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Introduction

Decision analysis implies knowledge acquisi-
tion, realization of mathematical models,
computer simulation and action [10, 11]. This
paper considers some logical aspects regarding
the use of fuzzy sets in the representation of
multicriteria decision problems.

It is accepted here that a multicriteria decision
problem is represented by a system (X, g, d),
where X is the set of alternatives. g is a vector
of goals and d is a decision set representing
acceptable alternatives to some decision-
making process |3, 8].

Any goal is associated with an attribute of the
alternatives. A domain of its possible values is
associated with each attribute. Then the
alternatives are evaluated in the domain
associated with the corresponding attribute and
the goal is expressed in terms of values of this
attribute of the alternatives. Suppose that the
domain D, associated with any involved
attribute 4 is a bounded ordered set called
membership grades scale. Each goal associated
with an attribute 4 is represented by a mapping
g4 from X to D, and consists in determining a
maximum Pareto point for g, on X.

An attribute is called elementary if its member-
ship grades scale is a bounded chain (e.g. the
attribute “height” with respect to some set of
persons is elementary). Any attribute can, in
some respect, be considered as a logical
combination of elementary attributes.
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The representation of multicriteria decision
problems using fuzzy sets, as they were
introduced by Zadeh [3, 8, 22], implies the use
of a unique membership grades scale, namely,
the complete bounded chain L = [0, 1] < R of
positive subunitary real numbers. This helps
equally describe the vector of goals by a finite
collection of fuzzy sets on X and the decision
set as a fuzzy set on X obtained from the goals
through an aggregating mapping, which was
defined using different combination operators.
Considering both the algebraic structure and
the topological structure of the standard chain
[0, 1], Dubois and Prade [8] provide interesting
solutions to the problem of choosing a suitable
combination operator capable to build the
decision set.

In the above mentioned approach any involved
attribute is considered to be an elementary
atiribute and the decision set is defined using
operators from various logical systems. In order
to obtain a more comprehensive conceptual
Sramework for the representation of attributes
and the construction of a decision set in
multicriteria  decision problems, a major
problem is to identify a standard logical svstem
including features common to various logical
systems. Turunen [21] shows that adjoint
couples and residuated lattices happen very
often together. Goguen [12] considers that the
algebra of inexact concepts is a residuated
lattice. Pultr [16] introduces the concept of L-
space, with L a residuated lattice, and shows
that L-fuzzy sets and L-fuzzy sets with equality
can be represen-ted by a system N = ((P, v) ; K,
R), where (P, v) is an L-space and K, R are
subsets of P, called L-nebula. In Negoita and
Ralescu [14] several notions of generalized sets
are presented.

Different structures have been defined as
algebraic counterparts of various systems of
logic (e.g. Boolean algebra [15]|, Heyting
algebra and Brouwer algebra [1,2,7,13,17,18],
Heyting-Brouwer (semi-Boolean) algebra [19],
D-algebra [20]).
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Starting from some properties of the structure
of complete D-algebra [20] and given the
results obtained by Turunen [21] and Pultr [16],
we define the structure of hiresiduated lattice
with a view at getting a suitable membership
grades scale for  the representation of
attributes. A biresiduated lattice is defined by a
system
(A& ®.<0,1),

where @ and ® are binarv operations on the set
A, < is an order relation on A and 0, 1 € A
such that (A, @, ®) is an ordered bisemigroup
and (A, £, 0, 1) is a complete lattice satisfving
some distributivity conditions.

Different examples together with some basic
properties of the biresiduated lattice structure
are presented. A biresiduated lattice can be
associated with each complete D-algebra.
Several biresiduated lattice structures are also
defined on the chain ([0, 1}. £, 0. 1). Then a
description of the biresiduated lattice structure
as a system A = (A, @, -, ®, -, < 0, 1) is
given, such that (A, < 0, 1) is a complete
lattice equipped with an adjoint couple (&, —)
and a dual adjoint couple (&, —). Some specific
relations are also derived.

The Hevting structure, the Brouwer structure
and the Lukasiewicz structure associated with
the complete chain ([0, 1]. <. 0, 1) will further
be considered as basic biresiduated latiices on
10, 1]. The Lukasiewicz structure on [0, 1] may
be associated with a standard structure of A/~
algebra |5, 6]. The class of D-algebras [20] is a
minimal extension of the union between the
class of Hevting algebras and the class of
Brouwer algebras. Then. in order to develop a
logical system for multicriteria decision
analysis, the definition of a structure mcluding
both the structure of D-algebra and the
structure of M1 -algebra should be considered.
A solution of the precedent problem will be
given by the notion of biresiduated algebra,
defined as a system
A=A A V. D, -8, —-. -, 0.1

of type (2, 2. 2, 2, 2. 2, 1, 0. 0) which satisfies
some equations. Let R be the class of residuated
algebras. R° be the class of duwal residuated
algebras and BR be the class of biresiduated
algebras. We prove that BR is a varicty
generated by R U R®.

The notions of distance function and equiva-
lence function for a biresiduated algebra are
introduced and applied to construct hAomomor-
phic images using strong ideals and strong
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filters. Then the notions of formula, valuation,
valid formula and invalid formula over each
class C of biresiduated algebras are presented.
The word problem for free algebras over C is
also defined.

The concept of set over a complete biresidua-
ted algebra including the notion of set over a
complele Hevting algebra defined in Fourman
and Scott [9]. is introduced.

We also present the concept of an aggregating
mapping in multicriteria decision analysis.

1. Biresiduated Lattices

1.1 Terminology and Notations

Let A be a set together with two binary
operations @ (addition) and ® (multiplication)
on A, an order relation < on A and two
constants 0. 1 € A such that (A, < 0, 1) is a
bounded poset with the minimum element O
and the maximum element 1. Then the
system A = (A, @, ®, < 0. 1) will be called a
bounded ordered bigrupoid. Let Ord-BG [0,1]
be the class of bounded ordered bigrupoids. A
mapping f : A — B is called a morphism in
Ord-BG[0.1] from Ao B=(B. ® &, < 0. 1) if
fis a morphism of bigrupoids from (A, ©, @) to
(B, @, ®) and f is an order-preserving mapping
of posets from (A < 0. D to (B, <, 0. 1) 1e.
forallx,v € A, )

fix @y) = [0 Df(y):  fx ®y) = f(x) @ f{y);
x<y=fx)<fy,  f0)=0andf(1)=1.

If the bounded poset (A, <, 0, 1) is a complete
lattice and X is a subset of the set A, then let
supX for the supremum (join) of X and infX for
the infimum (meet) of X. For x, vy € A and for
every family (v;); . ; of elements of A. let

xay=inf{x,y};
Ay, =inf{y/iel}; Vl_vi=sup {v;i/1el}.
el ie

Xvy =sup {x, v},

A complete lattice (A, < 0, 1) will be called
finite distributive if A together with the binary
meet and the binary join on A, (A, A, V), is a
distributive lattice, If (A, < 0, Dand B, < 0, 1) are
complete lattices then a mapping f : A — B is
called a homomorphism of complete lattices if
for every family (v,); . ; of elements of A,
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KAy = Kfy), KV y)= V ;).
iel 16l iel iel

The use of the notions of closure operator and
interior operator on a poset and the notions of
modal operator and dual modal operator of a
lattice will be in accordance with the
terminology introduced in [4].

A closure operator on the poset (A, <) is a
mapping ¢ : A — A such that x € ¢(x),
c(e(x)) = e(x) and x £ v = ¢(x) < ¢(v), for every
X,y € A

An interior operator on the poset (A, <) is a
mapping i/ : A — A such that i(x) £ x,
i(i(x)) = i(x) and x < v = i(x) < i{y). for every
XyeA

A modal operator on a lattice (A, A, v, 0, 1) is
a mapping p : A — A such that it satisfies :

p©0)=0;
PXVY)=p(x) v ply).

A dual modal operator on (A, A, v, 0, 1) is a
mapping q : A — A such that it satisfies ;

g(hy=1,
q(x A Y) = q(x) A q(y).

Now the definitions of some known structures,
to be used in the sequel, are presented.

A Boolean lattice is a bounded distributive
lattice (A, A, v, 0, 1) such that every element x
of A is complemented, i.e there is an element y
such that x Ay =0 and x vy = 1, and in this
case lety = —x.

A Heyting lattice is a relatively pseudo-
complemented lattice (A. A, v, 0) with 0, i.e. a
lattice such that for every x, y € A, 0 < x and
the relative pseudocomplement of x with
respect to y exists, namely, there is an
element x — v € A such that it is the greatest
element z € A which verifies the
relation z A x <y. Every Heyting lattice is a
bounded distributive lattice. A Heyting algebra
is a system H = (H, A, v. —, 0, 1) associated
with a Heyting lattice, where A (meet), v (join).
— (relative pscudocomplementation) are binary
operations and 0, 1 € Hwith 1 =0 — 0. Let
-x=x—-0, forevery x € H.

A Heyting algebra is called complete if it is a
complete lattice.
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A Brouwer lattice is a lattice (A, A, v. 1) such
that it is a dual Heyting lattice, i.e. the system
(A. A% V°, 0°) is a Heyting lattice, with 0° = 1,
xA’y=xvy, xvy=xnay forallx,y € A
The relative pseudocomplement of y with
respect to x in the Heyting lattice (A, A°, v°, 0°)
is denoted by x — y. This implies that x — y is
the least element z € A such that x <y v z. A
Brouwer algebra is a system
Br=(Br, A, v,— 0, 1)

associated with a Brouwer lattice, where A
(meet), v (join), — (relative pseudosubtraction)
are binary operations and 0, 1 € Br with
0=1-1.Let-x=1-x, foreveryx € Br.

A Brouwer algebra is called complete if it is a
complete lattice.

1.2 Definition

A biresiduated lattice is a system
A = (A ® ® < 0, 1) such that A is a
bounded ordered bigrupoid and the following
conditions hold:

( (A < 0, 1) is a finite distributive
complete lattice;

( i) (A, ®) and (A, ®) are commutative
semigroups, i.e. forallx, v,z € A

() x@y =y®x;
XR®y=y®x;

2) xY)@z=xB(yDz);
xR@Y)®z=x(yBdz).

(iii) For all x, y, z € A and for every family
()i e 1 of elements of A:

3) 020=0;
1®1=1

4) xAx®y) =x;
Xv(xX®y) =x;

5) x®y)B0=xY,;
x®Y®1=xQy;

6) x&(ynz) =@y A (xDz),
i@(yvz)=x®y) v(x®z),

N x@_/\I{yi @0y = _Ai(x®yi);

x® V(,®)= V(x®y,).
iel iel
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1.3 Examples
(1) Complete Boolean lattices

Let (B, <, 0, 1) be a complete Boolean lattice

[15]. Ifforallx,y € B, wedefinex@y=xvy

amdx@y=xAythen(B, ® ®, <0, Disa

biresiduated lattice such that for every x € B,
X® 0=xandx®1=x.

(2) Complete Heyting algebras

Let H = (H, A, v, =, 0, 1) be a complete
Heyting algebra. For every x, vy € H, one
definesx @y=——(xvy)andx®y=xay It
follows that (H, &, ®, <, 0, 1) is a biresiduated
latticesuchthat x® 1 = x forallx e H If H is
not a Boolean lattice, the relation x @ 0 = x can
be false for some x € H. It follows that the
complete lattice of the open sets of a topological
space has a natural structure of biresiduated
lattice, namely, if X is a topological space,
(O(X), <. &, X) is the complete Heyting lattice
of the open sets in X and one defines,

O, &0, =in(X\ int(X \ (O; v 02))).

0,®0:,=0,n0,,
for all open sets Oy, O, € O(X), then the system
(0(X), ®, ®, ¢, @, X) is a biresiduated lattice.

(3) Complete Brouwer algebras

Let Br = (Br, A, v, =, 0, 1) be a complete
Brouwer algebra. For every x, v € Br, one
definessx @y=xvyand x @ y = ——=(x A y).
Then (Br, @, ®, <, 0, 1) is a biresiduated lattice
such that x © 0 = x, for every x € Br. If Br is
not a Boolean lattice, the relation x ® 1 = x can
be false for some x € Br. In particular, it
follows that the complete lattice of the closed
sets of a topological space has a natural
structure of biresiduated lattice, namely, if X is
a topological space, (F(X), <, @, X) is the
complete Brouwer lattice of the closed sets in X
and one defines,

F1 @F2=F1 UF:;

F) ® F, = adh(X \ adh(X \ (F; ~ F2))),
for all closed sets Fy, F; € F(X),then the system
(F(X), ®. ®, ¢, &, X) is a biresiduated lattice.

(4) Heyting-Brouwer algebras

Suppose that (A, A, v, =, —, 0, 1) is a
complete Heyting-Brouwer algebra [19],
i.e. (A, A, v, =, 0, 1) is a complete Heyting
algebra and (A, A, v, —, 0, 1) is a complete
Brouwer algebra.
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Two operations of addition © on the set A can
then be defined as follows, for every x, y € A:

(A)) Brouwer addition
XxX@y=xvy.

(Az) Hevting addition
X®y=[(xvy) —>0]->0

One can also define two operations of
multiplication & on the set A as follows, for
every x.y € A:

(M) Brouwer multiplication
x®y=1-[1-xAy]

(M) Heyting multiplication
X@y=xAYy.

Thus, it will be possible to associate four struc-
tures of biresiduated lattice (A, ®, @. <, 0, 1)
with (AL A, v, =, —, 0. 1) if one defines addition
® and multiplication ® by (A) and (M)
respectively, for every i, j = 1, 2, where x <y iff
X=XAY.

Let (C, £, 0, 1) be a complete chain, Then there
is a standard structure of complete Heyting-
Brouwer algebra (C, A, v, —, —, 0, 1), defined
as follows, forevery x, v € C:
XAy=min(x,v);, XxXvy=max(x,y);

{].ifxéy. {o ifx<y
X—=y= . P X=-y = ) .

y, if x>y x, ifx>y

Thus, four structures of biresiduated lattice
can be associated with (C, <, 0, 1) as above.

(5) Complete D-algebras

If H=(H, A, v, —, 0, 1) is a Heyting algebra
then we define (H, A, v, —, —, 0, 1), such
thatx -y =—(x—>v), forevery x,y € H.

If Br = (Br, A, v, =, 0, 1) is a Brouwer algebra
then we define (Br, A, v, —, —, 0, 1), such that
X—=>y=-(x-y), forevery x,y € A.

Suppose that A = (A, A, v, =, —, 0, 1) is a
complete D-algebra [20], i.e. (A, A, v, 0, 1) isa
complete lattice and A is isomorphic to a
subdirect product between two structures
associated with both a Heyting algebra and a
Brouwer algebra as above.

Let v : A — A be the mapping defined
by v(x) =1 - x, for every x € A. Then v is an
interior operator on the poset (A, <) associated
with A and v is a modal operator on the lattice
(A, A, v, 0, 1) such that O and 1 are fixed
points for v.
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Let ? : A — A be the mapping defined by
_f—x =X — 0, for every x € A. Then ? is a

closure operator on the poset (A. <) and ? is a
dual modal operator on the lattice associated
with A such that 0, 1 are fixed points for ? :

Any Heyting (Brouwer) algebra can be defined
as a D-algebra such that the interior operator v
(closure operator f) is the identity mapping on
A. A Boolean algebra is a D-algebra such that

the mappings v and [ coincide with the
identity mapping,

We define on A the binary operations @
(addition) and ® (multiplication) by

X®y= f(xvy)
X®y=v(x AYy),
forallx,v e A

The following conditions hold:

- (vA, & v, -, 0, 1) is a complete
Heyting algebra;

- (A A @ - 0, 1) is a complete
Brouwer algebra;

(A ®. ®, <. 0, 1) is a biresiduated lattice
such that the D-algebra A is isomorphic to a
subdirect product of the family of two
D_algebras associated with both the Heyting
algebra (vA, @, v, —, 0. 1) and the Brouwer

algebra ( /A, A, @, -, 0, 1).

(6) Structures of biresiduated lattice
associated with the chain |0, 1]

Let ([0, 1], <, 0, 1) be the complete chain of
positive subunitarv real numbers. Consider the
standard structure of Heyting-Brouwer algebra
(10, 1], A, v, =, =, 0. 1) defined as in Example
1.3 (4). Using common operations of addition
+. subtraction —, and multiplication - on R, we
define on [0, 1] four operations of addition @ as
follows, for every x, v € [0, 1]:
(A,) Brouwer addition
X @y = max(x, v).

(Az) Heyting addition
1,ifxvy=0
x@y= ) vy .
0,ifxvy=0

(A3) Lukasiewicz addition
x@y=min(l, x +v).

(Ay) Gaines addition
XDy=x+ty-x-y.
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Four operations of multiplication ® will be
defined on [0, 1] as follows:
(M,) Brouwer multiplication

I, ifxAv=1
x®y = . } .
0. ifxAy#1

(M,) Heyting multiplication
X @y =min(x, y).
(M) Lukasiewicz multiplication
X®@y=max(0, x+y-1).
(M.) Gaines multiplication
X@y=x-y.
Therefore, sixteen biresiduated lattice structures
(0. 1. €, ®,5,0, 1)
can be associated with the chain ([0, 1], <, 0, 1)
if one defines the operations of addition @ and
multiplication ® by (A)) and (M,) respectively,
foreveryi,j=1,2, 3, 4.

(7) Homomorphic images

Lt A=A @& 8,<0, DandB=(B, ® ®, <0, 1)
be two biresiduated lattices. A mapping f: A - B
is called homomorphism from A to B if fis a
morphism of bounded ordered bigrupoids from
A to B such that f is a homomorphism of com-
plete lattices from (A, <. 0, )10 (B. <, 0, 1), i.e.

fix@y) =1(x) ® f(y):
KA 0™ 4,13

fix @y) = f(x) @ f(y)
YV y)= V),

for all x, y € A and for every family (vy); - ; of
elements of A.

We call B a homomorphic image of A if there
is a surjective homomorphism from A onto B.
The class of homomorphic images of a biresi-
duated lattice A is determined by the quotient
structures of A with respect to the congruences
of A.

A congruence of A is an equivalence relation R
on A compatible with arbitrary meet and join
and with the operations of addition and
multiplication of A. Then the set A/R has a
natural structure of biresiduated lattice A/R
called the R-guotient of A.

Then B is a homomorphic image of A iff B is
isomorphic to a quotient of A, i.e. there is a
congruence R of A such that B and the R-
quotient A/R are isomorphic biresiduated
lattices.

Using this notion will result in many new
cxamples of biresiduated lattices (e.g
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homomorphic images of a biresiduated lattice
associated with a D-algebra as in Example 1.3
(5) can be obtained using some couple of filters
and ideals [20]).

(8) Biresiduated sublattices

Let A = (AL &, ®, < 0, 1) be a biresiduated
lattice and B a subuniverse of A, ie. B is a
subset of the set A such that the following
conditions hold :

- B is closed with respect to addition and
multiplication, 1.e. for every X, v € B,
x@yeBandx®y e B;

- the poset (B, <, 0, 1) is a complete
sublattice of (A, <, 0, 1), i.e. for every subset X
of B,sup X € Band inf X € B.

Then B = (B, @, ®, <, 0, 1) is a biresiduated
lattice called the biresiduated sublattice of A
induced on the subuniverse B. Interscction of
every family of subuniverses of A is a
subuniverse of A This implies that for every
subset X of the set A, the set <X> defined by
<X>=~BcA/Bisasuuniverse of A and X CB)

is a subuniverse of A. The biresiduated
sublattice of A induced on the subuniverse <X>
is called the biresiduated sublattice of A
generated by X.

For example, let P(X) = (P(X). @, 8, c, &, X)
be the biresiduated lattice associated with the
complete Boolean lattice (P(X), m, w. &, X) of
the subsets of the set X as in Example 1.3 (1),
ie AB=AuvBand A®B = A n B, for
every A, B € P(X), where m» and w are the set-
theoretical binary intersection and the binary
union of subsets of the set X respectiveiv. Then
K < P(X) is a subuniverse of P(X) ifl K is a
Kripke family, i.e. K is a family of subsets of X
such that K is closed with respect to arbitrary
set-theoretical intersections and unions.

(9) Direct products

From Definition 1.2 it follows that the direct
product of every family of biresiduated lattices
is a biresiduated lattice. In particular, it follows
that for every topological space X, a biresidua-
ted lattice (O(X) x F(X), @, @, <, 0, 1) will be
obtained, if one considers the direct product of
two biresiduated lattices (O(X), ®. ®, c, . X)
and (F(X), ®, ®, <. &, X) defined as in
Examples 1.3 (2) and 1.3 (3). Therefore, for all
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(0. F), (0, F) € O(X) x F(X), the following
relations hold:

OO, F)= 020, F®F);

O, NRO,FH =00 ,F®F),

(O, F) < (O, FifOc O andFcF

0=(J, ), 1=XX.

1.4 The Duality Principle

Let A = (A, @, ®, <, 0, 1) be a biresiduated
lattice. We associate with A a system
A® = (A°, @°, ®°, <° 0° 1°) such that A° = A,

=06 =@ x<"yiffy<x, 0°=1and 1°=0,

Then A° is a biresiduated lattice which can be
called dual to A. Let ¢ be a statement about all
biresiduated lattices. We associate with ¢ a
second dual statement ¢° obtained from ¢ if
replacing @, ®. <, 0, 1 by @°, ®°, <°, 0°, 1°
respectively . A duality principle follows from
Definition 1.2:

¢ is valid = ¢° is valid.

Let A = (A, @ ®, < 0, 1) be a biresiduated
lattice. The following results present some first
consequences of Definition 1.2. It will be
shown that the class of biresiduated lattices
includes several classes of residuated lattices.

1.5 Lemma

Define a mappingc : A > Abve(x)=x® 0,
for every x € A. Then 0 and 1 are fixed points
for ¢, ¢ is a dual modal operator on the lattice
associated with A and ¢ is a closure operator on
the poset (A, <), i.e. the following conditions
hold, for every x. vy € A:

(D0 =0c() =1

(ii) e(x A Y) = ¢(x) A c(y);

(111) x < ¢(x);

(1) cle(x) = c(x);

( VIX<y = c(x) <cy).

Proof
(1) ¢ =020=0;
) =1@ 0
=la(l® O)=1

(i) cxAY)=EAVDO
=0DXxXAY)
=(0@x)A(0Dy)
=¢(x) A c(y).
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(iif) xAc(x)=xA(XP0O)=x.
(i) ele(x)) =(x®D0O)BO
=x@0e0
=x @0 =c(x)

(V) XSy =X =c(xAy)=cX) A c(y)

= ¢(X) = c(y). a

1.5° Lemma

Define a mapping / : A - Aby i(x) =x ® 1,
for every x € A. Then 0 and 1 are fixed points
for i, i is a modal operator on the lattice
associated with A and 7 is an interior operator
on the poset (A, <), ie the following
conditions hold, for all x, y € A:

(DiO=0,i1)=1,

(ii) i(x v y) =i(x) v i(y):

(1) i(x) € x;

(i) ii(x) = i(x);

(V) xSy =i(x) <i(y).

Proof
Lemma 1.5° follows from Lemma 1.5 and the
duality principle 1.4. 0

The next properties follow from lemmas 1.5
and 1.5°

1.6 Consequence

Let ¢(A) = A ® 0 be the image of the mapping
¢ defined as in Lemma 1.5, i.e.
c(A)={eX)/xe A}={x®0/xc A}=ADBO0.
The following conditions hold:
(i) (c(A), @, 0) is a commutative monoid
such that a @ 0 = a, for every a € c(A);
(ii) (e(A), <, 0, 1) is a complete lattice
such that it is an inf~complete sublattice of
(A, 5,0, 1),
i.e. inf X € ¢(A) for every subset X of c(A);
(iii) in the complete lattice
(c(A), <, 0, 1),
the supremum of every subset X of the set c(A)
is defined by the following relation:
supa) X = c(supa X).

1.6° Consequence

Let i(A) = A ® 1 be the image of the mapping i
defined as in Lemma 1.5°, i.e.

HA)={X)/xe A}={x®1/xcA}=AR1.
The following conditions hold:
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( 1) (i(A), ®, 1) is a commutative monoid
such thata ® 1 = a forevery a € i(A);

( i) (G(A). <, 0, 1) is a complete lattice
such that it is a sup-complete sublattice of
(A, <0, 1), 1e sup X € i(A) for every subset X
of i(A):

(i11) in the complete lattice

(i((A), £,0, 1),
the infimum of every subset X of the set i(A) is
defined by the following relation:
infi(A) X= I(ll’]fA X)

1.7 Lemma

(i) The operations of addition and
multiplication are increasing mappings in both
variables, i.e. forevery x, v, z € A,
X<y=>x@z<y®Pzandz®x<z Dy,
X<y=>x®z<y®zandz®x<zQvy.

(ii) Foreveryx.vye A, xvy<x@yand
X®y<xAay.

Proof
()x<y =x=xAY
SXBz=(xry) Dz
=xXx@2)AyDPz)
=>xPz<y®z
=>z@x<z2Dy.
Thus the first implication from (i) holds. The
duality principle will also yield the second
implication from (i).

(i1) From the finite distributivity of the lattice

(A, <) and 1.2(4) it follows that

xvyAEx®y)=
=xAEY)]vyax@y)

=XVV.
By duality (x A ¥) v (x ® y) =X Ay is obtained.
Thus the relations (ii) hold. O

The following results establish a connection
between the biresiduated lattices and the
residuated lattices.

1.8 Lemma

Define a binary operation — on A called dual
residuation with respect 1o @ by
a-b=A(cec(A)/ a<b@c),
for every a, b € A, where ¢c(A) = A@ 0 is
defined as in Consequence 1.6.
The following conditions hold:
(i) foreverva,be A, a<b®(a-b)
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( i) the pair (®, —) is a dual adjoint
couple on c(A), i.e. forevery a, b, ¢ € c(A),
a-b<ciffa<b®c;
(iii) forevery a, b, ¢ € A,
a<b=c-b<c-a

Proof

From Consequence 1.6 (ii) it follows that
X—y € c(A),
forevery x, v € A.

( i) Leta, b € A. Using the first Equation
1.2(7) and the definition of —, it follows that:
b®@-b)=b®D[A(c ec(A) / a<b®c)] =
Lb®c/cec(Ayanda<b®Dc),
which impliesa <b @ (a - b).

(ii) Let a, b, ¢ € ¢(A). From the definition

of — it follows that a < b @ ¢ implies
a-b=L(c'ec(A) /a<bdc')<C.

Suppose now that a — b < ¢. From 1.7(i) results
that b @ (a — b) < b @ c. Using 1.8 (i), it
follows that a < b & (a — b), but < is transitive,
therefore a <b @ c. This completes the proof of
1.8 (ii).

(iii) Let a, b, ¢ € A with a <b. From 1.7(i)
results that a @ (¢ — a) < b @ (c — a), but using
1.8(i) we have ¢ < a @ (c — a), therefore
c<b® (c—a). Using 1.8 (ii) it follows that
c-b<c-a. O

1.8° Lemma

Define a binarv operation — on A called
residuation with respect to @ by
a—>b=V(cei(A)/ a®c<b),
for every a, b € A, where i(A) = A ® 1 is
defined as in Consequence 1.6°.
The following conditions hold:
(i)foreverya,be A a®@a—>b)<h;
( ii) the pair (®, —) is an adjoint couple
oni(A),ie. forevery a, b, c € i(A),
c<a—>biffa®c<b;
(iii) forevery a. b, ¢ € A,
asb=b-oc<a-c

Proof

Lemma 1.8° follows from Lemma 1.8 and the
duality principle 1.4.
O

The following theorem provides a description
of the biresiduated lattice structure as a
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complete lattice (A, <, 0, 1) equipped with two
specific couples of binary operations on A, a
dual adjoint couple (®. -) and an adjoint
couple (®, —).

1.9 Theorem

fA=(A & ®, < 0, 1) e Ord-BG|0,1], then
the following are equivalent:

(1) A is a biresiduated lattice;

(ii) there is a binary operation — on A
called dual residuation with respect to @ and
there is a binary operation — on A called
residuation with respect to @ such that for
every X, y, z € A, the system

(A® -8 -,50,1
verifies 1.2(i), 1.2(1)-(6) and:
() x-S 0=x-y;
(1) x=>yV@®l=x-y,

(2) x-y<z@0&x<y@z
2°9) z®l<x—>yex®z<y.

Proof

(i) = (ii): suppose (i). Let — and — be the
two binary operations on A defined respectively
as in Lemmas 1.8 and 1.8°. Relations (1) and
(2) follow from 1.6(ii) and Lemma 1.8(ii).
Relations (1°) and (2°) follow from 1.6°(i) and
Lemma 1.8°(ii).

(11) = (1): suppose (ii). We verify that the

two Equations 1.2(7) hold. For x € A and for a
family (y;); . 1 of elements of A we have
(Vj e [)i /E\I(vi@'O)Syj@O :

From Lemma 1.7 (i) and Equation 1.2(5)
it follows that

(VieDx® A(y, ®0) <x @y,
iel
thus
F)x® A(y; ®0) < A (xDy,).
iel icl
Also we have (V] € I)_AI(xGay.l)Sx@yj.
1€
Then (Vj € I).A (x®y,)-x<y.®0,
iel 1 ]
because of 1.9(2). Thus
A®y,)-x< Ay, ©0).
iel iel
Lemma 1.7(i) implies
[A(x@yi)ux]GBOS[AILvi@0)]@0.
iel i€
Then
_Al(x®_v.l)—xs[_AI(yiG—)O)]EBO,
LA 1€
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because of 1.9(1). From 1.9(2) it follows that
(*¥%) ‘Al(xéByi) <x@® Ay, ®0).
i€ iel

The first Equation 1.2(7) follows from (*) and
(**). Similarly, the second Equation 1.2(7)
follows from 1.9(1°) and 1.9(2°). Therefore, A
verifies all the conditions from Definition 1.2,
i.e. 1.9(1) holds.

This completes the proof. 0

From Lemmas 1.8 and 1.8° it follows that any
biresiduated lattice A = (A, @, ®, £, 0, 1)
can associate two structures, a complete inf-
sublattice with dual residuation with respect fo
@, c(A) = (c(A), @, —, < 0, 1), and a complete
sup-sublatiice with residuation with respect to
®, i(A) = (i(A), ®, —, <, 0, 1), called the
algebra of closed elements and the algebra of
open elements of A respectively.

This shows that the theory of biresiduated
lattices can be viewed as an extended theory of
residuated lattices [12, 16].

The next results present other equations which
hold in ¢(A) and i(A).

1.10 Lemma

Dual residuation — with respect to @ is a sup-
morphism in the first variable and a dual inf-
morphism in the second variable on the lattice
c(A) = A @0, ie. for every family (b); - 1 of
elements in ¢(A) and for a € ¢(A). there is

(1) C(.Vlbi) -a= c[_'\fl(bi - a)];

(i) a— A b, =c[V(a—b1-) :
iel iel

Proof
Let (by); < 1 be a family of elements in ¢(A) and
an element a € ¢(A).

( 1) The following relations hold, for every
jel
bj S(Vb)ao <

iel
A@®b/bec(A)and(Vb,)B0<a@b)

iel
=a@[Abec(p) / (_Vlbi)GBOsa(-Bb)]
1€
=a® [((_Vlbi) ® 0) - a].
1€

Using Lemma 1.8 (ii) it follows that
(VjeDb-a<[(VDb)®0]-a.

Therefore
(*) [_Vl(bi —a))®o< [(_Vlbi)®0] —-a.
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The following relation holds

(Vj € Dby - a < [_VI(bi -a)]®0. From

Lemma 1.7(i) it follows that

(VjeDb-a)@ax< [[_Vl(bi -a)|®0] @a,
1€

but (vj € I) b; < (b; — a) @ a, therefore

(VjeDb < [['V[(bi -a)]®0] @a.
1€
The precedent relation and a @ 0 = a imply
(Vb,)®0 <[[V(b, -~2)]®0] Da.

iel iel

Using Lemma 1.8 (ii) it follows that

M UVDb)®Ol-ac< [.Vl(bi -a)]®0.
iel ie

From (*) and (**) here results Equation 1.10(1).

(i) We have (Vj € I)_AIbi < b;. From
1E

Lemma 1.8(ii1) it follows that
(Y] EI)a—b‘i Sa—rf_\lbi,
which implies
F[V@-b)l®0<a- Alb;-
iel i€
Let
b= [.Vi(a— b)) &0.
Then(vieDa -b. <b. Lemma 1.8 (i1)
implies (Vi € Das<b, @ b.Using 1.2(7) it
follows that
as A(b, @b) =b®(A]bi).
iel ie

From 1.8 (ii) it follows that
(**a- Ab;<b=[V(a-b)]D0.
iel 1€l

Relations (*) and (**) show that property
1.10(11) is satisfied. O

1.10° Lemma

Residuation —» with respect to ® is an inf
morphism in the second variable and a dual
sup-morphism in the first variable on the lattice
i(A) = A ® 1, ie. for every family (b)), - | of
elements in i(A) and for a € i(A), we have

()a— i(_AIbi) =i[_Al(a > bi)];

(i1) vvlbi —a= i{_/\l(l:;i - a)].

Proof
Lemma 1.10° follows from Lemma 1.10 and
the duality principle 1.4.
O
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The next results present other relations derived
from properties 1.9, 1.10 and 1.10°.

1.11 Consequence

In each biresiduated lattice A. forallx. v, z € A:
()x®0=x-0;
()x-y=0=x@0<y@0;

) xv@0=[(x®0)vy] D0
(iV)x-y<xBO0;

(VYO E-V<x®y;

(VD (xvy)@0<y®(x-y)

(Vi) (K—y] —~Z=% —~{y &2);

(Vi) x-y=x—-(y @0);
(X)x-y=(x®0) -y,
()x@[xBYN)-xP2)]<xD(y-2z)
(d)xvy)-(xvz)=y-(xvz)

) xvy-2)]P0<xD[(xvy)—(xvz)]

Proof

(1) We have
X=0=A(yDO/ x<yDO)
and x <x @0, thus x — 0 < x @ 0. Relation
x@0<x-0
holds because, for everyy € A
ASYy@0=xP0<v@0.
(i1) Suppose x — y = 0. From 1.2(3) here results
X~v=0®0. Using 1.9(2) implies x <y ® 0.
From 1.7(i), 1.2(2) and 1.2(3) it follows that
x®0<yv®O0.
Suppose now x © 0 <y @ 0. We have
X<x@O0,
therefore x < y & 0. From 1.10(2) it follows
that x —y <0 @ 0 = 0, which implies x — v = 0.

(li)x£xPO0andy<y=xvys(x®0) v v
thus

FxvBO[(xBO)vy] DO,
We also have

FEXVYSE(XvY)BO0
and
XB0s(xvy) @0,

which implies

@) vy (xVY)BO.
Equation 1.11(iii) follows from (¥) and (**).

(iv) Relation 1.11(iv) follows from x < v ® x
and 1.9(2).

(v) Lemma 1.7(i) and property 1.11(iv) imply
VOE-MSyEx®0)=xByv
because of 1.2 (1), 1.2(2) and 1.2(5). Thus

1.11(v) holds. :
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(vi) Lemmas 1.8(i) and 1.7(ii) imply
XEyB(xX-y)andy<y @ (x-vy).

From Lemma 1.7(1) and Definition 1.2(5) it

follows that 1.11(vi).

(vii) From Lemma 1.8(i) it follows that
X<(yP) DB [x-(yD2)]=
=yD[zB[x-(yD2)]]
Relations 1.2(5), 1.9(1) and 1.9(2) imply
M-y -zsx-(yD2).
Lemma 1.8(1) implies x-y<z @ [(x —y) — z].
therefore, using 1.7(i) we have
VOX-V)<yBzD[x~-y) -1z]]
but x <y @ (x —y), thus
XS PznP[(x-y)-z]
From 1.9(1), 1.9(2) and the previous relation it
follows that
(X~ (Y DZ) 2(Xry) -2
Then 1.11(vii) follows from (*) and (**).

(viil) We have
XS [x-@@0]=yB[x-(yD0)].
From 1.9(1) and 1.9(2) this implies
(MIX-y<x~(y@BO0).
Bulx<y®@x-y)=(Fy D0 @ (x —y), thus
reusing 1.9(1) and 1.9(2) one obtains
) x—-(yB0)<x-y.
Then 1.11(viii) follows from (*) and (**).

(ix) From 1.11¢1). 1.11(vii) and 1.11(viii) it
follows that
X-y =x-(v@0)
=x=(08y)
=(x-0)-y
=(x®0) -y,
which proves 1.11(ix).

(x) Relation 1.2(7) and the definition of dual

residuation imply:

*)x®(y-2)=
=A(x®@a/aec(A)andy < z@® a)

(xB[(x DY) - (x B 2)] =
=Ax®Pa/acc(A)andxPy < (xDz)Da).
Using Lemma 1.7(i) we have
() (Va e «(A))
[f£z@a=>x@y<(xPz)Bal.
Then 1.11(x) follows from (¥). (*¥) and (¥*¥).

(xi) From 1.11(ii), 1.11(ix), Lemma 1.10(i) and
Relation 1.9(1) it follows that
xvy)-(xvz)=
=e(XVvy)—(xvz)
=clx-(xvalvIy- vl
=cl0vy-(xva)l]
=y-(xvz),
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which imply 1.11(11).

(xi1) Using lemmas 1.7(ii), 1.11(viii) and

1.10(ii) we have

y-(xvz)=y-fexvz)ax®z)]
=clly-(xvz)]vly-(xS2)].

From 1.11(xi) and the precedent relation it

follows that

B [xvy)-(xvz)]=

=x®[ly-Gxvalvy-xd2)],

which implies

FxDy-E]<xD[(xvy -(xv)]

Using 1.11(vi) and 1.11(vii) we also have

[y-2)vx]e@0 sx®[(y-z)-x]=
=x®[y-(z@x).

thus

M EVvy-2)]20<xD[y-(zDx).

Then 1.11(xii) follows from (*) and (¥*). O

1. 11° Consequence

In each biresiduated lattice A, forx. v, z € A:
( Ix®1=1->x;
()x—-2y=1=x@1<y®1,

(I (XAY)RLI=[x® 1) Ay]|®I;
(iVy®lsx—y

( VxBYyZx®X—>v):
(V)XxBX>NSEAY®IL;

(Vi x> (v 2 2)=x®y) >z

(Vi) x > y=(x®1) >V
(IX)xX>y=x>F®1),;

( VxBYy—-2)<xB[xBy) > (x®2);
(XD EXAY) > EAZ)=(XAY) >z

) X®[(XAY) > xAZ)]S[XA(Y—2)]R]

Proof

Consequence 1. 11° follows from Consequence
1.11 and the duality principle 1.4. O

This Section ends with mentioning the results
which show that on each biresiduated lattice
can be defined two new unary operations called
@-complementation and ®-complementation
together with some specific properties.

1.12 Consequence
Let A = (A, @, ®, < 0, 1) be a biresiduated
lattice, — be the dual residuation with respect to

® and c(A) = A ® 0 be the set of closed
elements of A defined as in 1.6. Define on A an
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unary operation Cyg : A — A called ©-comple-
mentation on A by
Co(x)=1-x,

for every x € A. The following conditions hold:
(1) Ca(x) is the least closed element y € c(A)
suchthat x®@v=1, foranyx € A;
(ii) the restriction of Cy to c(A) < A is a meet-
complete dual endomorphism of the complete
lattice (c(A), <. 0. 1), i.e. for every subset X of
set e(A),

Ca(inf 2 X) = supa)Ca(X).

Proof

(1) Let x € A. Then
1-Xx=A(y ec(AY/ x®y=1),
[definition of — from Lemma 1.8]
x®(1-x=1,
[Lemma 1.8(i)]
1-xec(A),
[Consequence 1.6(ii)]

which shows that 1.12(i) holds.

(ii) From Lemma 1.10 (ii) it follows that

- A X; =C{V(1_xi)]s
iel iel

for every family (x;); - ; of elements in c(A).
Using consequence 1.6 [(ii) and (iii)] it follows
that 1.12(ii) holds. d

1.12° Consequence

Let A = (A &, ®, <, 0, 1) be a biresiduated
lattice, — be the residuation with respect to ®
and i(A) = A ® 1 be the set of open elements of
A defined as in 1.6°. Define on A an unary
operation Cg A — A called ®-
complementation on A by
Co(x)=x—>0,

for every x € A. The following conditions hold:
(1) Cg(x) is the greatest open element y € i(A)
such that x ® y =0, for any x € A;
(11) the restriction of Cg to i(A) < A is a join-
complete dual endomorphism of the complete
lattice (i(A), <, 0, 1), i.e. for every subset X of
set i(A),

Ce(sup;aX) = infis)Co(X).

Proof

Consequence 1. 12° follows from Consequence

1.12 and the duality principle 1.4. O
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Starting from the previous properties, the
following Section introduces the structure of
biresiduated algebra as an algebra
A=A AV, - 8 — 0,1

of type (2, 2, 2, 2, 2,2, 1, 0, 0) including both
the structure of D-algebra and the structure of
MV-algebra such that each complete
biresiduated algebra is a biresiduated lattice
with negation, which satisfies some specific
equations. Different structures of complete
biresiduated algebras will be associated with
the complete chain [0, 1].

2. Biresiduated Algebras

This Section makes first a presentation of the
notion of biresiduated lattice with negation
including both the structure of complete
D algebra and the structure of complete
MV _algebra.

2.1 Definition

Lt A=(A @ - ® — <0, 1)be a biresiduated
lattice.

(1) We say that A is a biresiduated lattice
with negation if ©-complementation coincides
with ®-complementation (see Consequence
1.12 and Consequence 1.12°), i.e. for every x €
A Co(x)=1-x=x—0=Cgx).

(i) If A is a biresiduated lattice with
negation then we define an unary operation on
A, — 1 A > A called negation on A, by

—x=1- X,
or equivalently by
—x=x-0,
for every x € A

We present now new equations which hold in
biresiduated lattices with negation.

2.2 Lemma

Let A be a biresiduated lattice with negation,
c(A) = A @ 0 the set of closed elements of A
defined as in 1.6, and i(A) = A ® 1 the set of
open elements of A defined as in 1.6°. The
following relations hold:

( l) =X = XY

(i) —e(x) = —x;

(1il) —i(x) = —x;

(iv) =—(x B0) < x @ 0.and
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}’@ISﬂﬂ(}r’@ 1),
(V) c(A) ni(A)=-A:
(vi) ﬁ[/\lc(xi)]z(vﬁxi)@o;

iel

(vii) —|[_Vli(xi)] = (_/\I—‘xi)®l,

for all X, y € A and for every family (x;); < 1 of
elements of A, where
-A={-x/xe A}

Proof

( 1) We have
N -x=1-x=(1-x)D0 € c(A),
2)XxB®-1—x=-xD(1--x)=1,
(3) X =1 ==X
=Alyec(A)/ 1=y D —-—x).
From (1), (2) and (3) it follows that
( *) ———X < X
We also have :
(1 x=x-2>0=x—->0®&1 €i(A),
2)X® - x==-x@(=x—0)=0;
(3’) —“——X =X >0
ok V(y € I(A) /0= Yy ® —n—aX).
From (1), (27) and (3°) it follows that
(**) =X £ =X

Thus, 2.2(i) follows from (*) and (**).

( ii) Relation 2.2(ii) follows from
—e(x)=1-(x®0)=1-x=-x

(iii) Relation 2.2(iii) follows from
—-iX)=x®1)>0=x>0=-x

(iv) From (1 — x) @ x = 1 and 1.9(2) it
follows that 1 — (1 — x) < x @ 0, but
——xX®N=1-[1-xD0]=1-(1-x),
thus ——(x@0)<x @ 0. Fromy®@ (y > 0)=0
and 1.9(2°) it follows that
y81<(y>0)—-0,

but
=(y—>0)—>0,
thus

y@ 1 ﬁﬁ'ﬂ(}'@]).
Therefore, 2.2(iv) holds.

( v)Ifz e ~Athenz = —x, forx € A but
x=1-x=(1-x)D0 € c(A)
and
x=x—=20=x—->0®1 €i(A),
therefore z € c(A) M i(A). It follows that
(*) A C c(A) Ni(A).
Now let z € c(A) m i(A) ie. z = ¢(x) and
z = i(y), for some x, y € A From 2.2(iv) it
follows that
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—|—|Z=—|—|C(X)='ﬂ—»(X®O)SX®O=Z
and
2=Y® 1< ~~(y® 1) = —-i(y) = -z
This implies z = ——z € —A. Therefore.
(**) c(A) ni(A) c -A.
Thus, 2.2(v) follows from (*) and (**).

( vi) Relation 2.2(vi) follows from Defini-
tion 2.1 and Consequence 1.12(ii).

(vii) Relation 2.2(vii) follows from Defini-
tion 2.1 and Consequence 1.12°(i).

M

U

A list of basic examples of biresiduated lattices
with negation is given.

2.3 Examples
(E1) Complete D-algebras

Let A= (A @ - @ —, < 0, 1) be a
biresiduated lattice associated with a complete
D-algebra (A, A, v, —, —. 0, 1) as in Example
1.3(5), i.e. forevery x, y € A:

x@®y=(xvy)-0= f(xVvy);
XB®y=1l—->xAY)=v(XAY)

The following conditions hold:
Hx@y=xvy)P0=cxvy)
(2) the system c(A) = (c(A), A, B, —, 0, 1) is
a completc Brouwer algebra, ie it is a
complete lattice such that:
asbiffa®@b="b;
a-bzsciffacsb®c,
foreverya,b,c e c(A)=A @O0,
B)xBy=xAV®L=ixAy),
(4) the system i(A) = (i(A), ®, v, =, 0, 1) is
a complete Heyting algebra, i.e. it is a complete
lattice such that:
a<biffa®@b=a;
c<a—>biffc®acx<h,
foreverya,b,ce {A)=A® 1.

Then A is a biresiduated lattice with negation
such that A satisfles the following
determination principle:
$)xP0=yD0andx®1=y®1
implies x =y

and the following specific relations hold:
O)x—>F-z)=1-[xA(y—2)

NEx->y-z=zvix-y]->0,
foreveryx,y,z € A
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Because the precedent structures are complete
D-algebras. it follows that the structure of
biresiduated lattice with negation includes
complete Hevting algebras, complete Brouwer
algebras, and complete Boolean algebras.

(E2) Complete MV-algebras

Let (A, @, —. 0) be an MV-algebra |[6,
Definition 1.1.1 pp.11]. ie. A is an algebra
with a binary operation @, an unary operation
—, and a constant 0 such that the following
Equations hold:

MVD)x@(y@z)=x@y) Dz

MV2)x@y=y@x;

MV3)x®0=x;

MV4) —-—x=x;

MVE) «(—xDy) By==(-yDx) B x

From MV1)-MV3) it follows that (A, @, 0) is
an abelian monoid. We define a constant 1 and
the operations ®, — and - together with a
binary relation < on A as follows, for any two
elements x, y of A:

(128

(D x®Oy=-(-xDy);

(x>y=-x@vy:

() x-y=x®y;

(5)x<yiff -xBy=1

Then < is an order relation which determines
on A a structure of distributive lattice with the
smallest element 0 and the greatest element 1,
(A, AL v, 0, 1), such that:
() xvy=(x®-y)@y;
(7)X/\y:—|(—|xv—|y).

We say that A is a complete MV -algebra if A is

an MV-algebra such that the ordered set
(A.=.0.1)

is a complete lattice.

The system
A=(A8 -8, —,<50,1)
associated with every complete MV-algebra
(A ©,-,0

and defined as above is a biresiduated lattice
with negation such that the following specific
relations hold:

(B)xvy=(x-y) @y,

(DXAY=Xx® (X > y);

(10) . x=x—>0=1-x

(E3) The Brouwer structure on [0, 1]

249



Let @ be the Brouwer addition 1.3(6)(A;) and
® the Brouwer multiplication 1.3(6)(M,). Then
([0, 1], &, -, ®, —, £, 0, 1) is a biresiduated
lattice with negation called the Brouwer
structure on [0, 1], where the binary operations
— and — are defined by:

{0, ifx<y
X-y= ) :
x, ifx >y

lLifx<yvorv<x<l
0, fy<l=x
and the negation operator — is defined by:
0,ifx=1

1,ifx=1"

x—>yﬁ1~(xry)={

—»x=l—x=x—>0={
forall x, v € [0, 1].

From the precedent relations it follows that the

Brouwer structure on [0, 1] is a biresiduated

lattice with negation associated with a complete

D-algebra as in Example 2.3(E1) such that the

following specific conditions hold:

e algebra of closed elements is the complete
Brouwer algebra ([0, 1], v, —, £, 0, 1);

o algebra of open elements is the Boolean
algebra with two elements; 0 and 1.

(E4) The Heyting structure on [0, 1]

Let @ be the Heyting addition 1.3(6)(A;) and ®
the Heyting multiplication 1.3(6)(M). Then
(0, 1]. &, —. ®, —, <. 0. 1) is a biresiduated
lattice with negation called the Heviing
structure on |0, 1], where the binary operations
— and —> are defined by:

X-y={x—=>y)—>0=
B SR {l. ifo=vy<

1.ifx<y
X—>y= )
’ y,ifx>y
and the negation operator — is defined by:
Lifx=0
X=x—>2>0=1-x= . :
0,ifx=0
forall x, v € [0, 1].

From the precedent relations it follows that the

Heyting structure on [0, 1] is a biresiduated

lattice with negation associated with a complete

D-algebra such that the following specific

conditions hold:

e structure of closed elements is the Boolean
algebra with two elements 0 and 1;

e structure of open elements is the complete
Heyting algebra ([0, 1], A, =, £, 0, 1).
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0,ifx<yor0<y<x

X~

(ES) The Lukasiewicz structure on [0,1]

Let © be the Lukasiewicz addition 1.3(6)(A;)
and ® the Lukasiewicz multiplication
1.3(6)(M3). The Lukasiewicz structure on [0, 1]
is a hiresiduated lattice with negation

(10, 11, ®, -, ®, >, <,0, 1)
associated with the standard structurc of
complete MV-algebra ([0, 1], ®, -, 0), where
the operations —, —» and — are defined by:

X ~y=max(0, x -y);

Xx—=>y=min(l, 1 -x+y);

-x=1-x

forall x, y € [0, 1].
(E6) The Heyting-Gaines structure on [0, 1]

Let @ be the Heyting addition 1.3(6)(A;) and ®
the Gaines multiplication 1.3(6)(M,). Then the
Heyting-Gaines structure on [0, 1] is a
biresiduated lattice with negation
(0,118, -. ®, -,<,0, 1),

where dual residuation — and negation operator
— on [0. 1] coincide respectively with the
Hevting dual residuation — and the Heyting
negation — defined as in Example 2.3 (E4), and
residuation — is defined by:

l,ifx<y

X2y =9YV | ;
=, ifx>y
X

forall x, y € [0, 1].
(E7) The Gaines-Brouwer structure on [0, 1]

Let @ be the Gaines addition 1.3(6)(A4) and ®
the Brouwer multiplication 1.3(6)(M;). Then
the Gaines-Brouwer structure on [0, 1] i1s a
biresiduated lattice with negation
0, 1. ®, -, ®. -, <. 0, 1),

where residuation — and negation operator —
on [0, 1] coincide respectively with the
Brouwer residuation — and the Brouwer
negation — defined as in Example 2.3 (E3), and
dual residuation — is defined by:

0, ifx<y
—y=<X-V

Y = ifx>y’
l-y

forall x, y € [0, 1].

Remark: Many of the structures from Example
1.3 (6) are not biresiduated lattices with
negation. For example, the standard Heyting-
Brouwer structure associated with the complete
chain ([0, 1], £, 0, 1) is a biresiduated lattice
(10, 1]. &, -, ®, —, <, 0, 1) which is without
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negation, where @ is the binary join v, ® is the
binary meet A, dual residuation - is the
Brouwer residuation defined as in Example 2.3
(E3) and residuation — is the Heyting
residuation defined as in Example 2.3 (E4).
Another example of biresiduated lattice which
is without negation can be obtained if one
defines the Gaines addition @ by 1.3(6)(A4),
the Gaines multiplication ® by 1.3(6)(M,), dual
residuation - as in Example 2.3 (E7) and
residuation — as in Example 2.3 (E6).
O

The next definitions present three classes of
algebras and the notion of biresiduated algebra
including all biresiduated lattices with negation
from Examples 2.3 (E1)-(E7).

2.4 The K, D and MV Classes

Let K be the class of algebras
A= (A ANV 8, -5, 0, 1)
oftype (2,2,2,2,2,2,1,0,0).

Let D be the class of algebras A of K such that
(A. Ao v, =, —, 0, 1) is a D-algebra and for
CVery X, v € A,

X®y=(xvy -0
XxX@yv=1->xAy);
X=x—->0=1-x.

Let MV be the class of algebras A of K as
above, associated with an MV-algebra

(A, ®,-,0)
ie. binary meet A, binary join v, dual
residuation —, multiplication ®, residuation —,
negation — and 1 € A are defined as in
Example 2.3 (E2).

2.5 Definition

A biresiduated algebra is an algebra A of K as
in 2.4 such that the following equations hold
forallx.v,z € A:

() xAy=yax
(I xvy=vvx;

(2) xA(yrzZ)=(XAV)AZ
(2)xvvz=xvy) vz

(3) xARvy) =x
(3 xv(xAY=x

(4) xnl=x
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() xv0=x
(5) xA(YvVD =AY VEAZ),

(6) xBy=y®x;
(6 x@y=y®x;

(7) x@(yP2)=x@y) Dz
(7T x@FRz)=xRy)Rz

(8 0©0=0;
(8)1®1=1;

(9 xA(x®y)=x;
() xvE®Y)=x;

(10) (x@y)®0=x®Yy,
(1Yx®y®1=x®y;

(1) x@FAz)=xO®NAES2),
(I)x® v =y v(x®z),

(1) x@@yva)=[xLy)vEx®2)]D0;
(I29xQ@ Y AD)=[x®NAxB®2)]®1;

(13) x-0=x@®0;
(1391 5 x=x® 1,

(14) x-y)@0=x-y,
(Y x—=>y)®l=x->vV

(15) x@@y-x)=(xvy) S0
(I E—->VN=EAY®I;

(16) x- (B z2)=(x-Yy) -z
(16)(x®Y) > z=X > (y > 2);

(7)) x-(xvy) =0,
(I7)xAy) > x=1,

(18) —-x=1-x;
(18)-x=x—>0;

(1 x2yR1=x1NBFA 1),
(199)x®y)B0=(xD0)® (y ®0),

20) (x-®1=(x—>y)—>0;
ROYE—->y)S0=1~(x~-y),

2]) xR0 A-X=XA X
IO v X=XV X

The following results present new valid
relations in biresiduated algebras to be used in
establishing the link with the notion of
residuated algebra {12, 16].
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2.6 The Duality Principle

We associate with every biresiduated algebra A
an algebra

A%=(A° A% V0, @°, - ®° ° =%, 0% 19
such that A° = A and for all x, y € A, the
following relations hold:

XA°Y=XVY: XV'Yy=XAY;

P y=xQy; ®y=x@y;
X~y =y =X, X y=y—x
0°=1; 1°=0;

ﬂ°x = X,

From the above definitions, it follows that A® is
a biresiduated algebra called dual to A.

With any statement ¢ about all biresiduated
algebras one can associate a second dual
statement ¢° obtained from ¢ if replacing A, v,
@, -, ®, =, -, 0and 1 by A°, V°, &°, -°, &,
—°% =°% 0° and 1° respectively. From the
precedent property, it follows that the following
condition is satisfied:

@ is valid = ¢° is valid. 0
2.7 Lemma

The following conditions hold for every
biresiduated algebra:

(1) x<yimpliessx®@z<y@z
(1) x<yimpliessx®z<y Rz

(2) x-y=0iffx@0<y®0
(2)x—>y=1ifx®1<y®1

(3) x-y<z®0iff x<y@z
(3z@1<x>yiffz®x<y

(4) XN Axv-X)=X
(Y @D vxA-X)=X

(5 XPOA[x®D)v—-x]=x
(5 EE®DVvEBOA—-X]=x

(6) =(xD0)=—-x
(6 - (x®1)=-x

(7 xB0=yP0andx®1=y® |
impliesx=y

(8) (x=ry)=z7 ==[zD (x~y)]
(BYVXx>@F-2)=x[x®F —>2)]

(9) (X@O)®I=—|—|X
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(%) x®DS0=—x

(10) (xBDO)v——x=xB0
(I0YEB®DNA——x=x81

(D) x®0=xiff x®1=-—-x
(II)x@1=xif xB0=—-—x
(12) @x@y)—-x=y-xiff x®y=(xvy) @0
(I2)x > x®Y)=x->yilf x@y=(x Ay)®1

Proof

(Dx<y=>x=xAY
SXPz=xXAY)Dz=xD2)A([YD2)
=>x®z<sy®z

(2)Wehavex-y=0
=yDx-y=y®0 [2.5(15); 2.7(1)]
>x@0<(ywvx)@0=y@®0.
We also have
x®@0<y®0
=y®0=(xvy)®0 [2.5(12-16)]

and

X-y =(x-yS0
=x-(y®0)
=x-[xvy)®0]
=x-(xvy=0.

Thus 2.7 (2) holds.

(3) Relation 2.7(3) follows from:

X-y<z®0
0=x-y)-z
=x-(v@z) [2.5(14, 16); 2.7(2)]
Sx®0<yDz [2.5(9, 10)]
o x<yDz.

() Relation 2.7(4) follows from
Definition 2.5(5, 11, 21):

(XxXPOHAXV-X)=
=|(x@0)Ax]v[(xDO0)A -]
=XV I(XA-X)
=X.

(5) Relation 2.7(5) follows from 2.7(4)
and 2.5(21°).

(6) Relation 2.7(6) follows from
Definition 2.5(14, 16, 18):
—(x®0) =1-(xD0)
=(1-x)80
=l-x=-x
NExS0=yD0andx® 1=y ® 1
then from 2.7(5, 6) it follows that x =y, which
proves that 2.7 (7) holds.
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(8) Relation 2.7(8) follows from

Definition 2.5(14, 16, 18, 20°):

X—=2y)-z =[(x—>y)-z]®0
={x=y)=z] =0
=X-2>V-z®0)
=lx—>y)@0]-z

=l-&x-y]-z
=1-{x-y) @z]
=-z® (x-y)l

(9) Relation 2.7(9) follows from
Definition 2.5(13, 18°, 20):
ZDH®1 =x-0)®1
=(x >0)->0

S

(10) From 2.7(9) and 2.5(9%) it follows
that
XPOV-X=EDOV[(xDOR1]=xD0,
thus 2.7(10) holds.

(11) From 2.7(7, 9) and 2.5(10) it follows
that
xB0O=x =2Xx®1=x®0)®1=——x;
X®l=—-x =2x@1=x®0)®1and
x@0=(x@0) D0
=>xD0=x
Therefore 2.7 (11) has been verified.

(12) From 2.5(9, 15) here results
xBY)-x=y-x=2[xDPy)-x] Dx=(v-x)Bx
=S xvEOVNES0=xvVS0
=S x@v=xvy) @0
and from 2.5 (15) and 2.7 (3) here results
X@y=xvy)®o0
=>x@y=x®(y-x)and
VEX@y=x®[(xDy) - x|
= (x®y)-x<y-xand
Yy-Xs(x@y)-x
=xX®y)-x=y-x
This proves that 2.7 (12) holds.

Relations 2.7(1°-12°% follow from 2.7 (1-12)
and the duality principle 2.6. 0

2.8 The BR, R and R’ Classes

A biresiduated algebra A is called:

s residuated algebra, if x ® 1 = x, for every
X € A,

e dualresiduated algebra, fx D0=x forevaryx e A,

Let BR be the class of biresiduated algebras, R

the class of residuated algebras and R° the class

of dual residuated algebras. It follows that
RUR’cBR
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Remark:

The following conditions hold:

e RAR=MV,

o AcDiffAsBRandforallx ye A,
x@y=(xvy) @0;.

X@y=(xAy) @1 g

2.9 Definition

Let A € BR. For all x, v € A, define
XV Y =xvy) @0 xAy=XAY@ 1.
( 1) Algebra of open elements of A is the
system
i(A)=({(A), N, v. B, —, @, >, =, 0, 1),
where i(A)=A®1={x®1/xe A}.
(1i) Algebra of closed elements of A is the
system
c(A) = (c(A), A, Ve, B, —, @, =, =, 0, 1),
where c(A)=A@0={x@0/x e A}
(iii) Algebra of clopen elements of A is
the system
—A=(mA AL VLD -, 8, >, =, 0, 1),
where ~A = c(A) N i(A)= {—x/x € A}

Remark:
From Definition 2.5, the duality principle 2.6
and Lemma 2.7. it follows that:
i(A) € R;
c(A) € R%:
-AeMV=RnNR" O

This Section ends with the following result
which shows that the class BR is a minimal
extension of the class R w R’ , i.e. the theory of
biresiduated algebras is an infimum between
the theory of residuated algebras and the theory
of dual residuated algebras.

2.10 Theorem

The class BR of biresiduated algebras is the
variety of algebras of K which R « R°
generate, i.e.

BR=(VcK/Visavarietyand R UR° < V).

Proof

Let <R u R®> be the variety of algebras of K
generated by R  R°, As BR is a variety and R
w R® ¢ BR. it follows that

(*)<RUR>cBR
Let A € BRand s ;: A — i(A) x ¢(A) be the
mapping defined by

SX)=x®1,x@0),
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for all x, y € A. Then s is a subdirect
embedding of A into the direct product

i(A) x c(A)
of the couple of algebras
i(A)y e R
and
c(A) e R°,

i.e. s is an injective homomorphism from A to
i(A) x c(A) such that m(s(A)) = i(A) and
T(S(A)) = i(A), where

T o i(A) % e(A) > i(A)
and
Ty 1 i(A) x ¢(A) —> c(A)

are the canonical projections of the direct
product i(A) x c(A).

If Vc K is a variety such that R W R° c V,
then i(A) € V and ¢(A) € V, but A is
isomorphic to a subalgebra of i(A) x ¢(A) € V,
thus

AeV.
This implies
(**) BR € <R UR>.
Theorem 2.10 follows from (*) and (**). O

3. Distance and Equivalence
Suppose that A is a biresiduated algebra.

3.1 Definition

(1) The distance functiond : Ax A > A @0 is
defined by

dix, y) = (i -y)® (v - Xx).
(i) The equivalence functione . Ax A 5> A® 1
is defined by

EXY)=(X—>Y)® (Y —>x)

3.2 Examples

(1) If A e D is associated with a D-algebra
(Aa NV, =, —, 0: 1)
then

dx Y =1x-yvi-x1D0;
eX,N=[X=>NAF—->x]® L

In particular, if A € D is associated with a
Boolean algebra (A. A, v, —, 0, 1) then

d(x, ¥) = (X A —Y) v (¥ A —X);
e(X, V) = (X VvY)A(=y VvV X).

(2) If A is a Lukasiewicz structure on [0, 1] as
defined in Example 2.3(E5) then
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d(x, y) = }x . y\ ,

i.e. the distance function d is the current
distance on [0, 1] C R.

(3) If A is a Heyting-Gaines structure on {0, 1]

as defined in Example 2.3 (E6) then
e(0,0)=1;

min(x, y) | \X - .Vt

e(x, y) = ,
max(x, y) max(x, y)
ifx20o0ry=0,
i.e. the equivalence function e is a complement

of the relative error of y with respect tox. [

Next the basic properties of distance and
equivalence functions will be presented.

3.3 Proposition

The following conditions are satisfied for all x,
v.Z,u,veEA
()dx,y)=0iff x®0=y®0;
(ii) d(x, y) = d(y. %),
(iii) d(x. z) < d(x. y) @ d(y. 2);
(iVdx@0,y®0) =dx,)@0
=d(x, y):
(Vdx®LyB®1) =dxy)@1
= d(_‘x: _'Y)y
(v) dx@u. y ®v) <d(x, y) Dd(y, v)
vidx<dx y) @y.

Proof

(i) Property 3.3 (i) follows from Definition
3.1 (i) using Lemma 2.7 (2) and the following
relation:
F-VvE-XsE-NOF-x=dxy).

(ii) Relation 3.3(ii) follows from the
commutativity of addition ©.

(iii) To prove 3.3 (iii), notice that
Dx-zs(x-NSy-2)
because from Lemma 2.7 (3) it follows that (1)
is equivalent to the following relation:
1Mx=z® x-Sy -2)]
and using Definition 2.5 (6, 7, 10, 15) and
Lemma 2.7(1). relation (17) derives from the
following relations:
XEXx@0<(xvy)@0=(x-y) Dy
Sx-YD[(yvz) ®0]
=x-N@[y-2)De]
=z2@[x-y)D(y-2)]
We also have
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Qz-x=2z-SF-x.
Then 3.3 (iii) follows from (1), (2) and Lemma
2:5:01).

( iv) Property 3.3 (iv) follows from
Definition 2.5 (8, 10, 13, 14, 16).
( v) From Definition 2.5, Lemma 2.7 and
3.3 (iv) it follows that
dx®1,y®1)=dx®@D®0,(y® 1) D0)
= d(=—x, ——y)
=(X=T ) D (—y-—x)
=oXB—y)B~(—yBD—X)
= —|(X @ﬁy) @ﬂ(y ® —IX)
= (—|X = —|y) @& (—1_" = —|X]
= d(=x, —y);
=x-nN@Fy-x]®1
=[x~V @ S[F-®1]
= —|—|(X—y} D —— (y-'X)
(X7 NS(y-—)
= d(-1——1x, "—|—1y)
=dx®Lyv1),
which implies 3.3(v).

dix,y)®1

( vi) From Definition 2.5 (15, 16) and
Lemma 2.7(1, 2) it follows that
[(x@w)-FEV-[(x-y) @ @-V)]

=xQW -V S [(x-y)]®u-v)

=xOw-OE-V]S[vO@u-V)]
=x@u)-Exvy®@uvv)=0
which implies

BECW-FOVIXIEE-NDu-v).
Here also results:

BDEFEIV-xDPuF-x)D(v-u).
Then Relation 3.3(vi) follows from (3), (4) and
Lemma 2.7(1).

(vil) Property 3.3 (vii) follows from
Lemma 2.7(3) using the following relation:
X-yS@x-9Oy-x

=d(x, y)

=d(x,y) @0. 0

3.3° Proposition

The following conditions are satisfied for all x,
V,Z,u,veA:
(De(x,V=1fIx@ 1=y 1;
(i) e(x, y) = e(y, X);
(iii) e(x. y) @ e(y, z) < e(x, 2);
(Me(x®Ly®@D=ex.y)@1=ex,¥)
(VexD0.y D0)=elx.y) 0= e(—x, —y)
(V)e(x.y) @e(u, v)<e(xBu,y®v),
(vi) x @ e(x, y) <y.
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Proof

Proposition 3.3° follows from Proposition 3.3
and the duality principle 2.6. O

Remark: Define for every X, y € A,
x=yiffd(x,y)=0;
x=syiffe(x,y)= L

From Propositions 3.3 (i) and 3.3° (i) it follows

that

o x=yiffx@0=vD0;

e xzyiffx@I1=y®1

¢ Both relation =, and relation =; are congrucnce
telations on A,

e The quotient algebra A/=. is a residuated algebra
isomorphic to the algebra c(A) of closed
elements of A.

o  The quotient algebra A/=; is a dual residuated
algebra isomorphic to the algebra i(A) of open
elements of A.

e x=yiffdx y)=0ande(x y)=1iff
xEcyandeiY' u

The definition of the notions of strong ideal
and strong filter is given, followed by the
description of congruence relations on A
associated with strong ideals and strong filters
using distance and equivalence functions.

3.4 Definition

A strong ideal of A is a subset I of A such that
the following conditions hold:
In =9,
(I2)xnryelforeachxelandy € A;
(I3)Ifxelandyelthenx@yel

3.4° Definition

A strong filter of A is a subset F of A such that
the following conditions hold:
(FHF @,
(F2)xvyeFforeachx e Fandy € A;
F)IfxeFandye Fthenx®y e F.

3.5 Lemma

Let I be a subset of A. The following conditions
are equivalent:
(1) L is a strong ideal,
(i1) 1 satisfies the following conditions:
(11N 0 el
RYxelandy-xel=yel
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Proof

(1) = (ii). Suppose that 3.5(i) holds, i.e. I
verifies 3.4(11)-(I3). From 3.4(11, 12) it follows
that 3.5(I1"), because 0 =x A 0, foreach x e 1.
If x e Iand y — x e I then using 3.4(I3) here
results (xvy)@0=x®(y—-x) e[, but

ySxvy) @0,
thus using 3.4(I2) one derives y € I. This
proves that 3.5(12") also holds. Therefore 3.5(ii)
is verified,

(ii) = (i). Suppose that I verifies 3.5(ii).
Relation 3.5(I1") implies Relation 3.4(I1). Also,
I satisfies 3.4(12), because using 3.5(12°) from
(xAry)-x=0el,xelandy e A it follows
that x Ay € I. Here is the proof that I verifies
3.4(13). Suppose that x € I and y € 1. Using
3.5(12%), from Relation

(x®Y)-y]-x=x@y)-(x®y)=0¢el
it follows that x ®y € 1.
This completes the proof of lemma 3.5. O

3.5° Lemma

Let F be a subset of A. The following
conditions are equivalent:
(1) F is a strong filter,
(i) F satisfies the following conditions:
(F1’)1 e F;
(F2)xeFandx > veF=veF

Proof

Lemma 3.5° follows from Lemma 3.5 and the
duality principle 2.6, O
3.6 Definition

An cquivalence relation on A is called a
congruence relation if from x Ruandy R v it
follows that
XANVR@AVL  (xvy)R@vv)
EBYROV):;, O®WRWuOv);
x-YR@-v), E->9R@-v),
forallx,v,u, veA

3.7 Proposition

Let I be a strong ideal of A. Define a binary
relation = on A as follows:

x=yiffdix, y) e,
where d : A x A - A @ 0 is the distance
function. Then the following conditions hold:
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(1) Relation =~ is a congruence of A.
(ii) Quotient algebra A/~ is a dual
residuated algebra.

Proof

(1) Suppose that x muandy = v, i.e.
(hdx,u) el;
2)d(y,v) e L

Using Definition 3.4(13), from (1) and (2) it

follows that
Bydx.wy@dy,v) el

From Definition 2.5, Lemma 2.7 and Proposi-

tion 3.3 it follows that the following conditions

are satisfied:
@[xAY)-@AV)]-[dx w@dy.v)|=0eL
Oxvy)-@vv)]-ldxw@dy,v)|=0el
O)dxDy.u®v)-[dx w@dy.v)|=0eL
(Ddx®y,u®v) - [dx Wy Ddy, V)| =0€L
B x-y-u-v]-[dxwSdy.v)]=0€eL
Olx—y)-w->v]-dxw@dy V=0l

For example, (4) results from the following

relations:

[(xAY)—(@AV)] - [dx, u) @dy. V)] =
=(XAY) - (uAv) @ [dx u) @ d(y, v)]
=(xAY)-(pAg):

x<u@dx w<u®dx, w] ®dy.v)=p;

YEVOAy, VS [v@dy, v)| @dx. u) =q;

ZAVBO0<(PAqQ @0,

Using Lemma 3.5 (I12”) and Definition 3.4 (I3),

from relations (4)-(9) together with (3) it

follows that
xAy)munv),
x®y)~udv);

(x-y)=@u-v)

Thus 3.7 (i) holds.

xvy)®uvv),
(x®y) = (u®v);
x>y~ u->vV).

(ii) From Proposition 3.3(iv) it follows

that
xxyiff (x®0)~(yD0),
which shows that in the quotient algebra A/~
the following equation holds:
[x] @ [0] = [x], for every X € A,

where [x] is the equivalence class of x with
respect to = i.e. 3.7(ii) holds. O

3.7° Proposition

Let F be a strong filter of A. Define a binary
relation =r on A as follows:
x=pyiffe(x,y) € F,
where e : A x A — A ® 1 is the equivalence
function. Then the following conditions hold:
( 1) Relation = is a congruence of A.
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(ii) Quotient algebra Al is a residuated
algebra.

Proof

Proposition 3.7° follows from Proposition 3.7
and the duality principle 2.6. O

The next definition presents the notion of
deductive system in order to characterize
kernels of homomorphism. The manner how to
construct somomorphic images is shown.

3.8 Definition

A deductive system is a couple (F. 1), where F
is a strong filter and 1 is a strong ideal such
that the following conditions hold:

(i) x € F implies -x € L

(i1) x € I implies —x € F.

3.9 Proposition

If R is a congruence on A then the couple
(Fr, Ir)
is a deductive system such that

R= R mle

where
Fr={xe A/xR1};
lg={xe A/xRO0}.
Therefore. the correspondence
(F, D= nx
is a bijection from the set of deductive systems
of A and the set of congruences on A.

Proof

Proposition 3.9 is a consequence of the above
definitions and Proposition 3.7. O
Remark:

If B is a biresiduated algebra andh : A —» B is
a homomorphism then the kernel of h is the
congruence relation Ker(h) of A defined by

x Ker(h) y iff h(x) = h(y).

Conversely. each congruence relation of A is of
the form Ker(h). We say that B is a homomor-
phic image of A if there is a surjective homo-
morphism h from A to B. From Proposition 3.9
it follows that homomorphic images of A are
biresiduated algebras isomorphic to quotient
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algebras A/~_ M =, where (F, I) is a deduct-
ive system of A. O

The following definition presents the notions of
Jormula, valuation, valid formula and invalid
Jormula over cach class C of biresiduated
algebras. Then we formulate the word problem
Jor free algebras over C.

3.10 Definition
Let C be a class of biresiduated algebras.

MLetV=4{v,/, A, v. B — & —» —}be
a finite alphabet. By induction a denumerable
set of variables vy, vy, ..., vy, ..., is defined as
follows:

Vo = V. Vi = Vi /, for every natural number k.
Let V' be the free monoid generated by V. The
set Fml of formulas is a subset of V" inductively
defined by the following clauses:

C1) each variable v,, is a formula:
(2) if p is a formula, then —p is a formula;
C3) if p and q are formulas, then Apq. vpq,
@pq. —pq, ®pq and —pq are formulas.
Fml is associated with an algebraic structure
Fml = (Fml A, v, @, -, ®. =, =)
of type (2, 2, 2, 2, 2, 2, 1) called algebra of
Jormulas defined by
PpAqQ=APY, PV QT VP
p@q=&pq p®q=&pq
pP—>q= =2pqg P-4~ P4
“=p = —p.

(i1) Let A be a biresiduated algebra. An A-
valuation is a function v : Fml — A such that v
is a homomorphism from the algebra

Fml=(Fml A, v. ®, -, ®, >, =)
to the algebra
AAv.® -8, -, )
associated with A.

(ii1) A formula p is called
o  C-valid, if for every algebra A € C and for each
A~valuation v, pis v-valid, ie. v(p)= 1.
e C-invalid, if for every algebra A € C and for
each A-valuation v, pis v-invalid, i.e. v(p) = 0.

The word problem for free algebras over C
consists in describing, by two effective
procedures, both the set of formulas
T'={p e Fml/pis C-valid}
and the set of formulas
F={p e Fml/pis C-invalid}.
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A solution of the word probiem for free
MV _algebras (C = MV) is presented in [6] and
a solution of the word problem for free
D _algebras (C = D) is presented in [20].

Now the notion of fuzzy ser over a complete
biresiduated algebra A (called A-set) is intro-
duced such that it includes some properties of
distance and equivalence functions as presented
in Propositions 3.3 and 3.3°.

3.11 Definition

(1) An A-set is a system

X[A] = (X, d, e, ),
where

(1) X is a set;

(2) A is a complete biresiduated algebra:
(3)d: X xX — A @O0 is a distance function
on X over A, i.e.

(D1)d(x, x) =0;

(D2) d(x, y) = d(y, x):

(D3) d(x, ) <d(x, ¥) @ d(y. 7).

4 e: XxX > A®1isan equivalence
Junction on X over A, ie.

(EDe(x. xy=1:

(E2) e(x. v) = ¢(v. x):

(E3)e(x. v) @ e(y, 2) < e(x. 7)

(5) ¢ X = A'is a membership function on X
over A, ie.

(M1) p(x) @ e(x, ¥) < @(y).

(M2) o(x) = d(x, V) @ @(v);

(6) ®-complement of distance function is the
closure of equivalence function, i.e.
(C1) —d(x, y)=e(x,y) @ 0.

(7) ®-complement of equivalence function is
the interior of distance function, i.e.

(C2) —e(x, V) =d(x. v) ® I.

(i) An A-set X|A] = (X. d. e. @) will be
called separated if satisfving the following
Separation axiom:

(SA) d(x,y)=0 and e(x,y)=1 = x = .

Comment.

The notion of A-set includes the notion of ser
over a complete Heyting algebra as defined in
Fourman and Scott [9]. Thus sheaves represent
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a class of mathematical structures included in
the class of A-sets, for A € BR.

In order to develop a first-order logical system

over the class of biresiduated algebras. one may

consider the following problems:

e to produce a satisfactory solution of the word
problem for free biresiduated algebras,

e to define corresponding categories of A-sets and
A-structures.

3.12  Aggregating Mappings
Associated With Multicriteria
Decision Problems

This Section comments on the possibility of
using generalized sets over biresiduated
algebras defined as above, in solving
multicriteria decision problems. The concept of
aggregating mapping will be defined based on
the notion of the Pareto optimal point.

A multicriteria decision problem is represented
by a system (X, g, d). where :
- X is the set of alternatives:
S2=(21- 8 o B X 2> A x Ao x L x A, S
a membership function from X into a direct
product of biresiduated algebras A;. A;. ... A,
-d=F(g), g. ... 8) . X > Ais a membership
Junction from X into a biresiduated algebra A
such that

(Vx € X) d(x) = F(gi(x), g(x), ..., 8a(X))
and

F:A xA, x..A >A

Is an aggregating mapping, ie. F satisfies the
following condition of compatibility with
respect  to  the Parcto  solution of the
multiattributc decision problem :

Aggregation axiom. If x e X and d(x) is a
maximal element of the ordered set d(X) < A
then g(x) is a maximal element of the ordered
setg(X) C Ay x Apx ... x A,

A multiattribute decision problem (X, g, d) as
above is supposed to have n objectives
expressed by n predicates Py (x), Pa(x), ..., Pu(X),
namely, forall j= 1.2, ... n, P{(x) is defined by
“gi(x) is a maximal element of the ordered
subset gi(X) < A;”. Suppose that
(Vie{l,2,..,n}) @3 x e X) P(x) is true.

An alternative x is called an ideal optimal
decision if x satisfies the conjunction Pi(x) A
Pa(x) A ... A Py(x). Often, the set of ideal

optimal decisions is empty.
N
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Therefore, it is necessary to introduce a notion
of optimal decision including the notion of
ideal optimal decision.

An alternative x e X is called a Pareto optimal
decision if the vector g(x) is a maximal element
of the ordered subset g(X) < A; x Ay x ... x A,
An optimal decision is any alternative x such
that d(x) is a maximal element of the ordered
subset d(X) < A. Given that F satisfies the
aggregation axiom, any optimal decision is a
Pareto optimal decision. A fundamental open
problem is to work out a method for expressing
aggregating mappings F in terms of basic
biresiduated algebra operations.
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