results of a previous
companion work dealing with deadlock avoidance in systems
containing single capacity resources. Using the same theoretic
framework, we rigorously characterize the deadlock
occurrence in multiple resource systems. Digraph theory is
still effective for deriving necessary and sufficient conditions
characterizng highly undesirable situations (second level
deadlocks) that inevitably evolve to circular waits in the near
future, The results of the analysis let us introduce some
control laws (named restriction policies) that avoid deadlocks
in multiple-resource svstems by inhibiting or enabling some
properly identified events. Finally, the paper discusses and
compares the computation costs of the proposed restriction
policies.
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1. Introduction

Agile and Flexible Manufacturing Systems
(FMSs) consist of a number of workstations
(machines) capable of performing a set of
operations, and of a Material Handling System
(MHS) that carries the parts (jobs) among the
workstations. Machines and transport units are
under the control of a computer or of a network
of computers. FMSs can simultaneously process
medium-sized volumes of various part types,
combining efficiency in using available
resources and rapidity in responding to changes
on the marketplace. However, due to the
concurrence of various jobs competing for
limited resources, the management and the
operation of automated production systems bear
some control problems such as blocking,
conflicts and deadlocks. Specifically, deadlocks
cause heavy damages because they stall the
system activities and prevent parts from
flowing. Namely, when a deadlock occurs,
transferring some jobs from one resource to
another is impossible because each such job is
waiting for a resource that is held by parts in
the same set. Hence if deadlocks can arise in a
manufacturing system it is necessary to
characterize these situations and to provide
suitable remedies for them.

Approaches to address the problem of
deadlocks in FMSs can be classified as
1) prevention methods. ii) detection and
recovery strategies and iii) avoidance policies.
The simplest means of preventing deadlock in
automated manufacturing systems is to outlaw
circular waits among concurring jobs at the
design stage. In other words, the layout must
allow all the jobs to flow the same direction or,
in any case, must make jobs in production
belong only to types following a unidirectional
route. However, these approaches unnecessarily
limit the manufacturing flexibility by reducing
the variety of the part-mix the system could
produce and by making choices of alternative
routing impossible. Detection and recovery
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approaches use a moniloring mechanism for
detecting the deadlock occurrence, and a
resolution  procedure  for  appropriately
preempting some deadlocked  resources.
Obviously detection and recovery approaches
require a continuous monitoring for deadlocks
and lead to a reduction in productivity due to
the recovery process. Finally, deadlock
avoidance schemes in manufacturing processes
prevent circular waits to occur by proper
operational control of the part flow. This paper
falls just into this category.

Many methods for the synthesis of deadlock
avoidance controllers use Petri Nets (PNs) as a
formalism to describe FMSs and to develop
appropriate  deadlock avoidance policies.
Namely PNs, as a graphical and mathematical
tool, provide a uniform environment for
analysis of agile and flexible production
systems [3,15,20]. In one of the first papers
dealing with deadlock in manufacturing
systems, Banaszak and Krogh [1] observe that
avoidance methods are the most appropriate to
face deadlock phenomena. These authors also
stress that classical avoidance methods
developed by the computer science community
are "unduly conservative", since they ignore
available information about the organization of
the manufacturing processes. Banaszak and
Krogh develop an algorithm for a class of PN
models formed by a set of sequential processes.
The algorithm ensures that the production
progress is always allowed by controlling the
input of new tokens in a model "zone". For a
general class of PN models, Viswanadham et al
[16] propose a methodology for establishing
both prevention and avoidance control policies.
The first one uses the net reachability graph.
while the second onc develops a look-ahead
procedure that searches for dcadlocks by
simulating the system dynamics over a given
number of steps. Since the avoidance policy
does not prevent deadlock from occurring, the
authors combine this policy with a deadlock
recovery method. Hsieh and Chang [11]
propose a deadlock avoidance controller for a
class of PNs that belong to a larger class than
the nets of Banaszak and Krogh. However this
class is not as general as the category of PNs
considered by Viswanadham et al. Mare
recently, Ezpeleta et al [4] have considered a
generalization of the PN model used by
Banaszak and Krogh. The new models. called
by the authors "Systems of Simple Sequential
Processes with Resources”, present nice
properties characterizing the liveness in terms
of structural PN items (siphons). The intensive
use of information on the PN structure is one of
the main interesting characteristics of this
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paper. Also Xing et al [18] adopt a PN model
that is similar to the nets considered in [1) and
emphasizes the concept of deadlock structure
for constructing a deadlock avoidance policy.
Finally Reveliotis and Ferreira [14] suggest a
different approach for developing provably
deadlock-free policies. They provide a new
characterization of the system state safety by
modelling an Automated Manufacturing Cell
as a Finite Statc Automaton.

As an alternative to PN models, Wysk et al [17]
introduce a digraph representation of the
jobs/resources interactions. The authors present
an algorithm for deadlock detection. used in
conjunction with resolution procedures. Still
following a digraph approach, Cho et al [2]
propose several detection methods for part flow
deadlocks as well as for particular situations
foreboding dcadlock conditions and named
impending  part-flow  deadlocks.  These
procedures arc based on the characterization of
special 1ypes of circuits named “bounded
circuits" and are completed bv a deadlock
resolution methodology. The paper of Kumaran
et al [12] improves the methodology of Wysk et
al by determining deadlock dynamically on the
basis of a dvnamically updated digraph. The
authors also introduce a deadlock avoidance
method that, however. may be computationally
complex. if the number of parts/workstations is
large.

Recently, Fanti ¢t al [8] have improved the
knowledge of dcadlock phenomena in flexible
production systems by showing that deadlocks
can be easily identified by the occurrence of
particular figures in two digraphs, associated
with the discrete-event dynamical system
{DEDS) modelling the manufacturing plant.
The first digraph, named Working Procedure
Digraph. defines once for all the potential
interactions among the whole production mix
and the resource sequences required by each
part in the mix. The second digraph, named
Transition Digraph. describes the current
interactions berween jobs and resources for
each system state. It indicates both the
resources currently held by jobs in process and
the resources required by the same parts in the
near future. Using such digraphs, the authors
derive necessary and sufficient conditions for
deadlock occurrence and for the identification
of critical situations named Second Level
Deadlocks (SLD) that are not circular waits,
even if they necessarily evolve to deadlocks in
the near future. Such conditions also allow the
authors to formulate effective control laws
(restriction policies) for deadlock avoidance [6-
8]. The approach is a general one even if it has
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a limit on the fact that it mainly deals with
deadlocks in single resource systems. Namely,
it easily takes into account multiple items of the
same resource type in some well defined cases
only.

In this paper the authors generalize the results
of a companion work [8], rigorously
characterizing deadlocks in multiple-resource
systems. Once again the Working Procedure
Digraph and the Transition Digraph turn out to
be very effective in deriving the necessary and
sufficient conditions for deadlock occurrence
and for the characterization of the so called
Second Level Deadlocks. The digraph theory
provides the theoretic framework allowing a
clear statement of the results. If the cvcle is the
main concept underlying the identification of
deadlocks in single resource systems, so strong
components with particular characteristics
provide the theoretical framework for
characterizing deadlocks in multiple-resource
plants. On this basis, the authors develop
control  policies that allow concurrent
production events leading to high resource
utilization and avoiding deadlocks.

The organization of this paper is the following.
In Section 1T we establish notations and basic
definitions. In particular we describe the
peculiarities of the DEDS modelling the
manufacturing svstem. Moreover we introduce
the two digraphs, the Working Procedure
Digraph and the Transition Digraph. that are
the main tools to state concepts and results of
the paper. Finally, in order to clarify notations
and nomenclaturc, we summarize soine
digraph properties widely used in the
following. In Section III we use some particular
figures of the Transition Digraph to state a
necessary  and  sufficient condition for a
deadiock occurrence and illustrate how to use
such a condition for developing deadlock
avoidance policies. In Section IV we analyze
some particular situations named Second Level
Deadlocks that are not actual deadlocks but
inevitably give rise to a deadlock in the
immediate future. The characterization of
Second Level Deadlocks is the key to state the
control policies in Section V. Such policies
differ in complexity and in the degree of
restriction that they impose on the free
assignment of the system resources to jobs.
Usually, higher degrees of freedom in resource
allocation lead to better performance of the
production process. Section VI discusses the
details of the computation complexity in
implementing the proposed control policies.
The discussion shows that each policy involves
fwo distinct computation levels. The first one
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concerns the off-line computations and refers to
the algorithms executed only once. before the
mix production start-up. On the contrary, the
sccond level concerns the computations
performed on-line and in real time. Finally,
Section VII draws some concluding remarks.
With the purpose of improving the readability
of the paper. the most complex proofs are
reported in two Appendices.

2. Notations and Basic
Definitions

This Section extends the notations already used
in the companion paper [8] and introduces new
concepts necessary to deal with systems
containing multiple capacity resources.

A.The Model

We consider a production system S containing
multiple capacity resources (e.g. multiple-slot
buffers. pools of identical machines, AGV
systems with several trucks, etc.). For the
convenience of analysis, we include a fictitious
resource rp the jobs acquire as they leave the
system, in the resource set R={r;, i=1,2,...,R}.
According to this notation, C(r;) indicates the
capacity of r;, i.e. the maximum number of jobs

that can contemporancousty hold such a
resource. Thus C(r;) is a finite positive integer
for i=1,...,R-1 and is infinite for =R, ie.
C(rg)=cc. Finally, we assume that processing
cach job requires a sequence of resources,
named working procedure. Thus, if J is the set
of jobs we have to produce, W={w} denotes the
set of all the working procedures, necessary to
process all the jobs from J. Obviously ry, is the

terminal resource of each we i,

We describe the behavior of S as a Discrete
Event Dynamical System (DEDS) [5,19],
whose state. ¢, contains the following
information on the operating conditions: set Jq
of jobs in process, the resources currently held
by each job from /g the working procedures
associated with such jobs, and, finally, the
residual working procedures, i.e. the resources
necessary for each jeJq to complete its
processiig. So, concerning the current state g,
HR(j) denotes the resource currently held by
jeJq, SR{j) and TR(j) identify respectively the
second and the third resources of the residual
working procedure pertaining to j and, finally,
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WP(j) indicates the working procedure of such
a job. Note that SR(j) is defined in all the cases.
Namely, by assumption, a job leaving the
system accedes to r. but, at the same time, it is
removed from set 'jq- On the contrary, TR(j) is
defined only if SR(j)= rp. We denote the set of
all system states by O.

The system state evolves according to the
asynchronous occurrence of certain discrete
events. All the events that involve jobs
releasing or acquiring resources are relevant in
this context. Therefore the DEDS model must
encompass the following two types of events:

1 (2)

n(3)

T I:
£ Wy 1

w2 Wa

Ty

is the working procedure this job has to
follow;

(b) a job progresses {from a resource to another
one, or it leaves the system (2-type event).
This event is specified by a job 1€y
progressing from HR(j) to SR(j), where
qe( indicates the current state of S.

B. Two Useful Digraphs

Now we introduce two digraphs: the former,
Dp~=(N,£p), named the Working Procedure

Digraph, shows the specific order in which the
resources appear in all the working procedures.

1 (45)

< .
(1J2:d3)

I O i r5(jy)

Figure 1. Example 1: (a) Digraph Dy (b) Digraph Dr(q); (c) Strong subdigraphs of Dy,

(a) a new job enters the system (1-type event).
This event is identified by a pair (j,w),

where jeJ is the job entering S and wel¥/

346

The vertex set N={r;} denotes the resource set,
with the same symbol r; indicating a generic
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vertex or a resource. In geometric diagrams a
small cycle (dot) represents a node and a
bracketed integer indicates the capacity of the
corresponding  resource (see Figure 1(a)).
Moreover the edge ¢;,,=(r;,r,,,). directed from r;
to ry;,, belongs to Ky VxN iff r, immediately
follows r; in some wel/. Commonly, €im 18
said to be "incident out r;" and "incident into
" Furthermore, the label of each edge from
Eyy denotes the working procedures generating
it and the set £,cFyy indicates the edge set
labelled by w.

The Working Procedure Digraph depends on
the mix characteristics only and so it does not
vary as the system state g changes. We
introduce a second digraph, Dl @)=[N,E1(q)]
named Transition Digraph that, on the
contrary, depends on the current state. More
precisely, while the vertex set still coincides
with the resource set and is fixed. the edge set
changes as q is updated. In any case, Dy,(q) is
a subdigraph of Dy because Ep.(q) cEp. In
particular, an edge ¢;;,, from Eyp is in Ep(q) iff
a job jeJq holds r; in the state q and requires

I;m as a next resource. Therefore an edge ¢,
from E.(q) is also named "transition g

contrast with the Working Procedure Digraph,
the Transition Digraph describes the current
interactions between jobs and resources by
indicating both the resources currently held by
jobs from Jq and the resources required by the

same jobs at the next step of their working
procedures.

Let us note that, if the capacity of resource rj is
greater than one, a single edge ejmeFrTHq)
may represent more jobs detaining r; and
requiring ry. To specify this situation, we
associate the following weight with each edge
Cim€LTH(q)

agleim) = Card({jeJq HR@)=r; and
SR()=rm}) (1)

where Card(.) stands for "cardinality of ..."
Thus ag(eiy) vields the number of jobs that in
the state g hold ri and request r, as a next
TEeSOUrce.

Now, according to Harary et al [10], we define
Outdegree Value of a node r; the sum of

weights of the edges incident out ri in DT(q),
ie.
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R
qu(ri) - Z;aq(elm)

)

where we consider agleim)=0 if eimeFTr(q).
Hence, with reference to a generic state q, the
Outdegree Value of a vertex indicates the
number of jobs currently wusing the
corresponding resource. In particular, if
OVy(rj)=0 then rj is empty, if 0<OV ¢(r)<C(ry)
then rj is idle; finally, if OVy(1))=C(r;) then 1;
is busy. Obviously. a job jeJq holding rj and
requiring ry; as a next resource, is blocked iff
OVq(r)=C(ryy). In  this case, also the
transition ey e £T(q) is said to be blocked. On
the contrary, if OVqy(rm)<C(ry) then job j is
unblocked and the transition ejmeFTi(q) is
Jeasible. In the sequel Jq and Jq y indicate
the subsets of Jq collecting blocked and
unblocked jobs, respectively. Moreover ER(q)
denotes the set of feasible transitions in the
stale  ¢. Diagrams representing Transition
Digraphs use black (white) circles to indicate
busy (idle or empty) nodes and specify jobs
holding each resource. Edges arc labelled with
the corresponding weights (sec Figure 1(b)).

For any E*c/1H(q) and N*cN, throughout the
paper the following notations are used:

aq(E *) = Z f’q(eim) (3a)

t:imEE

CV®=Y"C(r,)
ieN "

(3b)

* =
OV, (V %) Z?Vq(ri) G0
riGN

Before continuing, we shall describe how to
update Dp.{q) on the occurrence of an 1-type or
a 2-type event. Suppose S in state q. For a job
Jj€/ entering S to receive service according to
wel¥, the first resource in such a working
procedure must expressly be idle or empty. On
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the occurrence of the I-type event, S makes the
transition from q to a new state q' where
Dy, wW)=[N.E1(q,w)] indicate the
corresponding Transition Digraph, i.e. D (q").
If r,,, and I, are respectively the first and the
second resource in w, then the edge set
Fr(q.w) equals Errr(q)u{emp}. Clearly it
holds: OVqr(rm)=0Vq(rm)+].

Analogously, let jequu with r;=HR(j) and
I, =SR(j). By definition of set ./, q,w m is idle or
empty in the state q, so that the transition
taking j from r; to r,, may occur. This 2-type
event updates the state from q to q'. So,
denoting by  Dylq.)=[V.E7(q.0)] the
Transition Digraph associated with q' and
putting rp=TR(j), the edge set £ (q.)) results
from the following operations executed on
Erq):

1. updating aq.(ei!n):aq(eim)—l and, if
ag(ejm)=1. removing the edge e;;,, from
ETr(Q);

2. putting aq.(emp):aq(emp)ﬂ and, if
ag(eyp)=0, adding the edge ey, to
Er(q). Clearly, this operation takes
place only if SR(j) =rp.

According to operations [1] and [2]. r; gets
empty (if OVq(ri)=1) or idle (if OVq(ri)>1),
while r,, becomes busy (if OVq(rm)=C(rm)~1)
or idle (if (OVq(rm)<C(rm)-]). Of course, all
the remaining nodes keep the husy/idle/empty
condition they had in D (q) unchanged.

C. Digraph Properties

Now we recall some digraph properties useful
in the sequel [9,10].

Let us consider a generic digraph D=(N.E)
where N is the vertex set and K is the edge set.
A walk in D is an alternating sequence of
vertices and arcs, e.g. r1, €12, 2, €23,..., I
The length of such a walk is the number of
occurrences of edges in it. For completeness we
call trivial a zero-length walk. A path is a walk
in which all vertices are distinct; a cycle is a
nontrivial walk with all nodes but the first and
the last distinct[9]. A selfloop is an onc-edge
cycle.
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If there is a path from rj to fy, then ry, is said
to be reachable from r;. Moreover, if 1y, is
reachable from rj and 1y is reachable from rp,
then r; and 1y, are said to be mutually
reachable.

Given two subdigraphs Dj=(N(,E]) and
Dy=(N3,F>) of D, the union of D} and Dy is
defined as the subdigraph
DyuDy=(N1wNa, £ wEy). A subdigraph of D
is strong iff every two vertices are mutually
reachable. We note that a subdigraph of D
consisting of exactly onc vertex is strong.
Obviously, the only strong acvclic subdigraph
is the one consisting of exactly onc node. A
digraph with just one node is called trivial.

Finally a strong component of a digraph is a
maximal strong subdigraph, iec. no larger
strong subdigraph (with more nodes or edges)
contains it. Each node belongs exactly to one
strong component; each edge is contained in at
most one strong component. Furthermore, an
edge lies in one strong component iff it is in a
cycle [10].

By construction, both digraphs Dy and Dp(q)

contain no selfloop. Moreover in the following
we use the expression "strong subdigraphs”,
"cycles" and "strong components” referring to
nontrivial subgraphs only, i.e. containing more
than one vertex. Only such nontrivial figures,
indeed, play an cssential role in stating the
results of this paper.

‘Y’E‘{) be a cycle of Dy and let
=(Np.Ep) be a strong subdigraph of Dy
Using notation (3b), we define Cvele Capacity

of v and Strong Subdigraph Capacity of T the
integers C(NY) and C(Ny), respectively .

Now let v=(/

3. Necessary and Sufficient
Conditions for Deadlock

Deadlock is a situation in which a set of parts is
in "circular wait" condition. This means that
pieces in such a set request indefinitely
resources held by other parts in the same set.
To make these concepts more precise, this
Section introduces a formal definition of
deadlock state for a system S with non-unitary
capacity resources.

Definition | We say that qeQ is a deadlock
state for S if there exist two non-empty subsets
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Jpclg and RpcR, satisfying the following
properties:

Dla) Jpy is the maximal subset of Jq such that
I‘IR(JD)zRD

D1b) SR(Jpy) Rpy;

DIc) all the resources of SR(/y) are busy.

We specify that in the above definition and in
the sequel the symbol 4 <B means that set A is
contained by or equal to B. By Definition 1,
each job in .J remains blocked because it is
indefinitely waiting for a busy resource held by
other jobs in Jp.

(2)
Wi Wi
13 (2) r(3)
w1
w2 W3
) 2 ——O5@
y(1)
(a)
w1
w2 W» Wo
I
I

A deadlock state is associated with particular
figures in the Transition Digraph. To clarify
this point we introduce the following
definition.

Definition 2. Let c=(Ng, Eg) be a strong
component of D1r(q). We call o a "Maximal-

weight Zero-outdegree Strong Component” in
D1i(q) (MZSC for brevity) if the following
properties hold true:

D2a)  Maximal-weight: all the resources
from Ng are busy: OVg(Ng)=C(Ng); ie. the
number of jobs holding resources from Ng is
the largest one can achieve and equals the
whole capacity of Ng;

1545

3!
(} I:v_] 25.]3)

5 (jg)

p)
\ad]
I
w
Iy
I
(c)

Figure 2. Example 2: (a) Digraph Dy (b) Digraph D1.(g); (c) Strong subdigraphs of Dy
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D2b)  Zero-cutdegree: all the edges of
D1e(q) outgoing from vertices of N belong to
Eg, ie. the elements from Ng are the only
vertices in D7y{(q) reachable from vertices in
Ng.

The following theorem proved in [6] relates the
deadlock to the presence of an MZSC in

Theorem 1. q is a deadlock state for S iff there
exists at least one MZSC in D1(q).

Since in the following we use digraphs to
exhibit deadlock conditions, we indifferently
say that "q is a deadlock state" or that "Dr.(q)

is in deadlock condition". Moreover let
=(N,Er) be a strong subdigraph of Dy We

say that I is in deadlock condition in state q if
it is an MZSC of D (q).

Remark 1. The proof of Theorem 1 [6] shows
that, if o is an MZSC of Dp(q). then the

complete set Jp, of jobs holding resources from
Ng and the set of resources Rpy=Ng enjoy the
properties of Definition 1.

The following example illustrates Theorem 1
and previous notations.

Example 1: Let us consider a six-resource
system S (R=6) where non-fictitious resources
have capacities C(ry)=3, C(r9)=C(r3)=C(r5)=2
and C(ry)=1. The system produces a job mix .J
according to the working procedures wy=(ry,
). 13, Ig) and wy=(r5. 14, T}, I3, Ig Ig)
Figurel(a) shows the corresponding Working
Procedure Digraph that contains three strong

subdigraphs T=({r|.r3.r4}., {€13.€34.€41}):
Dy=({rrpr3nl,  {e1263.634.6413)  and
F3=(iryrars.rgl, {€12:€23,€34.841.€131):
exhibited by Fig. 1(c).

Let S be in a state g, with: Jq:{ji: i=1,2,...,
9},  HR()=HR(j;)=HR(3)=r;  SR())=1),
SR(jp)=SR({3)=T3. HR(j;)=HR(j5)=Ty,
SR(j4)=SR(5)=13, HR(j)=HR(j7)=T3.
SR(jg)=SR(j7)=14, HR(jg)=14. SR(jg)=T1y.
HR(jg)=r5, SR(j9)=r4. The corresponding
Transition Digraph is shown by Figure 1(b). In
particular, the strong subdigraph I'y is an
MZSC in  Dydq). Namely, putting
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Np3={11.12.13.04 and
Ery={e|7.673,€34.€41.¢13) Wwe observe that
OVq(Nl‘3)=C(N§~3):8 and that cach edge
incident out vertices in N3 is in Ep3. Thus

according to Theorem 1. q is a deadlock state.
Indeed, it is easy to verify that jobs j; for i=1,
2,..., 8 are permanently blocked, in circular
wait condition. On the contrary, '} and I'; are

not MZSC, since they are not strong
components in Dy, (q) (ie. they are not

maximal).

Now let T be any strong subdigraph of Dy .
Then we define

CO= min C(.\Yr)

(5)
FCDpif

where we put Cy =« if Dy is acyclic.
Obviously, the minimum can be computed over
the cycles of Dy only. Furthermore,

for any I'c Dy and qe0, let us introduce
the following job subset:

Jq,r = {jeJq : the set v/ is not empty,
with w=WP(j)} (6)

In other words, Jg - collects all the jobs in

process according to the working procedures
involving edges of I'".

By Theorem 1, if q is a deadlock state, Dy(q)
contains an MZSC and, then, a strong
subdigraph (say ') with busy vertices. This
determines that subset Jql" contains at least

C(N7) jobs. So the following corollary holds.

Corollary 1: The necessary condition for q to
be a deadlock state is that Dy contains at least

onc strong subdigraph [' such that Jgp
satisfies the following condition

Cal'd(Jq’r*)ZC(Nr) (7)

Remark 2: Because of Corollary 1, we can
immediately state that

Cal'd(.fq)z(jo (8)

is a necessary condition for q to be a deadlock
state.

Before closing this Section, we obscrve that in
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systems with all unit-capacity tesources the
cycles are the only MZSCs possibly occurring
in Dy(q). So Theorem 1 reduces to the

Theorem 1 of [8]. Analogously, the result
stated in Remark 2 is equivalent to Corollary 2
of [8].

4. Second Level Deadlock

To define deadlock avoidance policies, we have
to focus on a situation that is not an actual
deadlock but inevitably gives rise to a deadlock
in the immediate future. This situation, called
Second Level Deadlock (SLD), is defined as
follows:

Definition 3: Let q be not a deadlock state for
S. We say q is an SLD state for S, if there exist
two non empty subsets JSC.Jq and RgcR

satisfying the following propertics:
D3a) HRWg) cRg, SRUJg) CRg;

D3b) If je(Jq—JS) then HR(j)eRg,. i.c. set Jg
collects all the jobs holding resources from Rg;

D3c)  for each job jEJS"\/q,u- the transition

releasing HR(j) to hold SR(j) leads to a
deadlock state for which Jyc/g.

In the sequel, we simply denote the set of
JSeasible transitions in Dy.(q) defined by D3c),
by Eg={ejn€Fp(q@): 1;=HR(j). r,=SR() for
SomejeJSqu,u}.

Definition 3 identifies a critical situation in
which each job of Jg is either blocked, becaunse
it requests access to a busy resource held by
other parts from .Jg. or determines a deadlock

on acquiring the next resource in its residual
working procedure. The following example
clarifies the idea of SLD.

Example 2. Consider again a six-resource
system as in Example 1, processing jobs
according to the following working procedures:

w1=(rs, Iy, 13, Ig) and wo=(r3, Ty, Ty, I}, I5, Ty,
rg). Figure 2(a) shows the corresponding
Working Procedure Digraph that contains three
strong subdigraphs: I'i=(rprsrats
te15.854.2415), [2=({r3.12.14}. {€32.€24.843}),
D3=({ry.15,14.13,12 }, {€15:654:€41,843
€37,694}) exhibited by Figure 2(c).
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Moreover let the system be in a state q, with:

dokits i1, 2,...., 93, WPGDrwaHor i=1, ol

WP(jg)=WP(jg)=wy. HR(j;})=HR(j;)=HR(j3)=1;
SR(31)=SR(j2)=SR(j3)=r5. HR(j4)=HR(j5)=r3,
SR(j4)=5R(j5)=12, HR(jg)=HR(j7)=r>,
SR(jg)=SR(j7)=14. HR(jg)=HR(jg)=r5,
SR(jg)=SR(jg)=r4. To make the ideas more
clear, Figure 2(b) shows the Transition
Digraph DT(q) in full lines while dashed lines

represent the second transitions in the residual
working procedures of jobs from Jq. Though

they are unblocked, progressing to their next
destination, each of the jobs jg and j; (jg and jg)
leads to a deadlock condition involving the
strong subdigraph 'y (T';). Note that I'y (') is
an MZSC of Drr{(q.J¢) and Drr(q.7) (D1r(q.g)
and D1r(q.jg)).

In Definition 3, q represents the state just "one
step before" the deadlock occurs. Namely, for
any jeJg/ q.u the transition releasing r;=HR(j)
to acquire r,,,=SR(j) leads to a digraph Dry(q.j)
that is in deadlock condition. By Theorem 1,
D1(q.j) contains an MZSC, while D(q) does
not. Clearly, edges and vertices of this MZSC
compose a corresponding strong subdigraph in
Dy At this point some questions arise.
Consider the strong subdigraphs of Dy
deadlocked by distinct jobs in JSr\Jqﬁu. How
are they related to each other? How are the
busy/idle resources distributed among such
digraphs when the system is in a SLD state?
The following theorem answers these questions
and clarifies the entire subject.

Theorem 2. Let g be not a deadlock state for S.
Necessary and sufficient condition for q to be
an SLD state is that there exists a set
H:{Fl,...,Fu,...,FH} of strong subdigraphs of
Dy such that, putting

H
N =UN )

H

E = \UE
H p=1 r n
(9b)
the following conditions hold in state q:
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Th2a) there exists only one empiy resource
(say 1) in Ny and for this resource it holds

C(ry)=1 and ry,eNp, for each ne{l.2... . H}.
All the remaining resources from Ny are busy:

Th2b) for each ['e/i, there exists a job jeJg

such that ' is in deadlock condition in

Th2¢) for each job jeJ(Lu such that the
feasible transition e, (with r;=HR(j) and
1,=SR(j) is in set Ep, there exists a strong

subdigraph T'e// in deadlock condition in
DTr(QJ)~

Proof : see Appendix 1

Though it fully characterizes the SLD,
Theorem 2 is not fit for stating deadlock
avoidance policies because of its complexity.
However this result is necessary to establish the
following Theorem 3, that provides an efficient
starling point for developing appropriate
policies. In particular, Theorem 3 gives a
necessary condition for an SLD occurrence,
based on the detection of all the potential
SLDs. This result uses the Working Procedure
Digraph only and is rclated to some cvcles of
Djy . One must not be surprised that some
cvcles of Dy,  exhibiting  particular
characteristics, play a particular role in the
detection of all the potential SLD conditions.
Namely, the strong subdigraphs, that are the
foundation of Theorem 2, may be viewed as the
union of cycles. On the other hand, a cycle
represents the simplest figure of any (non
trivial) strong subdigraph. In Appendix 2, the
logical path leading to the proof of Theorem 3
clearly focuses on the role of cycles of Dy

Now some preliminary definitions are to
introduce Theorem 3. As in [8], we collapse
cach cycle of Dy into a vertex of a new

digraph called Second Level Digraph, defined
as follows.

Definition 4: Let {y}, 1. ... Yg3 be the
complete set of all the cycles of Dy We define
the Second Level Digraph DZW:(,N’Z,EZW), by
associating a vertex nzs with each cycle y4 of
Dy, so that N2={n21.1122,...,n2K}. Moreover,
for stef{l.2,... K}, the edge ezsﬁ(nzs,nzt)
belongs to B e T
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D4a) v, and y, have only one vertex in
common (say 1) with C(ry)=1;

D4b)  there exists a working procedure
wel¥, containing vertices r;, 1y, and ry in a
strict order of succession, with eimeEyq and
empef;n.

The Second Level Digraph may contain cycles.
These are closely related to the Second Level
Deadleck and hence they are relevant to state
deadlock avoidance policies. The following
definition completes the tools necessary for this
aim.

Definition 5: Let ¥=(N°,.E%.) be a cycle of
D2 w (Second Level Cycle) and let
{st"fz.--'-r?'p} be the set of cycles in Dy
corresponding to the vertices in NZY. The Cycle

Capacity, C(NZY), of the second level cycle */2
equals the maximum number of jobs that the

cycles corresponding to the vertices in NQY can
hold:

2 P
— (10)
Cv ) = C( s%N Ys)

Finally. we define a particular subset of second
level cycles as follows:

2= -lyz of D? - there exists a vertex r,eN

13(2) Wi (1) w r4(2)

1

Figure 3. Example 3: (a) Digraph Dy
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W3 W,
15}
1
|
W
I . -
Y4

Figure 3. Example 3: (b) Cycles of Dy

such that C(r;;)=1 and _-N'Ysm\’Y . i)

forany st €{1.2,... P} with s=t! (1Y

In other words a second level cycle is in F2 iff
all the (first level) cycles corresponding to its
vertices share one and only one vertex of Dy

Such a vertex that we name center of 1/2, must
have unit capacity. The following example
illustrates Definitions 4 and 5.

Example 3: Consider an eight-resource system
(R=8) with capacities:
C(r) )=C(ry)=C(r5y=C(r7)=1,
C(r3)=C(rg)=C(rg)=2, C(rg)=ec and four
working procedures: wy=(r3, 11, Iy, Tq, Ty, Is,
T6s Tg), Wa=(Ts, Iy, I, Tg), Wa=(Ig, Iy, I3, Iy),
Wy=(ry, 15, 1g). Figure 3(a) shows the
corresponding digraph Dy which contains six
cycles: ¥1=(r.ry.r3}, {6;2,623,631}),
Y2=({r1a.053, {€14.845.€513) v3=({rp.r5.063,
{625.656:6623). 14=(r1.0p.15}, {€12.€55.6511).
V5=({r].14.15.06,12,13},
{€14.645.656:862,€23.€31})  and  y5=({r4,17}.
{€47.€74}) shown by Figure 3(b). Accordingly.
the Second Level Digraph has six vertices:
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;-\:'2={n21,1122,1123,n24_n25,n26}. As to the edge

set Ez;;.: we first observe that vy, 5. v3, and y5
share more than one node with v4 and that yg
and y4 have no vertex in common. Cycles vs
and vg (as well as y; and y,) share vertex ry
only: however 1y is not a unit-capacity
resource. Moreover none of the cycles yg for
s=1.2.3.4 (for s=1,3.4) has just on¢ vertex in
common with y5 (with ys). Thus !124, !125 and
“26 are isolated vertices in _Dzw. On the other
hand v; and y, have only the vertex ry in
common, with C(r})=1. Moreover the working

Figure 3. Example 3: (¢) Digraph D2W
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procedure wj contains vertices r3, rq and ry in
a strict order of succession, with ez €k, and
ejp€k,y,. and w, contains the subsequence rs.
1y, 1y, with e5 €k, and ejp€E,,. Thus both
3212 and e221 are in 7 i Analogous
considerations lead to
E2W={6212,6221,8223,6231} and to the Second

Level Digraph shown in Figure 3(c). This
contains two  Second Level  Cycles

2 2 2

Y 1=(n" 10"y},
2 2 2 2 2 2 2

¥ o=({n"1,n"5,n"3}, {e721,€723.6731 0
However only 721 isin T 2. Indeed, while v,

2
{e ]2,6221 D and

and y, share only one vertex (N?’l’-‘NYf{ 1),
for cycles y;, v and y; we gelt
Nnm{\i Q={r1 }ﬁ\f;n mNB:{ Iy }#\/’nm’\’B:{rs} .

The following result establishes that only

Second Level Cycles in e may be responsible
for Second Level Deadlocks,

Theorem 3. If q is an SLD state for S, then

. 2
there exists a second level cycle yzel'“ such
that

Card(Jq)z[C(NzY)-I] (12)

Proof: see Appendix 2

5. Deadlock Avoidance
Techniques

In this Section we propose some real-time
policies (Restriction Policies) that, on the basis
of the current state, rule the resource allocation
to avoid deadlock. More precisely, the control
action consists in inhibiting some selected
events, i.e. in keeping them from occurring
For example, an 1-type event (j,w) is inhibited
if the Restriction Policy prevents jeJ from
entering S to be processed according to the
working procedure w. Analogously, the 2-type
event jEJq is inhibited if the control does not
allow j to release HR(j) for taking SR().
Noninhibited events are said to be enabled.

To formally state the Restriction Policics we
define the sets:

X7 = {(q.w)eQxW¥ : the first resource of w is
idle or empty in state q}
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Xy = {(qaj)EQXJ:jEJq,u}'

So the Control Rule for 1-type events and 2-
type events are respectively defined as:

fl ; ‘Yl — {01} (13)
£, 1 X, » {01} (14)

With such notations, fj(q.w)=0 (fj(q.w)=1)
means that, for S in state q, any l-type event
involving the working procedure w is inhibited
(enabled). Analogously, f5(q.)=0 (f(q.p=1)
indicates that, for S in state q, the 2-type event
representing the transition of j from HR(j) to
SR(j) is inhibited (enabled). We name
Restriction Policy a pair (f},f5).

As already remarked in other papers [1,8], an
unsuited choice of the Restriction Policy could
lead to a situation known as Restricted
Deadlock (RD) that is similar to a deadlock. In
an RD the jobs in a set JRch remain in
circular wait indefinitely, because some of them
are blocked by other jobs from Jg, while the
transitions of the remaining jobs are inhibited
by the Restriction Policy. Moreover such
transitions keep on remaining inhibited, if no
job in Jy releases the resource it currently
holds. The next definition formalizes the
condition for an RD occurrence.

Definition 6. Let qeQ be not a deadlock state
for S and let (f},f;) be a Restriction Policy.

Then q is an RD state for S under (fy.f), if
there exists a subset JR S/, such that:

D6a) all the jobs holding resources from
SR(JRm]q’b) are in JR;

Do6b) set ‘]R"\]q,u is not empty and for each
job jeJRr\fq w B inhibits the corresponding
Sfeasible transition from HR(j) to SR().
Moreover, such transition keeps on remaining
inhibited if no job in Jp releases the resource
that it currently holds.

Although Definition 6 is slightly different from
the analogous Definition 7 given in [8], it
characterizes just the same situation. On the
other hand, the formulation given here is more
general and adequate for systems with multiple
capacity resources.

Remark 3: As already underlined in the
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companion paper [8], only the Control Rule f)
may be responsible for an RD. Restricted
deadlock, indeed, is independent of f;. Of
course, if f5(q.¢;,,)=1 for every (q.e;) X5 (ie.
fy does not inhibit any transition), there exists
no RD state for S,

A Restriction Policy is effective only if it avoids
both deadlock and RD. according to the
following definition.

Definition 7. Let (fj.f;) be a Restriction
Policy. Moreover, assume that, for every
qoeQ with Oy, any qeQ reachable from
qp under (f}.f) is neither a deadlock nor an

RD state. In this case. we say that S, starting at
Oy under the Restriction Policy (fi.f5), is

deadlock-free.

Here we propose a first Restriction Policy that
is very simple and evident, since it establishes
an upper bound for the number of jobs in
progress.

Restriction Policy 1 (RP1):

f(q,w)=1 if Card(Jg)<(Cy-1)
1 (q.w)=0 otherwise
f5(q.j)=1 for any (q.j) €X5.

The following proposition shows that RP1 is
suitable for deadlock avoidance.

Proposition I: Let Op=1q9€?
Card(Jq0)<C0}. Then system S, starting at O

under RP1, is deadlock-free.
Proof

By the definition of Q) and of Control Rule f;,
we get Card(Jq)<C0 in any state q reachable
from qy. Therefore, according to Remark 2, S

may not end in deadlock. Finally, by Remark 3,
g may not be an RD state for S under RP1.

To introduce the second Restriction Policy we
need further notations. In particular, for any
wel¥, we define the following set of strong
subdigraphs of Dy~

Hy= {1 of Dy : the set Ey-nEy, is not empty}
(15)
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So set H,, contains the strong subdigraphs of
Dy having at least one edge labelled by w.

With the above notations and the subset defined
by (6), we introduce the second Restriction
Policy.

Restriction Policy 2 (RP2):
fi(q.w)=1 if
Card(JqJ-)<[C(Nr)-1J for any Te Hy;

f1(q.w)=0 otherwise

H(g.)=1 for any (g.j)eX5.

The constraints introduced by the Restriction
Policy 2 on the work in progress are less strict
than the bounds imposed by RP1. Moreover,
according to the following proposition, RP2
avoids deadlock and RD.

Proposition 2 Let Qo=199c?
Card(JquerC(Nr) for each I' of Dy}. Then
system S, starting at (J, under RP2 is deadlock-
free.

Proof

Owing to the condition on qg and to the
application of RP2, we have Card(JqI)<C(Nr)
for each strong subdigraph I of Dy, and for any
state ¢ reachable from qg. Hence by Corollary

1. S may not end in deadlock. In addition, by
Remark 3, q may not be an RD state for S
under RP2.

Next we consider the following Restriction
Policy.

Restriction Policy 3 (RP3):

f1(q.w)=1 if Dp(q,w) does not contain
any MZSC

11(q,w)=0 otherwise

fr(q.))=1 if D (q.j) does not contain
any MZSC

f>(q.))=0 otherwise

RP3 controls both 1-type and 2-type events to
avoid deadlocks. However, such a policy might
not avoid RD. The next proposition shows that
RD and SLD are strictly related if system S is
under RP3.
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Proposition 3: Let {5 be defined according to
RP3. For any f}, qe@ is an RD state for §
under (f}.f5) iff it is an SLD state.

Proof
Only if part

Let q be an RD state for S under (f.f;) and
JRch be the job set satisfying D6a) and D6b).
In particular, D6b) states that for each job
jelRN g u it holds f5(q.j)=0, ie. Dp(q.))
contains an MZSC, say o=(Ng, Eg). Let Jp

indicate the job set involved in the
corresponding deadlock.

We first show that Jpc/i. Namely. with the
system in state q, if any job j'e/p-{j} released

the resource HR(j'), the event specified by j
would not cause a deadlock and would be
enabled by . Since, by D6b), the transition of j

from HR(j) to SR(j) keeps on remaining
inhibited if no job in J releases the resource it

currently holds, we get j'eJR, proving Jpc/i.

Now note that Jy-{j} represents the set of jobs
holding resources of N in state q and that the
definition of MZSC leads to SR(Jp-{j})c/Ng.

So, applying the previous arguments to any job
inJpJy y, leads to K (not necessarily distinct)

MZSCs: 61,07,-...0K- where
K=card(JRr\Jq’u). So considering the vertex set
of these MZSCs:

K
= N
Rs=uV,

define Jg as the set of all jobs holding resources
from Rg in state q. In this way D3a) and D3b)
hold. Moreover, according to the previous
considerations, Jgc/p so that for each job
jeJSqu’u it holds f5(q.j)=0. This means that

the transition of j from HR(j) to SR(j) leads to a
deadlock, with Jpc/g. Thus Jg enjoys D3c)

0o, proving the implication.
If part
If q is an SLD state, putting Jy=Jg, it is easy to

prove that under RP3 conditions Dé6a) and
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D6b) hold.

Note that if an RD takes place under RP3, such
a condition forebodes a classic deadlock that
would inevitably begin, in the absence of any
Restriction Policy. Example 4 makes this point
clearer.

FExample 4: Let the system introduced by
Example 2 be in the state described by Figure
2(b). Even if jg, j7. jg and jg are unblocked,

RP3 inhibits such jobs indefinitely. Namely
events jg and j7 (jg and jg) lead to a deadlock

condition involving the strong subdigraph I’y
(T'p), as defined in Example 2. Thus q is a
Restricted Deadlock state under RP3.

Clearly, the prevention of an SLD occurrence
guarantees that RP3 docs not lead to any RD.
Hence using the control rule f] to falsify one or

more of the necessary conditions for an SLD

occurrence is an effective means to avoid RD.

On this basis, putting

%= min C(Nzy) (16)
r2

(with Czo =0 if T2 is empty) we can define a
further Restriction Policy.

Restriction Policy 4:(RP4):

fi(q.w)=1
any MZSC and Card(/g)<(C%-2);

if D (q,w) does not contain

f1(q,w)=0 otherwise;

f(q.J)=1 if Dy(q,j) does not contain
any MZSC;

£5(q.j)=0 otherwise

The following proposition proves that RP4 is a
deadlock avoidance policy.

Proposition 4: Let  Qup={qgeQ
Card(/q )<(C*-1) and qq is not a deadlock
state}. Then system S, starting from Q under
RP4, is deadlock-free.

Proof

Let gqeQ be any state reachable from qyeQy,
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under RP4. Such a policy prevents q from
being a deadlock state. In addition, Control

Rule f; leads to Card(/)<(C%-1), so that

Card(.lq)<[C(y2)-lJ for any yzel"z. Hence. by
Theorem 3 and Proposition 3, q is not an RD

state for S under RP4. This completes the
proof. .

Before closing this Section we note that if s
empty, the Restriction Policies 3 and 4
coincide.

6. Computational Complexity

In order to discuss the computational
complexity of the proposed Restriction Policies,
we distinguish the off-line costs from the on-
line ones. Off-line costs concern algorithms
that are employed only once, before the proper
real-time control. On the contrary, on-line costs
characterize real-time computations,

To use RP1 onc should determine off-line the
minimum capacity C; on all the cycles from

Dyy. Such a value can be easily computed by

searching the (non trivial) shortest walk
starting from each vertex in Dy, and ending in

the same vertex. In this procedure for any edge
eim€Ly, the weight to consider is just the

capacity C(rj) of the first vertex r;. Such an

algorithm requires O{[Card(N)]3} operations
[13]. Finally, the on-line costs of RP1 are due
to the real-time updating of Card(.fq) only.

To apply RP2 we must determine off-line all
the strong subdigraphs from Dy with their

capacities, and build up a relationship between
working procedures and strong digraphs, for
identifying sets Hy, (see (6)). Now any strong
subdigraph is the union of cycles sharing some
vertices and, in case, some edges. Thus the first
step lies in generating all the cycles of Dy

This requires
O{[Card(N)+Card(Ep)](c;+1)}

operations, where c; is the number of cycles in
Dy [13]. As a second step, one must determine

the strong subdigraphs consisting of two cycles,
by finding all the pairs of cycles sharing at least
one vertex. The same way, by comparing cycles
and strong subdigraphs consisting of two
cycles, one can determine the three-cycle strong
subdigraphs, and so on. Clearly the number of
comparisons among cycles is exponential in ¢;,
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ie. (2¢/-1). Thus finding all the strong
subdigraphs  requires  O[Card(N) (2¢! -]
operations. A similar complexity characterizes
the determination of sets H,, i.e. O[Card(#)
Card(Ey) (2¢/-1)]. Finally, the on-line
algorithm of RP2 needs the updating of
Card(.]q,l—) only, for each strong subdigraph of
Dy

RP3 demands no off-line computations while
the on-line algorithm is in two steps. The first
one transforms Dy.(q) into Dp(q"), where q'

indicates the state the system will reach from q
as a consequence of the considered 1-type or 2-
type event. The second step searches for
MZSCs in D (q"). To detect an MZSC the

following procedure [6] can be used. Let j be
the job entering the system or requiring a
transition from one resource to another one.
Moreover let r,,, be the resource that j has to

take next. Now Dy(q") contains an MZSC iff
all the vertices reachable from r, are busy.

Hence the core of the detection algorithm is a
depth-first search, starting from r, and

consisting of O{Card[£1.(q")]} operations.

Implementing RP4 requires off-line detection
of the cycles from Dy so that to generate the

digraph DZW. Moreover it is necessary to find
the cycles from D’ jw with their capacities, the
subset 1"2 and' the minimum capacity CZO.

Building DZW requires Of(c 1)2L] operations,
where L indicates the sum of the lengths of all
the working procedures (ie. the sum of
resources appearing in all the working
procedures, counting repetitions). Furthermore,

generating the cycles of DZW and set = needs

Of[e+Card(E2 ) (cy+1)} and
Olej ¢y Card(V)]  operations  respectively,
where ¢ indicates the number of Second Level
Cycles. Finally, RP4 requires the same on-line

computations as RP3 and, in addition, on-line
updating of Card(Jq).

The preceding consideration shows that the off-
line complexity of RP1 is polynomial while
RP2 needs  exponential-time off-line
algorithms, Thus RP2 will be suitable if there is
a small number of cycles in Dyy. Nevertheless,

this is the casc in many practical situations.
The off-line computational cost of RP4 depends
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on the number of cycles in Dy and D2W. On

the other hand, as they have small on-line
computational costs, all the policies are suitable
for real-time control applications.

Finally, RP3 requires low costs and appears (o
be the least restrictive policy one can use.
Indeed it inhibits only events just leading to a
deadlock state at the next step. Nevertheless, it

is deadlock-free if r? s empty. Production
systems often satisfy this condition, particularly
if they have multiple capacity resources.
Namely, by definition (11), each second level

cycle from T must have a unit-capacity centre.
So, only unit-capacity resources are relevant, as
possible centres, to detect the second level

cycles that might be in 2. For example, if the
capacity of each resource in the system is more

than one, F2 is certainly empty. Furthermore, if
the number of edges incident out (or into) a
unit-capacity vertex is one, such a vertex
cannot be the centre of a second level cycle

from F2 Namely, any pair of cycles containing
that vertex must share another resource too, in
contradiction with (11). Obviously, if a unit-
capacity vertex has =zero outdegrcc (or
indegree), no cycle of Dy contains it. So, also

in this case, the vertex cannot be the centre of a
second level cycle.

7. Concluding Remarks

In the previous Secctions we propose some
control policies for deadlock avoidance in
flexible production systems. The
methodological framework is the discrete-event
representation of the manufacturing process.
We use the Working Procedure Digraph for
representing all the possible interactions
between jobs and resources, and the Transition
Digraph for considering only their current
relations (occupations and requests). All the
material developed in this work represents an
extension to systems with multiple capacity
resources of the analysis already performed in a
companion paper (for devices with unit-
capacity resources). Although this
generalization involves more difficult logical
paths, it leads to restriction policies with a
complexity comparable to the implementation
effort of the policies designed for systems with
unit-capacity resources. In particular, RP1 and
RP3 have small off-line costs. On the other
hand, the off-line computations pertaining to
RP2 and RP4 have exponential worst-case
complexity, because the number of cycles in a
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digraph can be exponential in the number of
vertices. However, in many practical cases such
computations can be executed in a reasonably
short time. Moreover, they are carried out only
once, before the proper on-line control.

All the Restriction Policies require small on-
line computational costs, so that they are
suitable for real-time implementation.

Restriction Policy RP3  exhibits  some
remarkable peculiarities: it is very casy to apply
and it is the least restrictive policy one can
implement. Namely, RP3 inhibits only the
events immediately leading to a deadlock. Its

use however, is limited to systems where set e
is empty. Only in this case, indeed, such a
policy is deadlock-free. The importance of RP3

is revealed by the fact that set r? is often Jjust
empty. Moreover, as remarked at the end of the
previous Section, systems with multiple
capacity resources are more likely to enjoy such
a condition than devices with unit-capacity
resources.

Appendix 1

Proving Theorem 2 requires some preparation
that leads to three lemmas, Lemma 1 concerns
the details of the mechanism leading a strong
subdigraph of Dy to deadlock. In particular, it
focuses on the distribution of busy and idle
resources inside the strong subdigraph one step
before the deadlock occurs and characterizes
the feasible transition leading to the deadlock.
Lemma 2 establishes that the strong subdigraph
deadlocked by a given transition is unique.
Finally, Lemma 3 uses the previous results to
derive some important relationships concerning
strong subdigraphs of Dy, deadlocked by jobs

in set JgnJ qu defined by D3c).

Lemma 1: Let a strong subdigraph I'=(N.ET)
of Dy be not in deadlock condition in Dy{(q)
and let jequ’u, progressing from r;=HR(j) to
£, =SR(j). cause T' to end in deadlock in
D1.(q.,j). Then, with reference to statc g, T
satisfies the following properties:

Lla)  all the resources from Ny are busy but
one, that is idfe or empty;

L1b) the idle or empty resource in N is

just T

H . 7 . T
m  With  rp#rp;  moreover N,
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OVq(rm):C(rm)-l and OVq(rk):C(rk) for each
rg €N with nezr,;

Llc)  denoting by Ey the subset of Ep
collecting edges incident out r e NT,, it holds:

aq(Ek) = C(I’k) if N m (21a)
and
ag(Ep) = Clry)-1 (21b)

Lld) as to the digraph Dp(q). r, is
reachable from each vertex of set N1 by a path
containing edges of £ only. Moreover, each
vertex reachable from r, is in M. Finally,
edges from EpnET.(q) represent blocked
transitions, but edges incident into 1,
describing feasible transitions.

Proof
L1a) is true.

At the outset we emphasize that, since it is not
in deadlock condition in Dp(q), T is not an

MZSC of Dp(q) (sec Theorem 1). Moreover,
since transition ¢, is feasible, rp, is not busy

in state q. Having this in mind, we return to the
proof of L1a).

By contradiction, assume Lla) false and
consider two cases.

Case 1: All the resources from N are busy in
state q.

This implies r; €N so that edges of Dy
incident out or into ry, are not in £}~ Hence,
the occurrence of the transition of j from r; to
Iy, does not modify edges from £ (and their
weights) in D(q) (see operations 1) and 2) in
Section II). So the subdigraph I'=(NEp) of
Dy, that is an MZSC of Dp.(q,j), must also be
an MZSC of Dp(q) and, by Theorem 1, Dy.(q)

must be in deadlock condition. In conclusion a
contradiction is reached.

Case 2: At least two resources from N are idle
or empty in state q.

Since two idle or empty resources may not
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become busy as a resultl of a single transition,
there exists no job jeJqy making " an MZSC

of D1(q.j): a contradiction.

L1Ib) is true.

Since all the resources of an MZSC are busy,
by Lla) the occurrence of the feasible
transition e;,, must increase the number of busy

resources of M. Such a number can get higher
only if e;;, corresponds to a job leaving r;gNy-
to occupy rLeNp. So, it must hold
OVq(rm)=C(rm)-l and OVq(rk)=C(rk) for each
re NT with n=r, . Finally, since the outdegree
of rg is always zero, no strong subdigraph in
Dy may contain the fictitious resource. Hence
we gel: I,#TR.

L1c) is true.

Let q' be the deadlock state reached from q as a
consequence of the transition of j from r; to ;.

By assumption, I' in an MZSC in DpJ(qy).
Hence, ' has to meet the requirements D2a)
and D2b) which yield aq'(Ek)=C(rk) for each
l‘kENr.

To show (21) we have to consider the condition
of the resources before the transition of j from
1; to 1. By L1b) it holds SR()=r #rg so that

it makes sense to define TR(j). So, putting
rp=TR(j), condition D2b) of Definition 2 yields:

rpeNI-. Moreover, according to the
transformation  mechanism leading from
Dy (q) to Dy (q.j). the weights of edges from T’
do not change but for Cmp that becomes
aqr(emp)=aq(emp)+l. Hence (21a) and (21b)
follow.

L1d) is true.

Since it is an MZSC of Dy(q.)), [=(NT, Ey) is

a strongly connected digraph. In other words,
two distinct nodes of Np are mutually

reachable. According to the transformation
mechanism leading from Dp(q) to Dy/(qy),

set £rE1(q.)) differs from Er-nET.(q) in the

fact that it contains one more edge at the most
which starts from r, (say ey, with 1,=TR()

and ryeNy). It turns out that ry, is reachable
from any vertex in N|- by a path consisting of
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edges from ErmEp(q) and that each vertex
reachable from r, belongs to Ny Obviously.
since all the vertices from N[~ but r,, are busy,
all the edges from FEpnFEp(q) represent

blocked transitions but the edges incident into
I, Tepresenting feasible transitions. Hence the

proof.

The following Remarks further enlighten the
properties of a strong subdigraph [ satisfving
Lemma 1.

Remark Al: From L1b) and Llc) it follows
that each edge of D.(q) incident out a vertex

of N is in E7. Thus such an edge is incident
into a node still belonging to M.

Remark A2: By L1d) it follows that there exists
at least an edge from £pnEp(q) ending in ry

and representing a feasible transition. For
example e,4 (€54) is a feasible transition of

EI‘}mETr(‘l) (of El—zr\E—ﬁ(q)) in the SLD state
of Figure 2(b).

Remark A3: Let F(JV,{,EY) be a cycle from [
containing the idle (or empty) resource rp,.
From the proof of L1d) it follows that set
E,ET(q) contains all the edges of cycle y but
the edge incident out r,; at most. This means
that only if C(r,)=1 there is no edge from
E+;(q) incident out .

Now one may ask whether there exist more
strong subdigraphs of Dy deadlocked by the

same job transition. The next lemma answers
this question.

Lemma 2: Let q be not a deadlock state and let
jeJqyu I T is a strong subdigraph of Dy, in
deadlock condition in Dp(q.j). then it is the
only MZSC of D1{(q.)).

Proof

By contradiction, assume that D-,(q.j) contains
another MZSC, say I'y=(MN|.Ep) with T=[}.
Putting r;=HR(j) and r;=SR(j), by L1b) we get
rn€NTANT). Since two  different  strong

components may not have a node in common,
it follows I'=I"y, a contradiction. g
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Now let q be an SLD state for S with Jg and
Rg being the corresponding job and resource

sets introduced by Definition 3. Moreover
assume that such sets are minimal, ie. no
subsets Rq;cRg and Jq)GJg exist (with
Rg1#Rg) satisfying Definition 3. By D3c) it
follows that for each jeJgJg
strong subdigraph of Dy in deadlock condition
in D7(q.)). So, if set /' collects all the strong
subdigraphs of Dy deadlocked by the jobs in

JSﬁ]q,ll’

there exists a

the following result holds.

lLemma 3: The strong subdigraphs in sel
H={T,....T H,...,I“H} satisfy the following
conditions:

L3a)  for each I'ef. there exists at least one

job jeJgnJgy such that I' is in deadlock

condition in D(q.j):

L3b)  for each jeJgn/g y there exists el
that is in deadlock condition in Dy (q.j):

L3c)  all the vertices from Ny are in Rg;

L3d) all the feasible transitions from £y
are in fig;

L3e) in the state q there cxists only one
empty resource in Ny (say r,). For such a

resource, C(r,)=1 and rmEN[‘u for each

pe{l,2,....H}. All the remai-n'mg resources
from Ny are busy.

Proof
L3a) and L3b) are true.

This proof is a straightforward consequence of
the construction of /1.

L3c¢) is true.

Let Tefl and reNy. By L3a). there exists
jE'JSf'\Jq,u such that T is in deadlock condition
in Dy(q.j). Let q' indicate the corresponding
deadlock state. The sets Rn=NT and Jp, where
Jp collects all the jobs that in state q" hold
resources from AT, satisfy Definition 1 (see
Remark 1). So let j, denote a job from Jpy such
that HR(jp)=r in q'". Since by D3c) JpcJg, jg
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is also in Jg and two cases are in order. If j,=j.
we get n=SR(jp)eSR(Jg) in state ¢, so that
D3a) implies ryeRg. If, on the other hand, jy#j
we get r=HR(j;)eHR(/g) in state q. so that
D3a) yields ryeRg again. thus completing the
proof,

L3d) is true.

Let 'eH and eimeEp(@Q)Er. By L3¢) it holds
r.I, €Rg. Morcover. since ey, is feasible, there
exists jEJq’u such that HR(j)=r; and SR(j)=r,,.
Since rj is in Rg, by D3b) jeJq. Therefore, by
definition of £q, we conclude ¢; e Fq.

L3e) is true.

By L3c) NycRg. Moreover by L3a), in state g

any I'e H satisfies Lemma 1, so that there exists
at least an idle or empty resource in Ny (say

Im€NT). In particular, if C(rm)=1 the resource
Fy 1S certainly empty in state q. We now show
that this is just the case.

We prove that the assumption C(rm)>1 leads to
a  contradiction.  Since  Llb)  vields
OVq(rm)=C(rm)-1, Dri(q) certainly contains
an edge (say ey incident out r,;,. Moreover.
by L1d), rye Ny and r,;, is reachable from each
vertex in N. Consequently, there exists a path
p in D(q) from 1y to 1. with all its edges in
Er and ending with a feasible transition, say
eimeL. Considering edge e followed by
path p, in which the last edge e;,, is dropped.
we realize that rj is reachable from r,,. Again
L1d) certainly implies r;e Ny-. However it is just
this fact that leads to a contradiction. Namely,
by L3d) it holds ¢;,,e/g. Thus a job jeJSr\quu
can be found such that HR(j)=r; and SR(j)=r,
and by L3b) there exists I'ye/f in deadlock
condition in Dv.(q.)). Taking into account
L1b), we get riGEer and rmeNp]. However, as
1; is reachable from r,. L1d) yields LENT,.

This is indeed the just mentioned contradiction.

At this point. we show that, in state q, r,, is the
only empiy resource from Ny Assume the
contrary, i.e. there exists another empty
resource ¥, eNy, with #; # r,. Let H; collect
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all the strong subdigraphs of / containing r,,
and let N”l and EH] be the sets of all the

vertices and cdges in such strong subdigraphs.
By L1a), r,, is the only empty resource in NH]__
so that #; ENHI- If we put RSI:_’V"HI and
ng={_ie./q: HRU)GRS]_}, by construction the
sets RS] and JS] satisfy D3b) and the condition
HR(JS])CRSE. Moreover, as by Remark Al
each edge from Fp(q) incident out a vertex of
:\«"’Hl still ends in NH;- it holds SR{'JS])C‘R31'

Hence D3a) is also verified. It is finally easy to
show that RSI and JSI satisfy D3¢) too.

Namely, given je.lslr\]qu, let I'ell be the
strong subdigraph of Dy in deadlock condition
in D(q.)). As HRG)E;\'H], Remark Al vields
SR(j)eNHl. Moreover, as all the resources in
Ny but 1y, are busy (see Lla), it follows
SR(j)=ry,. Now, Llb) gives €N so that:
NpcNyy,. Consequently,  for  each  job
_iEJslf‘\]q q the transition releasing HR(j) to

hold SR(j) leads to a deadlock involving only
jobs from Jg, . ie. Jpclg,. In other words,

R81 and JS] satisfy D3c) too. In conclusion, the
above arguments show that there exist the
proper subsets RSICRS and JSlCJS (with
Rg,#Rg) satisfying Definition 3. However this

means that Rg and Jg are not minimal, which
is a contradiction.

At this point, to complete the proof. it is
sufficient to note that by Lemma 1, each strong
subdigraph from // has only one idle vertex
while all the remaining resources are busv. So
Iy, is shared by all the strong subdigraphs from

H.

With the help of the preceding lemmas and
notations it is now easy to prove Theorem 2.

Proof of Theorem 2
Sufficiency

The proof is by construction. To begin with, let
Rg be the set of resources corresponding to the

vertices of the strong subdigraphs in /-

RS: N}] (22)
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and let Jq be the complete set of jobs holding
resources in Rg:

Js = {jeJq : HR()eRg} (23)

Definition (23) implies HR(Jg) cRg.
Furthermore, by Remark Al, for any strong
subdigraph I'ef1, each edge of Dp.(q) outgoing
from a vertex in N ends in a node still
belonging to M. This means that SR(Jg) cRg.
Thus sets Rg and Jg enjoy D3a). Moreover, by
(23), they satisfy D3b) too.

Finally. by Remark Al, the feasible transitions
of Dr(q) corresponding to jobs in JgJ q,u are
in Ez;. Hence, by Th2c), for each je.]snfq’u

there exists a strong subdigraph el in
deadlock condition in Dp(q.j). Since in this

situation all the resources in N are held by
jobs from Jg, we get JpcJg. as D3c) requires.

Necessity

If we assume that q is an SLD state, there
exists a set A of strong subdigraphs enjoying
Lemma 3. So, Th2a) and Th2b) follow from
L3e) and L3a), respectively.

To prove Th2c), let jeJg, be such that
e eEyEr(q).with r;=HR(j) and r1,=SR(j).
Obviously we get ryeNy and, by L3c), rieRg.
Moreover, by D3b), je/q and, according to
L3b), condition Th2c) follows. .

Appendix 2

Proof of Theorem 3
Proving this result requires four steps.

The first Step introduces a new digraph to
exhibit a relationship among the strong
subdigraphs in set H of Theorem 2.

At the second Step we select a subset HicH

whose elements are in a cyclic relationship:
namely, any strong subdigraph from H;

contains a feasible transition that deadlocks
another strong subdigraph in the same set.

At Step 3, we select a particular cycle in each
strong subdigraph from H;. Moreover we prove
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that all the cycles and any two cycles chosen in
that way share only one vertex.

Finally, Step 4 shows that the cycles
determined at Step 3 enjoy a particular
property: they correspond to the vertices of a
second level cycle from 2,

Step 1
If q is an SLD state, Dyy contains a set H of

strong subdigraphs satisfying Theorem 2. Now,
starting with H, we build a new digraph
Dy(@)=[V.Lyg(@)], by associating a vertex

vueVH to each strong subdigraph FMEH and
by considering the edge p=(v¥y) in Lyg(q)
iff there exists jelg such that, putting
r;=HR(j) and r,,=SR(j), the feasible transition
e;, belongs to Eru and T, is in deadlock
condition in Dy.(q.). By Remark A2 and
Th2c¢), the outdegree of each vertex from Vi is

greater than zero. This ensures that digraph
Dy(q) contains at least one cycle [10]. Now,

from among the cycles of Dyy(q) we choose one
of minimum length (say ypy). Cycle TH)

cannot be a selfloop. because L1b) excludes this
possibility. Morcover, in Dy(q) any two nodes

of YH; can be only connected by edges
belonging to yyyy. Otherwise, vy, would not be

a minimum length cycle.

Step 2

Let HjcH be the set of strong subdigraphs
corresponding to vertices of TH;- By Lemma 3
there is only one empty resource in D{(q) (i.e.
r,,) shared by all the strong subdigraphs from
H. Morcover let £, be an edge of the cycle
ey BY construction this means that there
exists jelg such that, putting r;=HR(j), it
holds: c:imEEF(q)r\EI-p and [, is in deadlock
condition in Dy (q.j). In the sequel we also
write € =Cim 10 exhibit that e;;,, belongs to Erp
(i.e. to the strong subdigraph Fu). By using this
notation for each edge of YH;, We can associate
a feasible transition of Dy (q) to any element
from H;.
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that immediately follows vy in the cycle YH;-
We state that for cach T'\;eH; with T prly it
holds eHEEFp' To prove this, assume the
contrary, i.e. eueErp. Thus, there exists jeJ q.u
that deadlocks I',, by exccuting transition e
Hence, by construction, Liy(q) contains both
the edges (f“v and fpv, with ViV, (see
Figure 4). Obviously, since ¢ uy i an edge of
cycle vy, £ 5y, does not belong to such a cycle.
But ¢, joins two vertices of YHyS @

Figure 4. Subdigraph of Dg(q) Showing
Cycle yyy, and Edge £
contradiction, because H; is a cycle of

minimum length in Dy(q).

Step 3

For any ruEHl let us consider a cycle
yp=(Nm,Em)cl" M of Dy, such that e“eEm.
Such a cycle certainly exists because T’ M is a
strong subdigraph of Dyy,. Moreover, as ey isa
Jeasible transition in D (q), its ending vertex
is the only empty resource of the strong
subdigraphs from H: thus rmeNm. At this Step
we prove that for each l"u,l" peﬂl with I‘u;&l"p,

it holds NmmNyp={ Imt

Proceeding by contradiction, suppose that there
exists a vertex r#r,, such that rkENmmN,(p.

By L1la), 1y is busy in state q. Moreover, by
Remark A3, there exists a path from I to 1y, in
D1 (), constituted by edges of EYH' Obviously,
such a path ends with the feasible transition ey
Since rkEN'l’uﬁN'}'p’ by Remark Al it holds
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eueErur\Eyp, that contradicts the statement
proven at Step 2.

Step 4

Let ¥y, and v,, be two first level cycles defined
according to Step 3 and corresponding to a pair
I.I'yeH|. Moreover let “zu and n2\, be the

nodes of the Second Level Digraph D2W
representing, T andy,,.

We now show that if TH; contains the edge

£ 1\- then there exists the edge ez“v in Dy
First of all let us note that, as proven at Step 3,
7y, and y,, satisfy D4a). Secondly if £ wELp(@
then there exists a job jeJq’u that, by executing
transition e’H, deadlocks the strong subdigraph
I',. By Remark A3 and L3e), set ETr(Q)"‘EyV
contains all the edges of EW but the edge
starting from the empty resource r,,,. Moreover,
it holds ETr(‘lrj)"\Eszﬁ}'v- Putting r;=HR(j)
and 1,=TR(j) and noting that SR(j)=r,,, it is
casy to realize that empeEW and eu=eimeEm.

Hence cycles vy, and y,, satisfy D4b) too, so that

GZPVEEZW_

From this proof, it immediately follows that
corresponding to the cycle y; there exists a

cycle 72 in D2W and, by Step 3, such a cycle

belongs to . Finally, since in state q all the
vertices of the first level cycles corresponding

to the nodes of "/2 are busy but r,;,, we get:
2
Card(Jq)z[C(N 1‘J)—l]
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