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Abstract:

This paper describes an interior point algorithm for solving nonlinear programming problems. The
approach we consider here is a classical one. It consists of transforming the original problem into
one with only equality constraints. the inequalities being placed into the objective through a loga-
rithmic barrier function. The KKT optimality conditions are solved by the Newton method. The
direction of moving is given by a linear algebraic system. which must be solved at each iteration.
The step length computation, which is the critical point of the algorithm, is based on a merit
function which determines the values of the barrier parameter. This ensures the descendance char-
acter of the search direction. The conditions for step length computation include: the boundary of
variables, the positivity of the slack and dual variables, the centrality of iterations, the correlation
between the speed of decreasing the pure optimality conditions and the transversality conditions,
as well as the Wolfe conditions.

A crude implementation of the algorithm shows the performance of this approach on a number
of nonlinear problems from the Hock-Schittkowski set of problems. Comparisons with a modified
penalty-barrier algorithm implemented as a SPENBAR package show that the method is efficient
on at least some classes of nonlinear models.
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1. Introduction

Interior point methods for nonlinear programming are among the most active research areas in math-
ematical programming. This is motivated by the impressive high guality theoretical results and com-
putational performance of these methods for linear and quadratic programming, as well as for linear
constrained optimization. We can mention here, for example, the papers of [Andersen and Ander-
sen, 1997], [Andrei, 1998b], [Carpenter, Lustig, Mulvey and Shanno, 1993], [Gondzio, 1996], [Lustig,
Marsten and Shanno, 1990, 1991, 1992, 1994], [Vanderbei, 1990, 1997, [Ye, 1997].

Having in view these remarkable results, it is natural that the researches using interior point ideas
are directed to the nonlinear programming area [Kortanek, Potra and Ye, 1991], [Goldfarb, Liu and
Wang, 1991}, [Wright, 1992, 1998].

*Special thanks are due to the Romanian Academy for supporting this research work through Grant No. GAR-11 /
16.07.1998,
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We are interested in solving the following nonlinear programming problem:

minf(x)

subject to: (1.1)

where f: R" — R, g: R™* — Rand h: R — R are supposed to be twice continuous differentiable.
The bounds  and u may have any values with [ < w, in practice these could be +oc. For solving this
general nonlinear programming problem we have a number of methods and algorithms which could be
classified as: Direct Methods, Methods based on KKT Optimality Conditions, Penalty Methods, and
Interior Point Methods. The interior point methods have recently been the subject of a number of
papers. The formulation and theory of the Newton interior point method for nonlinear programming
are given in [El-Bakry, Tapia, Tsuchiya and Zhang, 1996]. Gay, Overton and Wright [1997] consider
a primal-dual method for nonconvex programming in which the inequality constraints are introduced
in the objective function by means of the classical logarithmic barrier function, and the equality
constraints are considered in a scquential quadratic programming mechanism. Vanderber and Shanno
[1997] transform the original inequality problem into an equality one by adding slack to each of the
inequality constraints, for which the first order conditions for a minimum are solved by means of
a Newton strategy. A special method for choosing the step length along the Newton direction is
introduced. This is based on a merit function. An extension of the LOQO package to considering
the nonlinear function, interfaced with AMPL [Fourer, Gay and Kernighan, 1993] and GAMS [Brooke.
Kendrick and Meeraus, 1992], is illustrated on the Hock and Schittkowski suite, Mittelmann’s quadratic
programming set, as well as on a number of 8 large-scale real-world problems. Some comparisons and
performances of LOQO with MINOS [Murtagh and Saunders, 1995] and LANCELOT [Conn, Gould
and Toint, 1992] are presented. Byrd, Hribar and Nocedal [1997] incorporate into the interior point
method two powerful tools for solving nonlinear problems: the sequential quadratic programming and
the trust region techniques. The NITRO package is presented and its performance on some numerical
examples is illustrated. Some other primal-dual interior methods for nonconvex nonlinear optimization
problems are discussed in [Argaez and Tapia, 1997], [Byrd, Gilbert and Nocedal, 1996], [Conn, Gould
and Toint, 1996], [Forsgren and Gill, 1996], etc.

The algorithms are based on the classical approach: a minimizing direction is computed and then
a step length on this direction is being considered. When the problem is a conver program the step
length can be determined by standard line search methods, which are direct extensions of interior point
methods for linear programming. In this case the step generated by the solution of the primal-dual
equations is a descent direction for different merit functions, thus ensuring the convergence of the
corresponding algorithms. For nen-conver programming, the method of computing the step length at
each iteration is more complex. In fact, the notable differences between algorithms are in the manner
in which the step length is computed. Thus, for example, Vanderbei and Shanno [1997] introduce into
the merit function a parameter which is updated as soon as the computed direction is not a descent
direction. On the other hand, Gay, Overton and Wright [1997] describe a heuristic procedure combined
with a simple Armijo-like rule to determine the step length.

In this paper we shall present an interior point predictor corrector algorithm for solving (1.1)
which is based on the theoretical developments given in [El-Bakry, Tapia, Tsuchiya and Zhang, 1996].
Basically, for the considered problem the KKT optimality conditions are specified. Using the Newton
method we meet the optimality conditions with respect to the moving direction. Considering a suitable
merit function the updating conditions for the barrier parameter are established. The mechanism for
step length determination is based on the Wolfe conditions combined with the interior point centrality
condition and the limitation of the convergence to zero of the transversality conditions against the
”pure primal-dual” optimality condition. The paper is organized as follows. Section 2 presents the
KKT optimality conditions. The Newton system and the Newton direction are considered in Sections
3 and 4, respectively. The merit function is introduced in Section 5. Section 6 is devoted to computing
the step length on the Newton direction. The next Sections present the primal-dual algorithm and
some numerical examples.
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2. KKT Optimality Conditions

Considering the slack variables s € R™, associated with the functional inequality constraints and
w,v € R" associated with the simple bounds of variable 2, the probleni (1.1) can be reformulated as:

min f(r)
subject to: (2.1)
g(z) =0,
h(z) —s=0,
z—w=I,
r+v=u,
s> 0,w>0,v>0

Now, we eliminate the inequality constraints in (2.1) by placing theimn into a barrier term, obtaining
the problem:

min f(z) — p i log s; — p f: log wj — u i log v;
i=1 i=1 i=1
subject to - (2.2)
g(z) =0,
h(2) —s =0,
r—w-—1{=0,
r+v—u=070,

where the objective function in (2.2) is the classical Fiacco-McCormick [1968] logarithmic barrier
function.
The Lagrangian for this problem is:

Lz, s,w,v,y,2,p,q,4) =

fle)—p > logsi —p 5 logw;, — p

=1 i=1 j
yTg(x) — 2T (h(z) —s) = pT (e —w =D + ¢ (x + v — u),

log v;— (2.3)
:J.

where y, z, p and ¢ are the dual variables of the corresponding dimensions. With these, the first order
optimality conditions are:

Vi(z)—Vg(z) Ty - Vh(x)Tz —p+4¢=0,

g(z) =0,
h{z) -5 =0,
r—w-—-1=0,
r+v—u=0, (2.4)
SZe — pe =0,

W Pe — pe = 9,
VQe — pe =0,

where the matrices S, Z, W, P,V and @ are diagonal with elements s,, z;, w;, p;, v; and g; respectively,
€ is the vector of all ones. Vf(z) is the gradient of the objective function f(z). Vg(z) and Vh(z) are
the Jacobian matrices of the constraints vectors g(z) and h(z) respectively.

Note that the above optimality conditions (known as KKT conditions) contain the constraints of
the original problem, an equality resembling of the dual problem, as well as three equalities relating the
primal slack variables to the dual variables. If y is set to zero in (2.4), then we see that the last three
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equations are exactly the complementarity conditions. Usually, these last three equations are called
p—complementarity conditions. The KKT optimality conditions are a nonlinear algebraic system with
hn + 2m + me equations and a similar number of unknowns, which are parameterized by the barrier
parameter p. The basis of the numerical algorithm for solving the nonlinear system (2.4) is Newton’s
method, which is known to be very efficient for linear and convex quadratic programming. Assuming
that the system (2.4) has a solution, then for each g > 0 we get a solution (&, s, Wa, Vus Yus Zp, P Q)
The path {(2 4, Su. 00 U, Yus 2. Py @)+ 0 > 0} is called the primal-dual central path. This path
plays a fundamental role in interior-point methods for mathematical programming. The interior-point
method which will be presented in the next Sections is an iterative procedure that attempts with each
iteration to move towards a point on the central path that is closer to the optimal point than the
current point.

If the barrier parameter p is set to zero, the KKT optimality conditions (2.4) can be partitioned
nto two classes as:

vV f(x) — Vg(_;u)Ty —Vh{e)Tz—p+yg

glz)
C'o(t) = hix)—s (2.5)
r—w—1
T4+ v —u
and
SZe
CT(s,z,w,p v, q)= | WPe (2.6)
V(Qe

The relations (2.5) contain the primal and the dual constraints of the problem (1.1). On the
other hand, the relations (2.6} contain the complementarity conditions. For this reason, the last three
equations in (2.4) are called the pu—complementarity conditions. It is quite clear that if we could have
a point t = [2,y, 2, p, ¢, s, w, v] satisfying the relation:

Fl) = CO(1)

T CT(s, 20w pv,q) = (2.7)

then the component x of this point would be the solution of the problem (1.1). TFor solving the
system (2.7) the Newton’s method will be considered. Starting with an initial point, this implies the
determination of a direction of moving and a step length along this direction. The next Sections are
dedicated to this subject.

The separation of the optimality conditions into these two classes is crucial for the elaboration of
an efficient algorithm for (1.1), and for proving the convergence of this algorithm.

Remark For linear programming problems the system (2.4) is much simpler. The only nonlinear
expressions in (2.4) are simple multiplications of slack and dual variables, and the presence of these
simple nonlinearities make the subject of linear programming nontrivial. Moreover, for the linear
progranming case, if the primal and the dual feasible regions have a nonempty interior, then there
exists a critical point for the corresponding optimality conditions (See, for example, Vanderbei [1996].)
For the nonlinear programming case, it is more complicated to prove the existence of a solution for
the system (2.4).

3. The Newton System

As above, denoting by t = [2,y, z,p. ¢, s,w,v]T then the Newton method applied to the system (2.7)
will consist of the determination of the direction At = [Az Ay Az Ap Ag As Aw Av]T as solution
for the following perturbed linear algebraic system:

F}(t)ﬁi":—F(iH-,u@‘ (3.1)

where €€ RSP+2m+me with zero components except for the last 2n + m ones which are all equal to
one, F'(t) is the Jacobian of the function F(¢) computed at the current point ¢, and the computation
of the new point
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tt =1t + aAt, (3.2)

where parameter o 1s the size of the step length,

With this algorithm, two problems are critical : the choice of « at each iteration and the possible
modification of the system (3.1) in order to find a local minimizer of (1.1). TFor linear and convex
quadratic programming , the modification of the linear system (3.1) is never asked for, but for situations
of numerical difficulties, and the step length at each iteration is computed by a simple ratio test [Lustig,
Marsten and Shanno, 1990, 1991, 1992, 1994], [Vanderbei, 1990, 1994, 1996,], [Ye, 1997] [Wright, 1998
J. For general convex nonlinear programming problems, it is well known that for a poor initial estimate,
Newton’s method may diverge, so once again the linear systemn (3.1) needs not be modified, but the
technique for choosing the value of parameter o at each iteration is more complex. In order to achieve
convergence to a solution of the system (2.4), El-Bakry, Tapia, Tsuchiya and Zhang [1996] introduced
a merit function and showed that for a proper choice of the barrier parameter u, there existed an
a at each iteration such that the algorithm {3.2) converged to a solution of (1.1), provided that the
Jacobian F'(t) in (3.1) remained nonsingular. An implementation of this variant of the algorithm
was tested by Shanno, Breitfeld and Simantiraki [1996], and Shanno and Simantiraki [1997]. On the
Hoch and Schittkowski [1981] set of test problems they found that while the algorithm had often
been efficient, giving the optimal solution, it had also converged to local maxima or saddle points,
all of which satisfied the necessary first order optimality conditions. Besides, for some problems, the
Jacobian Ff(l‘) sometimes becomes singular, causing troubles to the algorithm. A modification of the
merit function of El-Bakry et alhas been considered by Vanderbei and Shanno [1997) where the ls norm
of the constraints, multiplied by a parameter 3, is introduced. They proved that there was a value of 2
such that the direction given by the Newton system be a deseent direction for this merit function. The
corresponding algorithm was implemented as a nonlinear version of LOQO [Vanderbei, 1994] and tested
on the Hoch and Schittkowski set of problems, eight large-scale nonlinear programming problems, and
the Mittelmann quadratic programming set of problems [Mittelmann 1997]. Comparisons with MINOS
[Murtagh and Saunders, 1995] and LANCELOT [Conn, Gould and Toint, 1992] showed how robust
and efficient this interior point approach proved to be.

4. The Newton Direction Determination

The Newton system for the direction determination involves the computation of the Jacobian matrix
of the function F(¢) in (2.7). From (2.4) we get the following linear algebraic system:

[ K(x,y,z) —-G@)T —H@)T -1 1 17 a7 T X |
G(z) Ay —y()
H(z) = Az —h(z) + s
I -1 Ap | l+w—r
I ! Ag | T u—v—z (@:L)
S A As —SZe + pe
% P Aw —WPe+ pe
] V Q | | Av | | -V Qe+ pe |

This system is not symmetrical, but it is easy to symmeterize by multiplying the second and the third
equations by —1, and the last three equations by S=1, W =1 and V~! respectively. After completing
this very simple algebraic operation, and after eliminating variables As, Aw and Av as:

As=pZ~te — Se— Z71SAz,
Aw = pP le — We — P~UW Ap, (4.2)
Av=puQ e — Ve~ Q™ 1V Ag,

the following reduced Newton system is obtained:
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K(z,y,z) —-G)T —H(z)T -1 T Az x

—G(x) Ay g(z)
—H(x) -zZ718 Az | = | h{z)—pZte (4.3)
-1 —P-'W Ap r—1—puPle
/ oV || ] |u-s-uote
where
me m .
K(z,y,2) = V3f(2)~ 5 v:V3g:i(x)— Y z:V?hi(x), (4.4)
fanl i=1

('_;(33) — \_'g(.l)‘
H(z) = Vh(z),
x=-Vf@)+G@)Ty+H@x) z+p—q

(4.5)

Notice that the matrix of the reduced Newton system (4.3) is symmetrical, undefined and (3n +m +
me)—dimensional. Solving this system, or a reduction of it, together with (4.2) we get the direction
At = [Az Ay Az Ap Ag As Aw Av]" . The existence of a solution for (4.3) implies the existence of
the inverse of the diagonal matrices Z, P and @,thus assumng that a condition of initialization of the
algorithm is satisfied.

The standard Newton method assumptions for the problem (1.1) are as follows [Dennis and Schn-
abel, 1983]:

(A1) There exists a solution for the problem (1.1) and the associated dual variables, satisfying the
KKT conditions given by (2.4).

(A2) The Hessian matrices V2f(x), V2gi(x), V2h(a) for all i exist and are locally Lipschitz continuous
at ¢*.

(A3) The set of vectors {Vg1(z*), .... Vgme(x*)}U{Vhi(z") : i € A(z*)} is linearly independent, where
A(x*) is the set of inequality constraints active in z™.

(A4) For every vector d # 0 satisfying Vg;(z*)"d = 0,i=1,..., me and Vhi(z*)Td =0, 1 € A(z*) we
have dT K{z*, y*,z*)d > 0.

(A5) Fori=1,..,m, zhi(z*) >0,and for j =1,...,n, pj(z] — ;) >0, q; (v — r}‘) > 0.

Proposition 1 Suppose that the conditions (Al)-(A3) are satisfied and s = h{z*), w* = z* — |,
v = u—2*, then the Jacobian matriz F’(t*) of F(t) given by the matrz from ({.1) is nonsingular.

Proof This follows immediately. Let the reduced problem be, in which only the inequality constraints
active in the optimum point are considered. Then, from the theory of equality constrained optimization,
it follows that the matricial block given by the first five rows and columns of the matrix from (4.1) is
nonsingular. Hence, the nonsingularity of (4.1) follows from the strict complementarity condition (A5)
and the nonsingularity of the matricial block from (4.1). O

Generally, in current implementations, the reduced Newton system (4.3) is not considered in the
form in which it appears. Usually, we continue to reduce it by simple algebraic manipulations. Con-
sidering (4.3) and eliminating the variables Az, Ap and Aq as:

Az = puS~le— S~1Zh(x) — S~ ZH(z)Az,
Ap=puW-le— W-lP(z —I) - W~ PAz, (4.6)
Ag=pV-le—V-1Q(u—2z)+ VIQAr,

the system (4.3) gets reduced to the following linear symmetric system:
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g :{ ‘ (4.7)

where

K=K(x,y,2) + H@)TS1ZH(z) + W= P + V-1Q,
r=x—-H@) TS5 Zh(z) - WPz =) + V-1Q(u - x), (4.8)
r= H(z)TS le + W-1le — V-le.
Solving the system (4.7) we get the variables Ar and Ay which from (4.6) and {4.2) and the rest of
the system variables, (4.1) can be computed with. Notice that, as in the case of linear programming,

we must solve a symunetric, undefined, algebraic system. but in this case, the Jacobian and Hessian
matrices of the functions of the problems being involved, this is much more complicated.

5. The Merit Function

Solving the system (4.7), and considering (4.6) and (4.2) respectively, we get a direction At pointing to
the central path. The problem we must solve now is to determine the step length along this direction.
This is achieved by means of a merit function associated with the optimality conditions (2.4). The
idea of a merit function is to enable progress towards a local minimum of the problem by conserving
the feasibility of the solution. The merit function used for the line search is the squared {3 —norm of
the KIX'T conditions (2.4), i.e.

®(t) =[| F(t) 3= F{OTF(2). (5.1)

Denote by @ = (1) the value of the merit function at the iteration {5, and Dy (o) = Pt +avty)
which illustrates the dependence of the merit function on the step length «. Clearly, ®;(0) = ®(t) =
@,.. Hence

Qp (o) = Pty + aAtp)TF(t + aAty). (5.2)

The following proposition shows that the direction given by the perturbed Newton’s system (3.1):

-1

Aty = {F’(zk)} [4’(@)4- e (5.3)

is a descent direction for the merit function ®(t).

Proposition 2 The direction Aty given by (5.3), the solution of the perturbed Newlon system (3.1)
ts a descent direction for the meril function (5.1).
Proof Considering the derivative of ®;(a) at a = 0 we get:
®'(0) = 2F (t:)T F' (k) Aty =
) % ’ -1
2F ()T F' (1) [F m.)] [——F{t;;) yy 2] -
QF(Ifk)T {*F(f};) + 1 2} =
’ A
=2|| F(te) |3 +2uF (t:)" e,

hence @' (0) < 0 if and only if 2uF(ty)T Qg 2 || F(t) ||3 . This suggests the following estimation of
the barrier parameter used in the logarithmic barrier function (2.2):

IEE)E HECIE
oS F(tk:’?"/s - 57'Z+w;19+2ﬂ"q‘ (5.4)
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So, at every iteration, choosing the value of the barrier parameter ¢ as in (5.4), the direction Aty given
by (5.3) is indeed a descent direction for the merit function ®(t;).0

The relation (5.4) is a very important estimation of the barrier parameter p. We will see that the
numerical experiments recommend a much smaller value for it.

6. The Step Length Determination

The step length computation in algorithm (3.2) is a very important ingredient. For the unconstrained
optimization the value of « is determined by means of the Wolfe conditions [Wolfe, 1969, 1971],
[Zoutendijk, 1970], [Dennis and Schnabel, 1983] | [Nocedal, 1992]. For linear programming or linear
constrained optimization the step length is determined by a simple ratio test. For nonlinear program-
ming the strategy for choosing o at each iteration becomes more complex. In such a case it 1s necessary
to imp ose some additional constraints for making sure that the current iterations are generated as close
as possible to the central path.

As we have learned from linear programming, also for the problem (1.1), the distance from centrality
is given hy:

_omin{s,zy, wips, Viga}
€ = Dl ) (6.1)
Intm

Clearly, 0 < & < 1, and &, = 1 if and only if s;2;, wipi. vig; are equal to a constant for all values of 7.
To specify a value of a, firstly the following function is introduced:

@](”] _ omin{sda)zilo), wilo)pa), vila)g, (o)}
- =T (o) (o)t wT (o)p(e)+vT (adgle)
Tndm

¥T1 (6.2)

where 7 is the initial distance from centrality:

min{s%:9, wip?, vigh)
T 20 g 0T 04007 o0

EEam

T = (6.3)
and v € (0,1) is a constant thereby we can modify the distance from centrality. Notice that for t = £,
and 7 = 1, it follows that ©/(0) = 0. In addition, Of(a) is a piecewise quadratic function. To choose
the step length ay at each iteration it is necessary that aj satisfies Ol (a) > 0 for all @ € [0, ag], i€

min{s:(a)z.(a), wilalpia), vilalgile)} :
sT (a)z(o)+wT (o)pla)+vd (o)gle) 2 kT (6.4)
2Zn4m

where the variables of the problem are considered at the k—th iteration and v € (0,1). Since e (w)
is a piecewise quadratic function, from (6.4) it follows that ay can be easily computed.
Considering now the merit function (5.1), Wolfe’s conditions for its minimization are:

Cb(ik_H) < G(ty) + ﬁ&'kvcb(ik)’r.ﬁt;;, (5)5)
Vd(t41) Aty > V(1) T Aty (6.6)

where 0 < 3 < & < | are parameters fixing the reduction of the merit function, as well as the rate
of decreasing this function along the direction Afy. Having in view that ®(tpyy) = Pr(a), the first
Wolfe’s condition (6.5) is equivalent to:

i) < Br(0) + B @, (0). (6.7)

Proposition 3 For the merit function (5.1), laking

T T T
_ Sk 2 twWy Pr+UL Gk 3
He= UL:L“W (6-8)
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where ap € (0,1) we have:

1

4(0) = =2 |@4(0) — 2= (sTz + wTp+0Tg)?| . (6.9)

2n+m

Proof By direct computation we get:

(I);C(U) = —2@(0) + 2uF (t,)7 e= =2@4(0) + 2u[sTz + wTp + vl g) =
—20,,(0) + 20 2teptv Ty [Tz 4+ wTp+oT¢) =

In4m

=2 |®x(0) — 4= (sT s + wTp +v7T¢)?| O

2n+m

Proposition 4 At every iteration:

.I" w ‘l =
GlatwTp4vTg)? < O(0). (6.10)

In+m
Proof By simple algebraic manipulation we get:

Tr4w? )T g)2 ~ 7 9 - 9 - 9
Lot 20ROl || SZe (13 + | WPe |[3 + || VQe [l2<

2n+4m

15Ze |13+ | WPe | + 1| VQe I3 + | CO(t) [l3= @5(0).0

[t is easy to show that the estimation of the barrier parameter pi given by (6.8) with o € (0,1), is
smaller than the estimation recommended by (5.4). Hence, the He given by (6.8) ensures the descent
character of the direction At;. Moreover. the following proposition gives an estimation of the reduction
of the values of the merit function.

Proposition 5 The direction Aty solution of the perturbed Newton system (3.1) with pu given by
(6.8) is a descent direction for the meril function d(t) at every ty. Moreover, if the first Wolfe condition
(6.5) is satisfied, then

@k((}k) g[l—%:u?(i—rrk)]@k(ﬂ). (6.11)

Proof As we know ®,(0) = =2 || F(tx) |2 +2u(sT 2 + wTp + oTq). Considering p; as in (6.8) it
follows that.:

@, (0) = —2d(0) + 20, T2twTp4eTg)?

2n4+m

) <
=294(0) + 20404 (0) = =284 (0)(1 — o) < 0,

proving the descent character of the direction given by the perturbed Newton system. Moreover, from
(6.7) and taking into account the above propositions (3 and 4) we have:

() < Br(0) + Bay®,(0) =
D (0) 4 Sy [—2 ((D,L-(U) - Uk—u(FT"*'“‘TJ-‘HTq}J)] <

2n+m —
d)k(U) - 2,5'(1’;-,@‘;;(0) + Qﬁ(}kqu)k((]) =
[1-2ar3(1— ar)] @1(0),

which proves the proposition. O
This proposition shows that the sequence {®;} is monotonous and nonincreasing, therefore for
all k: @ < ®y. Moreover, if the sequence of step length {a.} is bounded away from zero and the

parameter oy is bounded away from one at every iteration, it follows that the merit function is linearly
convergent to zero. Hence the above (6.11) inequality is equivalent to:
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Flteg1)ll2 ; ; 1/2 L
Hl\ft‘(uml: < (1= 20481 — ax)]'/? . (6.12)

Some numerical examples illustrate that a problem that may lead to the non-convergence of the
algorithm is that of the sequence {|| CT(sy, zp, wi. Pk, vk, qr) ||} converging to zero faster than the
sequence {®(¢x)}. In such cases the sequence of the step-lengths {a.} is decreasing to zero, thus
determining the nonconvergence of the algorithm. In order to avoid this situation, let us introduce the
following function:

Ol (a) = s(a)Tz(a) + w(a)Tp(a) + v(w) T gla)—

v || CO(t()) |2 (6.13)
where
o sg: + [J: ‘|'|+1JE‘
= U\Ctb(inﬂ 2 =, (6.14)

and 4 € (0,1) is a constant, the same as in (6.2). Notice that for t = #5 and y = 1; ©11(0) = 0.
O () is generally nonlinear. For choosing the step-length oy at every iteration, it is necessary that
arp satisfies :

O (ar) > 0. (6.15)
Proposition 6 Lel {{;} be a sequence generated by (3.1). Then

min{l, 0.5} ®(tr) < (sh 2 +wlpe + vl pr)? < (2n + m)®(ty). (6.16)
Proof The second inequality follows from Proposition 4. So, we will have to prove only the first
one. Sinee @ (ay) >0, for i = 1,2, from (6.13) with 7 > 1/2, we have:
(T 2+l pe +vipr) > (1/2)72 || CO) ||z -
It follows that

{s{zk + u{p;;-&- t:;‘?pk) =
U SZellz + [| WPell2 + || VQe [la +0.57 || CO(t) ||2] =
3 min{1,0.57} || F(tx) ||z,

which completes the proof. O

This proposition shows that the transversality conditions are bounded, and y; must be selected as
a decreasing sequence with 1/2 < v < y4—1. Having in view all these developments, at each iteration,
the step length ay is computed as a solution of the following system of algebraic inequalities:

a) [ < ap+ apAvg < u,
b) s(ap), z{ag), wlag), plag), viog), glar) > 0,
¢y  ONa)>0,ae(0, oyl (6.17)
d) 0" (ap) >0,
) Drlag) < Dp(0) + apSP,(0),
) V(ap) Aty > §VO(0)T Aty
where 0 < < 6 < 1.
In order to determine a value ay for the step length satisfying (6.17) we shall consider a strategy
of interval reducing. Clearly, the first two relations (6.17a) and (6.17b) are very simple to implement.
The same as in the linear programming case the corresponding ratio test is performed, thus obtaining

a value a,; which maintains the positivity of the variables as well as simple bounds on the variables
of the problem. Then a value ay € (0, ay,] which satisfies the conditions (6.17c - 6.17f) is selected.
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7. The Primal-Dual Interior-Point Algorithm

The interior point algorithm for solving (1.1), based on the above developments, has three main parts
which refer to the computing of the direction of moving, the barrier parameter, and the step length.

Algorithm PCNC

Step 1 Initialization. Choose the initial point ¢y = [0 o z0 Po qo S0 wo vg] such that { <zp < u,
(s0,20) > 0, (wo, po) > 0, (vo,q0) > 0, as well as the values of the parameters: 3 € (0,1/2], y4_y = 1,
and p € (0,1). Set k = 0.

Step 2 Test of convergence. Compute the value of the merit function: P(te) = F(tp)TF(te). If
®(ty) < ¢, stop, else continue with Step 3.

Step 3 Evaluation of the barrier parameter. Choose oy € (0,1). Using (6.8) compute the value of
the barrier parameter p.

Step 4 Computing the direction of moving. Compute the perturbed Newton direction Aty by
solving the reduced Newton system (4.7) and using the relations (4.6) and (4.2)

Step 5 Step length determination.

a) Choose £ <y < 1.

b) Compute o, as the maximum value of a; which satisfies the conditions (6.17a) and (6.17D).

¢) Determine af € (0, @,,] as the smallest positive root such that ©7(a) > 0 for all a € (0,af].

d) Determine af! € (0, af] such that @//(afl) > 0.

Lol

e) Set ap= min(a

f) Let ap = p? ay, where j is the smallest non-negative integer such that oy satisfies the condition
(6.17¢)

Step 6 Updating of the variables. Set {41 =t + ayAty, k = k+ 1 and go to Step 2.

Some remarks are in order:

L. The inilial point. Generally, nonlinear programming requires that an initial starting point be
given as part of the problem data. For an interior-point algorithm, besides the specification of the
initial values for z;, the initial values for variables y;, z;, p;, etc. must be determined by the program.
For slack variables w; and v; we can simply consider the initial values as: w; = r;—l; and v; = v; — x;,
for @ = 1,...,n, respectively. For slack variables s; we can compute h(zg) and set s; = h;(xg), for
i = 1,...,m. There are two problems with this approach for computing the initial values for the s;
variables. Firstly, if 2y is not feasible, then s; computed as above gives an initial negative value to
some components. Secondly, even if zg is feasible, it may lie on the boundary of the feasible region
of the problem or so close to it that some initial values of s; are very close to zero, thus precluding
the algorithm from making any progress. To overcome this difficulty, as Vanderbei and Shanno [1997]
suggested, it is necessary to specify a value for a parameter ¥ > 0 so that all initial values of variables
constrained to be non negative are at least as large as 9. Hence s; is initially set as: s; = max{h;(zo),
J}. (In our tests we have considered ¥ = 1.) The initial values of the variables ¥i, i = 1,..,me, are
computed as a solution for the following linear system:

[Va(xo)Vg(z0)Ty = Vg(xo)[V f(zo) = VA(20)T 20 — po + go]- (rH

Proposition 7 Suppose that the functions of the problem f(z), g(x) and h(x) are twice continuously
differentiable and the derivative of CO(t) given by (2.5) is Lipschitz continuous. If the columns of
Vy(z) are linearly independent, then the variable y given by (7.1) is well defined and bounded.

Preof From the first relation of (2.5) it follows that:

y = [Vo(2)Ve(2)T]'Vy(2)[Vf(z) = Vh(z)Tz = p+4]. (7.2)

Having in view that « is in a compact set and the Jacobian Vg(z) is of full rank on rows, then the
inverse of the matrix in (7.2) exists, i.e. y is well defined. The boundness of y follows from the
conditions of the proposition. O

2. The search direction. In Proposition 2 above we showed that the step direction At given by (5.3)
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has desirable descent properties for the merit function provided that the value of the barrier parameter
is selected as in (5.4).

To determine the search direction the reduced Newton system (4.7) is solved by the Cholesky
factorization. After having determined Az and Ay by using (4.6) and (4.2) the rest of variables are
very easy to compute.

Proposition 8 Suppose that the functions of the problem f(x), g(x) and h{x) are lwice conlinuously
differentiable, the derivative of CO(t) given by (2.5) is Lipschilz continuous and the set of gradients
{(Vagi(zg)y oo, Vame(zi)} U{Vhi(xy), i € A(z")} 15 linearly independent for k sufficiently large, where
A(x*) is the set of active nequality constraints in x*. Then the sequence of search directions { Aty }
generated by the algorithm PCNC 1s bounded.

. - . ‘. - .
Proof Symmeterizing the matrix F (¢;) and rearranging the order of its rows and colunms, we have

i A B
Fte) = [ BT (¢ ]
where
K(xp, e, 21) —Glen)T —H(xg)T

As= —Giay)
—H(zyp)

] " s i i . L.
and the matrices B and C can be very easily identified from F (t). By assumption of the proposition,
the matrix A is invertible and || A=! || is uniformly hounded. A straightforward computation shows

that:
A B
BT | T
A-14 A-1B(C — BTA-1B)"1BTA~! —A-1B(C - BTA-1B)-!
—(C = BTA-'B)~1BT 4~ (C'— BT A-1B)~}

~1
. - . « P . ! . .
which is bounded, since every matrix involved is bounded. Hence {F (tk)} is uniformly bounded,

which proves the Proposition. O

3. Measures of progress. We assume that the functions of the problem f(z), g(x) and A(x) are
twice continuously differentiable and the derivative of C'O(t) in (2.5) is Lipschitz continuous. From
(6.17a) we notice that the iteration sequence {x)} is bounded. Moreover, the descent character of the
Newton direction and the specific choice of the step length o ensure that At — 0 along the iterations.
The following propositions show the progress of the algorithm in one iteration regarding the primal
and the dual feasibility as well as the complementarity.

Proposition 9 Let us define:

er(r,s) s — h(z),
eolz,w) = I+ w—u2, (7.3)
. es(z,v) = uw—v-—uz.
Then
er(z,8) = (1—a)er(z,s)+ola)
ea(z,w) = (1—a)es(r,w) (7.4)
es(r,v) = (1 —a)es(z,v)

Proof By direct computation we have:
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er(x,s)=s —h(2) = s+ als — hiz 4+ alz) =
s+ alds—h(r) - aVh(z)Az + oa) =
s — h(z) 4+ o[As — Vh(2)Az] + o) =
(1 —a)ei(z, s) + o(a),

where the last equality follows from the third block of equations in (4.1). The analysis goes similar for

ey and e3.0

Proposition 10 Define \ as the value of y from (4.5) computed in t=1t+ aAt. Then

X< (1-a)y.
Proof By direct computation we get:

X=-VAE)+CGE)T Y +HEZ)T 2 +p — 3=
X+ af-K(z,y,2)Ax+ G(2)T Ay + H(x)TAz + Ap — Agl+
me m
[y AyiVigi(z)+ Y Az V()] Ax.
i=1

i=1
Using the first equality from (4.1) it follows that
me m

x=(l—a)y+a?[} Ay V3igi(e)+ Y Az V2hi(2)]Ax.
=1 =

= =1

Now having in view that the derivative of C'O(t) from (2.5) 1s Lipschitz continuous it follows that

X< (1-a)y. O

Proposition 11 Assume that || s oo Il @ |loo, || v ||ce are bounded by a large real number M, and

o defined by (6.17) is such that o < 1. Let us define:

w=sTz4 u‘Tp + T_}.qu

Then

w Swll=al =)+ M[[| Az [l + | Ap lh + || A ||1]

Proof By simple algebraic manipulations we get:
O, SUSCI . TN
w=s z4+w Pp+v ¢=
(54 ads)T(z + aAz) + (w+ aAw)T (p + «Ap) + (v + aAv)T (g + algq) =
w+of(sTAz 4+ 2T As) + (wT Ap+ pT Aw) + (1T Ag + qF Av))+
o*[AsT Az + AwT Ap + AvT Aq).
But,

sTAz 4+ 2T As = T (SAz + ZAs) = eT(ue — SZe) = pm — sTz,
wl Ap+ pTAw = eT(WAp + PAw) = eT (pe — WPe)=pun—uwlyp,
vTAg+ qTAv =eT(VAq+ QAv) = eT(pue = VQe) = un — vTq,
where the last two equalities are from (4.1). So,

w=w+ af(m+2n)y —w] + o?[AsT Az + AwT Ap + AvT Ag),

and from (6.8) it follows that:
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w=wl[l = a{l -~ 7)) + a?[AsTAz + AwTAp + AvT Aq].
Now we shall estimate the term in o as follows:
a? | AsTAz + AwTAp + AvTAq [€ o?[| AsTAz |+ | AwTAp | + | AvTAq ],
But,
a? | AsTAz |= o? 13- Asidz |< a? Yol Asi || Az |<
a*(max] Asi (5] Az ) = 02 | As ] A 1=

o || aAs ||| Az |1,

where the last inequality is a trivial case of Holder’s inequality. Clearly, similar estimates can be made

for o? | AwT Ap | and a? | AvT Ag | . Substituting these expressions into the last expression for w, we
get:

w<w[l —a(l — o))+
afl| @As [leoll Az [l + || @Aw [|ool| Ap [|1 + || @A [[oo || Ag [1].

Now, we use the specific choice of the step length o to get a bound on || aAs
|| aAv ||os - Indeed, (6.17Ta and 6.17b) imply that

ooy || @Aw || and

a < lj}—l for all 7 = 1,...,m, hence || 2As ||ac<|| 5 ||oo -

Similarly, || eAw [|o<]| @ ||l and || @Av ||o<|| v || . Having in view that || s ||, || w ||a and
|| v || are bounded by the real number M, the following estimate of the complementarity is obtained:

wSwll—a(l—a)]+M[| Az [l + 1| Ap i + ]| Agl1]). ©

Another estimation of the complementarity can be made as in

Proposition 12 Assume that || z ||co, || P llec, || ¢ [leo are bounded by a large real number M, and
o defined by (6.17) is such that o < 1. Then

w=<w[l—a(l —o)] + M|l e |ls + |l e [ls + |l €3 |l1]. (7.8)

Proof As in Proposition 11 above we can write:

w=w(l — a(l — o)) + ¢*[AsTAz + AwTAp + AvT Ag].

Now from (4.1) we get: As = H(x)Axz —e;, Aw = Ar — es and Av = ez — Ax. Substituting these

expressions of As, Aw and Av into the expresion of w we get
w=w[l — a(l — o))+ a?[AzT(HTAz + Ap— Aq) — el Az — eX Ap + el Aq).
But from the first equality in (4.1) HTAz + Ap— Ag = KAz — GT Ay — x. Hence
w=w[l—a(l —0)] + a?[AzT KAz — AzTGTAy — AzTy — eTAz — el Ap + ed Ag).

Having in view that the functions of the problem are twice continuously differentiable and the derivative
of CO(t) given by (2.5) is Lipschitz continuous, it follows that

w<wll—a(l—o)]+a?[|efAz |+ |efAp|+|elAq].

As above, using a variant of the Holder inequality we obtain
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wSwll = ol = o)l + afll ey ]| €Az oo + | €2 1] aAp || + I3 (Ll alq [|].

But, from the specific choice of o we can write: | adz (||| 2 |lo< M, || aAp oo <l P o< M
and || @Aq [lo <[] 7 [l < M which was introduced into the last inequality, we can estimate the new
complementarity as:

wwll=a(l=a)+ Ml e |l + |l ez |1 + ] es |1]. O

As we know from the duality theory, three criteria must be met in order that a primal-dual solution
15 optimal: primal feasibility, dual feasibility and complementarity. The following theorems show the
progress of the algorithin over several iterations with respect to the primal and dual feasability, as well
as the complementarity.

Theorem 1 Let ef(x,s), eb(x,w) and ek(x,v) denote the values of these quantities at the k-th
tleration. Then:

("{'(41.5) < (I —n);"f?(m.s)‘
fé'(.z:,u!) = (1- f*)kf‘g(l-“’)~ (7.9)

eble vy = (1 —a)fed(e,v)
ProofFrom Proposition 9 we have ef2,s) < (1-a )ff_l(:t, 5) < .. < (1—a)*e(z, s), which proves
the first inequality of the proposition. Similarly, ef(z, w) = (1 - a-)e-.f{_l(..z:}-w) = ... (1—a)ed(z,w),

and ef(x,v) = (1 - ek Y v)= ... = (1 —a)el(e,v). O

Theorem 2 Let v* denote the value of \ al the k-th iteration. Then

VE< (4 —rr)k‘,\o. (7.10)

Proof From Proposition 10 above we can write: \* < (1 - a)yk-! < . € (1= a)*\° which proves
the theorem. O

Theorem 3 Let w* denote the value of w at the k-th iteration. Assume thai Iz Neer Il 2 Nleos 1] 4 oo
are bounded by a large real number M < o, and o defined by (6.17) is such that o« < 1. Then there

erists a constant ﬂ}< oo such that:
wh < (1- &) M (7.11)

where a= a(1 - 7).
Proof From Proposition 12 and the previous estimations given by Theorem 1, we see that

W < (L—a(l = o))wh =L+ M(1—a) 1] e |}s + lealli + [l es [hh] =
(1— a)wb =14 Af (1 — a)-1,

where a= a(l - o) and A= M| ex{lh + |l e2 lli + || €3 |l1]. Since an analogous inequality relates
w1 10 wk=2 we can substitute the corresponding nequality to get

WP < (1= a)[(1= o) 24 Af (1 = a)¥ =2+ A1 (1 — a)k—1 =
(1= )Wk =24 A7 (1 — a)h-1 [%;% + 1] :

Continuing in this manner, we can write
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l—a

wh < (1— a)2[(1= o) =3+ A (1 — )%= 3]+ f\j(l—u)k‘l{’;'_‘qu]:

a9

(1,”) @l U(l—n)k_‘ (1_E> —Q—i:::

l—n

z_ 2
l—qr T—w

k=1
(1= a)fw+ A7 (1 —a)f! (l——) R S

But

7= I‘_] -
(1 — o)kt (%) + o+ =241 =

A

Considering this last inequality . we see that

l1—-a ‘ _
< (1= o)+ A (——) =(1-a)* [w”Jr ﬁ} _

ag

T

Denoting [ 04 ’”} =M, we see that w¥F < (1—a)* A . O

The above theorems are only a partial convergence result because all of them depend on the
assumption that the step lengths remain bounded away from zero.
Remark Note that the primal and the dual infeasibilities go down by a factor of (1 — «) at each

iteration, whercas the complementarity goes down by the factor (1— a) > (L —a)
The step length. A crucial point of the algorithm is the step length determination. The following

proposition shows that the sequence of {¢} generated by Step 5e of the PONC algorithm is bounded
away from zero.

Proposition 13 Suppose that the functions of the problem f(x), g{x) and h(x) arve twice continu-
ously differentiable and the devivative of CO(E) guoen by (2.5) s Lipschitz continuous with a constan!

L. If {ov} s bounded away from zero, then the sequence of {n,.} generated by the PCNC algordhm s
hounded away from zero.

Proof Since ap= min(al, af’) it suffices to show that the sequences {al} and {af’} are bounded
away from zero. Let us suppress the subscript k. Following El-Bakry, Tapia, Tsuchiya and Zhang [1096]
let us define the vectors: a(a) = [s(a) wla) v(w)]! € B2 and b(a) = [z(«a) pla) qla)]f € R+,
Hence the function 7 («) from (6.2) is written as:

(_)]((l,) = min{a,(a)lilal} ~ Ty

al (a)blo)
Trtm

From the definition of af (Step 5¢) we see that « is the largest number in [0, ] such that

a; ()b () — 7 al(e)b(o)/(2n+m) = 0,

for every i=1,...2n4+m and o € [0.a'].
Let n; =| Aa; L\.b - l‘gi+ﬁlb | . From Proposition 8 it follows that At 18 bounded, then there is a

positive constant M smh that n; < M. A straightforward computation shows that, for o € [0, af],

ag{a)bi(a) — 47 al (a)hla)

Il 2n4m
T i T
= P - ___.._.ﬁi"'_b_é“ 24/ / o Da” Ab
= a,_b, =T :’:-}:E] 4+ [l’!.z.Abz + (), A(i ntm ] + o [A(Lz..kb_. YTl S

all —ymp — o | Ag; Ab; — 71'[ %$+ﬁ1b

= (L — ) — pia®
> a(l —ym)p— Ma® 2 0.
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Heuee
of > (1= 7))/ M.

But, as we know, j = o0t
n s i = 2N+

is bounded away from zero.

Heuce «f
17} generated by Step 5 of the PCNC algorithm is bounded away from

and for ¢ bounded away from zero it follows that ; is bounded below.

Now let us show that {aj
zero. According to the mean-value theorem for vector-valued function [Dennis and Schnabel, 1083,
Chapter 4] we have:

1
CO(t + aAl) = CO() + a [f VCO(t + gmr)dg] At
0]

1
= CO() + «VCO(H) AL + a [[ (VCO( + Lalt) — VOO(L)) d{} Al
0

= (1 = a)CO(l) + v {j (VCO(E+ EaAl) — v('om).fg] AL,

4]

where the last equality is from (3.1). Now, having in view that the derivative of C'O(#) is Lipschitz
continuous with the L constant, we obtain:

o

1 €Ot +aan) [|<] COW | L= | +La? || At |

Using this inequality we have:

O (o) = ¥ (a)b{er) — 41 || COt + Al ||
=aTb+a [a.T‘_\.b + .’)TAU] + AT Ab — y7y || COU + «AL) ||
> 1—a|alb+acaTh+ o*Ad"Ab— 47 (| COW) ||| 1 = a | +La® | At]?)
= 1—a | («fb—9m | COM)|]) + acaTh + o (AaTAb — 1oL || At ||2)
>aloa’h—a | AdTAb—yr L || At])?]].

[rom Proposition 8 there is a constant N > 0 such that

| AaTAb—yma L || At ||?]< N,

Hence
(o) > a [(r(e']'() — NE .
From condition (6.15) it follows that
ot > aaTb/N.
Since {e } is hounded away from zero, then the sequence {al7} is bounded away from zero. O

Theorem 4 Suppose that the functions of the problem f(x). y(z) and h(x) are twice continuwously
difJerentiable and the derivative of CO(t) given by (2.5) is Lipschils continwous. Let {t1.} be generated
by the PCNC' algorihm, where {op} C (0, 1) ws bounded away from zero and one. Then the sequence
{F(tr)} converges to zero, and for any limit pownt t* = [x*, y*, 2=, p*. ¢*. 5™, w*, )T, 2* s a KKT
point of the problem (1.

ProofFirstly, note that the sequence {|| £(¢;) ||} is monotonously decreasing, hence it is convergent.
By contradiction, suppose that {|| F/(¢;) ||} 1s not convergent to zero. But, from Proposition 5 we have

(I’;J((.P;-)/(DA;(O) S I — 2(1,;.,.“3(] — (Tg‘}
Then, from Proposition 13 it follows that the sequence {®,} linearly converges to zero, This gives a
contradiction.

On the other hand, from Proposition 2 we have:

VO(tr) Aty = —2F(t)T F(te) + 201 F (b)) © |
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Since the sequence {ay} is bounded away from zero, then the hacktracking line search used at Step 5
of the PCNC algorithm produces:

Vbt )Alr

_ AR ) - F()e]
AL :

[lat]

IFrom Proposition 8, Aty is bounded away from zero, then
D(t;) — ;Lk[.‘s{':k + u'g‘m- + Lff_‘ qx] — 0.

However,
B(tr) — prlsf ze +wlpe + vl qr] = (1 = o) ®(tr).

Therefore, it must hold that ®(¢;) — 0, because the sequence {o}} is bounded away from one. Again
this leads to a contradiction. Hence, the sequence {|| F/(¢;) ||} must converge to zero. Since the KKT
conditions for the problem (1) are satisfied by 7, it follows that 2* is a KK'T point of the problem (1).
O

8. Numerical Examples

[n this Section we will present some numerical results obtained with a crude experimental code which
15 still under development. Having in view that the conditions (6.17d) and (6.17f) are difficult to
implement, for the step length determination, we shall consider a variant of the algorithm in which only
the conditions (6.17a, b, ¢ and ¢) are implemented. Firstly we present details of the algorithm running
for a number of three problems. Afterwards, some characteristics of the optimization process with
PCNC for some problems from the Hock and Schittkowski's and Schittkowski's sets of test prahlems,
are presented.
Example 1. Let us consider the problem: [Hock and Schittkowski, 1981, problem 71, p.92]

minzag(r) + xa + 23) + 0a
subject to:
L1 rakzly — 25 2 U,

‘r'f—i-.t",:: + 23+ a3 —40 =0,
1< <5, =1,2,3,4.

The evolution of some elements of the PCNC algorithm is given in Tables 1 and 2.

Table 1. The Evolution of the Functions (¢ = 107%):

flry) = walue of the objective
D(tx) = wvalue of the merit function
[ CO(ti) ||z = mnorm of the optimality conditions
[ CT() 2 = norm of the transversality conditions
L] Faw) [ @) [ HCOWI: | TCTO: ]

0 | .160000E+02 | .534076E403 | .465076L+03 | .GO0000E4+02
1| 169494E+02 | \112666E+402 | .897539E+01 | .220126E4+01
2| AT1E84E402 | .25307T6E400 | .897539E+01 | .135262E+00
3| .169951E+02 | .202962E-01 | .141485E+01 | .614777E-02
4 | 170168E402 | .455528E-03 A8BTHOE-03 2667T8E-03
5 | .170158E+02 | .110764E-04 H2654612-06 .105499E-04
6 | .170144E402 | .424528E-06 561720E-09 | .423877E-06
71 AT0141E402 | .162452E-07 G51T20E-09 162445E-07
8 | 17T0140E402 | .243738E-10 J199940E-14 .243718E-10
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Table 2. The Evolution of the Parameters (e = 107%):

Y& = walue of parameter v in function O (a )
ar = walue of parameter o for barrier parameter i
¥max = maximum value of the steplength
ar = wvalue of steplength ‘
k= walue of the barrier parameter
LE] % T ok | oma | ar | fhi I

0 ] 0.750000 0.1 1090858 | 1.039720 | .233333E+00
1| 0.625000 0.2 0.992283 | 0.926926 | .906640E-01
2 | 0.562500 0.2 1.170237 1.0 226439E-01
3| 0.531250 0.2 1.210422 1.0 A88023E-02
41 0.515625 0.2 1.165723 1.0 105805 E-02
5| 0507812 0.2 1.220644 1.0 216128E-03
6 | 0.503906 | 0.19530 | 1.238018 1.0 423836E-04
7 | 0501953 | 0.03823 | 1.039720 1.0 162444E-05

Some remarks are in order:

1. The parameter 74 is updated as: y54; = 0.5+ (14 — 0.5)/2. Clearly, we can imagine some other
updating formulas for v, € [0.5, v,_1].

2. The parameter ¢ is updated as:

- , ifor <na(sTz + wTp407y),
T mGTr+uwTp+eTq), ifoy > a(sT s+ wTp+ oTq)

where 1 = 0.1 and 5y = 100.

3. Even though the condition (6.17d): ©/(ay) > 0 has not been implemented, we see that in the
last part ot the optimization process: || CO(ty) ||2<|| CT(.) ||2. this ensuring the convergence of the
algorithm.

4. Note that the step length oy — 1, exactly as in the ” pure” Newton method.

5. It is interesting to see the evolution of the barrier parameter ji; given by (5.4) or by (6.8). Table
3 illustrates this hbehaviour.

Table 3. The Evolution of the Barrier Parameter py, (£ = 10-%)
“ k { () given by (6.8) [ Ji given by (5.4)—ﬂ

0 233333E4-00 2543226402
1 H06640E-01 276151E401
2 226439E-01 248363E4-00
3 A88023E-02 -924194E-01
4 105805E-02 IH6T41E-02
bt 216128E-03 113888E-02
6 423836 E-04 217363E-03
T 162444 E-05 424866 E-04

6. The solution of this problem is z = [1 5 5 1]7. The value of the objective function is 17.0140173.
The value of the equality constraints is .7638083E-08, and of the inequality constraints is .2935759E-05.

7. The SPENBAR package [Andrei, 1996a-d] gives a solution for this problem, involving 8 major
iterations, 143 minor iterations (truncated Newton iterations) and 591 evaluations of the functions of
the problem,.

Example 2. Let us consider the problem [Hock and Schittkowski, 1981, problem 43, p.66 (Rosen
-Suzuki)]:

min z§ + 23 + 223 + 25 — 52y — by — 213 + Tay
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subject to:

2

. 9 5
8 —x] — x5 — &3 —

95— ‘2.1‘% —

The PCNC algorithm gives the following solution in Table 4:

The evolution of some elements of the PCNC algorithm 1s given in Tables 5 and 6.

r“; — ]t xa— gt ay >0,
10— 27 =203 — a3 — 223+ w0y + g >0,

L:': - Ij —2r + 2o+ g >0,
—2< <5, 1=1,2,3,4.

Table 4. Solution of the Problem (¢ = 10~%)

[#1 0] =+ [ u]
1| -2.0 | 992394E-12 | 5.0
2 1-2.0 1.0 5.0
3| -2.0 2.0 5.0
41 -2.0 -1.0 5.0

Table 5. The Evolution of the Functions (¢ = 107%):

flex) = waluc of the objective
D(te) = wvalue of the mertt function
[ CO(k) |l = norm of the optimality conditions
I CT() |l = norm of the transversality conditions
L& fle) T @ty [ TCOM N | ICTO . |

0 LD00000E400 | 737000E-+03 | 536000E403 | .201000E403
1 | -077641E4+01 | 5499771+03 | A015TIE+03 | . 148308E403
9 | - 3T157T8E402 | (100816E4+03 | 528640E+02 | .479521E+02
3 | - 445000E402 | 783561401 | .259689E401 | .523872E+01
4 1 - A437880E402 | 341158E400 | .413957E-01 | .299762E400
5 1 -439719E4+02 | .322406E-01 106345 E-02 B12322E-01
6 | -.439805E+02 | .136610E-02 A150560E-03 121554E-02
7 | -.439962E402 | 4800566E-04 B19310E-07 AT923612-04
8 | -439991E402 | . 191398E-05 A41733E-10 191394 1-05
G | -.439998E402 | .768899E-07 259717E-13 TG8898E-07
10 | -.439999E+02 | .656Y10E-09 B12515E-16 GHEOT0E-09
11| -.440000E402 | .531802E-13 G81308E-20 H318021-13

Table 6. The Evolution of the Parameters (¢ = 107%):

v = wvalue of parameter v in function el(a )

o = wvalue of parameler o for barrier parameter p
Omax = mazimum value of the steplength

ax = wvalue of steplength

wr = wvalue of the barrier parameter
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”7 | Tk ‘ T I Ymax | €39 I j235 1]
0 | .750000 3 0.173623 | 0.173620 | .1063683E401
1 | 625000 2 0.610374 | 0.610371 | .615770E+400
2 | .562500 2 0.776175 | 0.776172 | .350629E+00
31 531250 2 1.099367 | 1.000000 | .116627E+00
4 | 515625 2 0.888802 | 0.888801 | .284905E-01
5 | 507812 2 1.170841 1.0 B88200E-02
6 | 503906 .2 1.164319 1.0 203728E-02
7 | 501953 2 1.193870 1.0 415577TE-03
8 | 500976 2 1.243771 1.0 .8342141-04
9 | 500488 | .91966E-01 | 1.101126 1.0 LT6889TE-05
10 | 500244 | .85005E-02 | 1.008572 10 656909E-07
11 | 500122 | .76484E-04 | 1.000076 1.0 H3I80LE-11

The SPENBAR package gives the same solution involving 5 major iterations, 85 minor iterations
and 347 functions evaluations.

Example 3. Let us consider the problem [Hock and Schittkowski, 1981, problem 113, p.122 (Wong
No. 2)]:

min 23 + 23 4+ z120 — 1421 — 1629 + (23 — 10)2 4 4(z4 — 5)%+
(25— 3)? + 2(xs — 1)2 + 522 + T(xg — 11)2 + 2(ag — 10)2+
(210 —T)° + 15

subject to:

105 — 4z — Doy + 3r; — 928 > 0,
=102, +8ry + 1727 — 205 > 0,

81’1 = 2;(,'3 — 5.1.‘9 + 2£10 + 12 2 0,

=3(z; — 2)° — 4(x2 — 3)% — 223 + Tzq + 120 > 0,
—5;1,‘% — 819 — (3 — 6}') + 2z4 +40 > 0,
=325 — 0.5(x1 — 8)2 — 2(x2 — 4)2 + 26 + 30 > 0,
—;Il‘iJ — 2(12 = 2)2 + Q{L’]sz = 141‘5 + (5.]75 2 0,
Jay — Gay — ]Q(l’g = 8)2 + Tx10 2 0,
0<e; <10,¢=1,...,10.

The PONC algorithm gives the following solution in Table 7:

Table 7. Solution of the Problem (¢ = 10-%)
EEXRRE x [ v ]

1007 20 | .2171996E401 | 10.0
2 100 3.0 | .2363683E+01 | 10.0
3100 5.0 | .8773926E4+01 | 10.0
4 1 0.0 5.0 | .5095984E+01 | 10.0
5 100 1.0 | .9906548E401 | 10.0
6 | 0.0 2.0 | .1430574E401 | 10.0
7100 7.0 | .1321644E4+01 | 10.0
0.0 | 3.0 | .9828726E4+01 | 10.0
9 1 0.0] 6.0 | -8280092E+01 | 10.0

10 0.0 | 10.0 | .8375927E4+01 | 10.0

Table 8. The Value of the Constraints (¢ = 10~8)
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hi(;z.’*) ”
3936866E-09
A1424133E-08
A4911662E-09
3292851E-07
2165631E-08
6148503E+01
2354256 E-08
5002396 E4-02

=1| SO TT| W | QO] BRI =] ==

2]

The value of the objective function is: 24.30621.
The evolution of some elements of the PCNC algorithm is given in Tables 9 and 10.

Table 9. The Evolution of the Functions (¢ = 10~8):

386

flzr) = value of the objective
D(tr) = wvalue of the merit function
| CO(tx) |l = norm of the optimality condilions
| CT(.}) |2 = norm of the transversality conditions
|k flae) | @) [ COW) T | NCTO) 2

0 | .753000E403 | .451040E405 | .442410E405 | .863000E+03
1 | 576916E+03 | .318551E+05 | .312051E405 | .649950E+03
2 | 221882E403 | .760135E404 | .T40377E+04 | .197577TE+03
3| 7T90326E4+02 | L915963E+03 | .878209E+03 | .377534E+02
4 | A447106E4+02 | .342317E403 | .331333E+03 | .109840E+02
5 | 265738E402 | .270720E+02 | .261570E402 | 915983400
6 | .245296E4+02 | .592638E-01 162438E-01 A430200E-01
T | .243544E-+02 | 186719E-02 340773 E-04 A83312E-02
8 | .243160E+02 | .742385E-04 109610E-06 JT41289E-04
9 | .243081E+02 | .298381E-05 102978E-09 298371E-05
10 | .243066E+02 | .119888E-06 106694 E-12 119888E-06
11| .243062E+02 | .404292E-08 AT1373E-15 404292E-08
12 | .243062E+02 | 4T70981E-11 BT6155E-18 AT0981E-11

Table 10. The Evolution of the Parameters (¢ = 1078):

vk = wvalue of parameter v in function @ (a )

or = value of parameter o for barrier parameter p
Omax = mazimum value of the steplength

ar = wvalue of steplength

puir = wvolue of the barrier parameter
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“ k I Vi | aj I N nax ‘ (890 | j2ys _H
0 | .750000 3 0.158304 | 0.158304 | .110357TE+01
I | 625000 2 0.502018 | 0.502918 | .809315E+00
2 1 562500 2 0.657969 | 0.657969 | .435322E+00
3 | .531250 2 0.535589 | 0.535689 | 200213E+00
1| 515625 2 0.890842 | 0.890842 | 1131565400
5 1 .503906 2 1.127216 1.0 S11684E-01
6 | .503906 2 1.209376 1.0 T64177E-02
71 501953 2 1.170946 1.0 160451E-02
3 | .500976 2 1.222116 1.0 A25237E-03
9 | 500488 2 1.244544 1.0 G52865E-04
10 | 500244 | 18321 | 1.22365H3 1.0 1198881-04
11 500122 | 33645 | 1.034818 1.0 A04292E-06
12| 500061 | 11483 | 1.001150 1.0 ATO981E-09

In this case, the SPENBAR package requires 4 major iterations. 149 minor (truncated Newton)
iterations and 970 evaluations of functions.

In the following we shall consider the running of the PCNC package on a number of problems
from the Hock - Schittkowski [1981] set of problems, as well as from Schittkowski’s [1987] collection
of problems. Table 11 shows the characteristics of the optimization process with PCNC referring to
different initial points, number of iterations, number of functions evaluations, the value of the norm of
the optimality conditions, the value of the barrier parameter and of the step length, ete.

Table 11. Characteristics of the Optimization Process with PONC (&= 107%);

1P

el

nf

| CO(te) |2
I CT) 2

Initial Point (S = Standard Point)
# of iteralions

# of functions cvaluations

Norm of oplimality conditions
Norm of centrality conditions
Value of the objective function
Distance from centrality

Value of the barrier parameler
Value of the steplength

Mazimum value of the steplength
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[ Namc [ IP [ nit | nf

[ €O(tx)

[2 ]

TCTiOle

HS32 S 6 8 2RI1G0E-09 890623E-5
§ 6 8 | RIT0GTE-O8 | 906026E-04
12 | 35 | 37 | 23850909 | 7066601505
T3 | 36 | 38 | 542306E-08 512380E-04
[ HSss | 5 | 61 [ 68 | 723080E-08 [ 346280E.11 1
I [ TT | 57 | 59 | 238560E-08 | 186609E-12
[ HS37 || 11 | 14 [ 16 | 206435E-27 [ 228163E-20 [
HS42 S T0 | 12 | 476087E-26 | 106282E-16
11 9 11 | 263800E-74 | 572985E-15
T2 | 10 | 12 | 232637E-28 | 325052E-19
13 9 11 | 137112E-24 J97692E-15
HS43 S 13 | 15 | .277706E-056 [ 302020E-09
[l T2 | 14 | 134241E-09 | 139405E-09
12 | 12 | 14 [ 246198E-00 256468E-09
T3 | 13 | 15 | .121085E-09 127335E-00
[(T5a4 [ 11 | iz | 14 | 78o6i3E-29 [ 906529E-19 |
i T2 12 [ 1% | 342034L-28 | 539278LE-18 ||
[ FSar J[ 11 ] 55 | 57 | S6ro0sE-08 [ 883014E-41 )
- [ 12 |54 | 56 | 807604E-04 | 20i620E-18 ||
HS48 5 4 6 | O81470E-13 [ 380433E-01
11 4 6 035082E-13 | 376255E-01
12 4 6 | 328648E-10 4B50264E-01
[ HSI | S [ 16 [ 17 [ 614603F-08 | 240757k-11 1l
I [ Ir [ 26 | 38 | 2rra62E-08 [ 171366E-19 ||
HS50 S 10 | 12 | 207630E-09 731393E-06
11 9 11 | 180172E-11 | 123154E-05
12 | 14 | 16 | 275018E-13 | 567711E-20
13 5 8 | 114298E-09 | S638780E+00
T4 G 8 | .644158E-D8 | .250051E400
HS51 5 4 6 | 3855G3E-12 [ 115810E-01
11 4 6 | b55l270E-11 | .283667E-01
12 4 6 | 176057E-11 196812E-01
HS52 S 2 4 347500E-00 | 161794E403 ]|
[ 3 5 | 195840E-08 | 423945E+02
2 3 5 | .223451E-08 | 436037E402
13 2 10 | 116096613 | 311722E+401
HS53 S 3 5 155212E-10 | 395810E400
11 4 [ 135780E-08 | 223385E401
12 4 6 | 247691E-08 | 257194K401
13 3 5 | 134283E-11 TIOTOGE-01
[ EHS6L [ 1L | & | T1 [ 255005E-10 | 485008E-08 ]|
HS63 S G 3 307336E-10 155108E-04
11 5 8 | 707607E-08 | .124090E-04
12 E 11 511842E-11°| 744801E-05
HS65 S 7 9 | 276808E-0Y | 102787E-04
11 7 5 | 673553E-11 | "123496E-05
12 5 7 | 648425E-08 | 2836991-04
[HS7i [ 5 [ 6 | 8 | 65lv20E-00 | 423877E-06 |
I 11 |7 | & | 435015E-08 | S84610E-06 ||
HS73 S 3 10 | 176433E-10 | 173662E-05
11 0 | 12 | 513410E-0¢ 120897E-08
12 9 11 | .330001E-08 | 442336E-06
13 [ 10 [ 12 | 712451E-09 2000121-06
HS76 S T0 | 12 | 140067E-20 | 343496E-16
I 10 | 12 | G78975E-29 752365E-15
T2 | 11 | 13 | 108198E-29 104317E-20
T3 12 | 14 | .188057E-29 | 814056E-17
HSI13 S 13 | 15 | .366188L-25 487388E-18
11 17 | 19 | 167600E-22 204212E-15
T2 | 12 | 14 | 176304E-23 | .224720E-16
13 | 18 | 20 | .248136E-25 | .269701k-18
[ S2i7 [ 5 [ 18 | I5 | 740654E-2d4 | G15541B-19 |
I [[TTT [ 9 | Il | 112356E-23 [ 923683E-19 [l
[ S2i8 [ S ] 14 [ 16 | 268757E-10 | 314477E-07 1
[ 14 | 16 | B88070E-10 | .163815E-00 |

[ s29 | 1
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Table 11. Characteristics of the Optimization Process with PCNC (g = 10~8) - continued

” Name ” f | £ | it I @ i Xmax “
HS32 1.0 573457 T47336E-03 0.999500 1.287417
1.0 531756 .28124315-02 0.950500 1.215009
1.0 622537 626097E-02 0.999500 1.266965
1.0 704269 A84727TE-02 0.999500 1.229708

BT4461E-08 [ 0.717951
141810E-08 0.803644

0.713310 ”
0.894051 ||

[ HS33 [ 1798092 T 00022
\ 1.708002 | 0.00047

([ HS37 [ -3456.0 [ 0069655 | 585360E-12 | 0099367 | 1000 ||
HS4z2 1335786 099995 688051 E-00 0.9595 1.00074
13.85786 0999940 698862E-08 0.9595 1.00237
13 85786 095595 943834E-11 09995 1.00008
13.85786 0999945 | 486897E-08 09905 1.00197
HS43 -44.0 382086 GHBITOE-08 0 135250 1.00829
-440 0166757 | 879352B-08 0 630348 1.014314
440 0177464 | 531233E-08 0212828 1.012284
-34.0 0.203728 | 212161E-08 00864971 1.006461
[ Hsdd ] -15.0 [ 999473 | 202883E-10 | 0.999500 [ 1000169 |
[l Il -150 | 999473 | 781634E-10 | 0099500 | 1.000431 ||
[ Hsa7 ] 0.0 | 04937 T 54G6014E-17 [ UG838531 | 0009661 ||
[ [[_133443E-08 [ 005 [ 97730GE-16 | 312620E-03 | 0.991663 ||
HS48 0.0 990163 615545E-04 0999500 1323307
0.0 999211 G12159E-04 0.999500 1272604
0.0 090773 | 213457E-03 0.999500 1140494
[ HS49 T 0.0 [ 0495064 [ 180460E-10 | 0.093525 | 0.997:87 |
[ i 0.0 [ 160 | .222354E-16 |  0.765387 | 0097641 ||
HS50 0.0 000374 151811E-03 0.990500 1.245079
0o 099917 350233E-03 0095500 1.247689
0.0 883577 | 190954E-11 0950500 1.000040
A87T204E-07 | 089076 | 310624E+00 0.995500 1910478
205908E-0G | 007404 408041 E+00 0.999500 1.183567
HS51 331885E-05 048848 33405TE-01 0.999500 1.140867
113508E-04 | 034210 522127E-01 0595500 1162079
343330E-06_| 650153 AA1287E-01 0.999500 11509594
HS52 5326641 959659 [ 401433E+01 0.995500 1219962
5.3 899791 [ O0548TE+01 0.999500 T 329861
5 326650 926790 205994E401 0.896500 1.220707
5326648 505066 557206L5+00 0.999500 1.249505
HS53 4.093025 096253 198503E+00 0999500 1.160760
4 093031 096831 A71426E400 0.999500 1164569
4093054 092703 [ 505691E+400 0.999500 1.169789
4053024 998795 852510E-01 .9995000 1.232501
[ HS61 [[ -14364611 | 599699 | 283372E-04 | 0099500 | 1144733 )
HS63 0617152 592672 160669E-02 0999500 1.231509
961.7151 934392 145152E-02 0.999500 1.171307
961.7152 509600 1T1198E-02 0 599500 1.239978
HS65 9547013 666343 120727E-02 0.599500 1.215245
0530442 u88510 A18477E-03 0 599500 1.208355
9554332 946080 198347E-02 0.599500 1 187995
[ HS7I ][ 1701444 | 584698 | 216128E-03 | 0909500 | 1.220644
[l [[ 1701462 1075000 | BII775E-03 | D009500 | 1214727 ||
HS73 29 89562 964530 A161765-03 0 599500 1.087379
2680441 995412 109476E-04 0.5995G0 1115710
20780500 970094 209943E-03 0.599500 1.143323
20 89489 994730 170205E-03 09993500 1136257
HS76 -1.681818 908205 123711E-08 0.999500 1.001168
-4.681818 908201 700899EF-08 0.999500 1.002785
-4.681818 008200 [ 384940E-12 0.999500 1.000021
-4.681818 998207 517577E-00 0.999500 1.000755
HS113 2430621 L000871 502351E-10 0.G99500 1.000407
24.30621 999870 225305B-08 0999500 1.002518
24 30621 999870 654417609 0.999500 1.001356
2430621 900871 300857 0 999500 1.000331
[ S217 -0.8° [ 097026 [ 174759E-10 |  0.599500 [ 1.000094 []
Il -08 | 097027 | 247263L-10 | 0909500 | 1.000111 ||
[|_s218 || .774652E-07 | 0220830 | 105397E-08 | 0.225725 [ 1.031481 ||
[ Ss21s ][ -0.986655 [ 100000 | 570507E-08 | 0.080401 | 1.021684 ||

Table 12 shows the comparative results of the PCNC and the SPENBAR results of the set of
problems considered in this experiment. In PCNC code the Newton method is used as the basic
iterative procedure. In SPENBAR we used the truncated Newton method [Nash, 1985], [Nash, Polyak
and Sofer, 1994]. In the modified penalty-barrier code SPENBAR, the number of major iterations
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{o-ut) is the number of umes p {the barver parameter) wow decroased and the Lagrange multiplicrs
adjusted. The number of mmor iterations {in-i(} iz the teid onmiver of truncated Newton steps. For
the PCNC, the number of iterations 15 the total numbee of Nowton steps. In bouh codes | nf s the
total number the functions ol the problent his been evaluated.

Table 12: Comparise Detween SPENBAR and PONC

Problem [ nolm ‘T e SPENBAR PCNC |
i 1 ; o-it { it | uf it | nf

Tms3z [3 71T T Tl T3] 6] 3

TRESE 3027 0 107 66 ¢ 187 || 61 | 63
NS37 | 3 {2 0§ 4 | 26 | 76 § 14| 16
ws1z T4Jol 257 23] 84 1wl
HS3 T4 3T o s T8 37T 315

NS4 T4 {6 0 9 [T as I
NS47 | 5 | 0| 5| & 1 28 | 278 || 55 | 57 |
HS1s [ 570 2 |4 50 1] 4716
NS4y | 5 o 2 : 126 1 459 1 16 1 17
NS5 o501} 3 L1106 | e T 101 12
S50 | 5 | 0] 3 I 5 | 9 | 324 3 4 | &

i NSK2 TR0 3 [0 T er 20 2 14
HS58 1570 3 [ 6 | 71 : 2% 305 |
sl 13101 2 4737 1 96 9 111 ]
HS63 | 3 0] 2 NN R
HS65 3 I 0 5 208 1 859 Tl
nsrt (11 S 10437500 | 8 1 8 |
[1S73 413271 ] AR PR D
IST6 [ 4 13 0 9 1796 | 364 10 | 12
IR
S217 | 2311 s 338 33115
S21s | 2 L 9 1 o0 T 230 | ] 16
g1 | 4 | L6 | lug | 4ot |1 14 | 16 |

T TOTALT 1 7 i) | 2152 T 8411 J1 309 ] 355 ]

Computational cxpere nec with s qoproacios very |
point approach, BEl-Baloy, Tapia, Truciiva cad Zhaeg D098
resuits on a linnted nmieher of sieell seade teat probizgs (rons the Hock and Schitthowski colleetion.
Lasdon, Plinnner and Yo [1995] repori re
using a trust vegion approach. Vandesiel and Shanmo [OOT] present results on the Heck - Schittlkowski

i renort some preliminary computational

sults ou o soreewhet Targer test set, of a variant of algorithm

probleims as well as on o number of 2 arge-scale nonkinear vrobiems, in comparison with MINOS and

1 o i I

LANCELOT. Gay, Overton and Wright [1997] alss report results on the Hock - Schittiiowski nroh-
o D - B

lems and three problems from the CIUTE [1995] collection. We have considered here soioe numerical

experience with a variant of the algerithm. which s 2 meve sinwlification, 1.e. we did not eniore

ditions (6.17d and 6.17F) for step lenuth determination n oraer to avold the complications ¢

the nondinenr Tunciion 7' (¢ A rebuse oplemcatation must congider these condiviens i the hine

search procedure from sten 5 of the o bomthn. The alroiirhin contains a numboer of perancters, and
hy ! { i b corith Ui " i
its performarer s fargely dependest oo thelr cheice. Vo chioose prover values of thess naraineters

requires very mtensive teierical test

9. Conclusion

In this paper we have presented i int o poet alsoeti foe colving wonoral s onlinear prograniming

problems. it is based on the peiturhed Carcsh-Nuebn-Vacboscondiciora s scaeintod with the iogarhme

barrier function formulaticn of the probilom,

390 . Stodies ot casties and Coateol, Volu7, Noot, Decembier 1995



The algorithm has two main components: determination of the descent direction and the computa-
tion of the step length. The search direction is computed as a solution for a reduced perturbed Newton
system. Vanderbei and Shanno [1997] show that for nonconvex nonlinear problems this system must be
modified by adding a diagonal matrix. We did not consider this perturbation in our implementation.
The critical feature of the algorithim is the choice of the step lengths oy at each iteration. in order to
find the local minimizer of (1). For this, a number of criteria must be implemented (see (6.17)), the
main one 1s that referring to the speed of reduction to zero of the pure optimality conditions versus
the transversality conditions. The convergence is ensured when both these conditions converge to zero,
but in such a proportion that the transversality conditions surmount the pure optimality conditions.
In our experimental code we did not implement this condition.

Mainly, the algorithm does not mimic the primal-dual interior-point methods for linear program-
ming. Rather some special elements have been introduced as: formulation of the optimality conditions,
definition of the perturbed reduced Newton system, definition of a merit function, choice of the barrier
parameter. Some other points remain to be clarified: detection and treatment of the indefiniteness in
the Newton system, selection of proper values of parameters 3, 44, o1 and p, treatment of an infeasible
starting point, practical implementation of the conditions (6.17) for the step length determination. All
of these issues deserve further research and experimentation.

The results of this preliminary computational experimentation indicate that the primal-dual ap-
proach is more efficient than the penalty-barrier approach. However, the primmal-dual algorithm requires
second partial derivatives of the functions of the problem. Thus, for those problems for which the sec-
ond derivative information is difficult to obtain, the penalty-barrier method should be preferred. One
advantage of the primal-dual approach is that the Lagrange multipliers are computed directly by the
Newton’s method rather than by using the first order estimates. This is very appealing, since improving
both the accuracy and the rate of convergence of the algorithm.

In summary, the reconsideration of the barrier methods for nonlinear programming is one of the
most active areas of research. A lot remains to be done from both theoretical and computational
viewpoints, in order to build up a viable algorithin and to achieve an efficient implementation, able
to enter the numerical comparisons with the state-of-the-art packages such as: MINOS, LANCELOT,
SNOPT, NLPQL, SPENBAR, CONOPT, etc.
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APPENDIX

The starting points indicated in Table 11 are the following:

Mr'ob?em ” Initial — Points
HS32 11=[1,7,2];12=[9,9,2];13=[9,9,9]
HS33 11=[0,1,1]
HS37 11=[30,30,30]
| HS42 11=[2,2,2,2];12=[3,3,3,3};13=[3,3,1,1]
| HS43 11=[1,0,0,0];12=[1,1,0,0,]:13=[1,1,1,1]
| HS44 [1=[1,2.5,0.5,3.5};12=[1,4.5,0.5,3.5]
1HS47 11=[0.5,0.5,0.5,0.5,0.5];12=[1,0.5,1,0.5,1]
HS48 [1=[3,5,-3,2,-1];12=[1,7,2,-3,5]
HS49 11=[9,8,1,-4,0.5]
HS50 11=[10,-30,11,15,-15};12=[30,-30,35,15,-35];
[3=(35,35.35,35,35];14=[-35,-35,-35 -35,-35]
HS51 11=[3,2.5,2,-1,2.5};12=[-2,2.5,-2,-1,3]
HS52 11=[20,20,20,20,20];12=[-20,-20,-20,-20,-20]
13=[200,-200,200,-200,200]
HS53 11=[10,10,10,10,10);12=[-10,-10,-10,-10,-10]
13=[0,0,0,0,0]
HS61 11=[3,-5,1]
| HS63 [1=[3,3.3):12=[1,1,1]
HS65 11=[-5,4,0];12=[5,4,0]
HS71 11=[2,5,5,2]
HS73 11=[2.1,1,0.5];12=[2,2,2,0.5];13=[2,2,2,2]
HS76 11=[1,1.1,1};12=[2,2,2,2[;[3=[5.5,5,5]
HS113 [1=(10,3,1,1,1,2,4,3,6,10];
[2=[2,2,9,6,1.2,2,10,10,10];
13=[20,20,20,20,20,20,20,20,20,20]
S217 [1=[1,1]
5219 11=[1,1.1,1]
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