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1. Introduction

Autonomous driving as an important display 
platform for artificial intelligence, Internet of 
Things, automatic control and other technologies, 
is the main research focus in current vehicle 
engineering. The direction and difficulty of the 
research is related to the fact that the vehicle can 
replace the driver to complete the driving task, and 
to ensure safety and comfort during driving. With 
the development of 5G technology, the delay of 
wireless communication is further reduced, and 
the task scheduling management technology based 
on edge-cloud synergy is gradually being used 
in automatic driving to accomplish information 
sharing and precise control of vehicles in 
automatic driving. In the research of autonomous 
driving, the problem of vehicle lateral control has 
always been one of the difficulties in the research, 
owing to the impact of time-varying speed, high-
speed operation, and the vehicle’s own conditions, 
it was often impossible to achieve the expected 
control effect using conventional controllers. 
Therefore, the research on vehicle lateral control 
has important theoretical significance and 
applicative value. The main research contents 
include the controller design (Amer et al., 2019; 
Nie et al., 2020), controller parameter tuning 
and the application of intelligent algorithms in 
controller parameter tuning (He et al., 2020).

At present, the commonly used methods in vehicle 
lateral control and path tracking control include 
PID control, fuzzy control, robust control, linear 
quadratic regulator, model predictive control 
(Amer et al., 2019), and so on. Among them, 
PID control has been extensively applied to a 
variety of control scenarios due to its simplicity 
and reliability, but in the case of conventional 
fixed parameter PID control it is usually hard 
to accomplish the expected control effect for 
different vehicle speeds and in a dynamic and 
complex environment.

Therefore, in order to improve the condition of 
insufficient control ability of fixed-parameter PID 
controllers in the case of dynamic and complex 
situations, many researchers have proposed 
improved PID controllers. In (Zhao et al., 2012), 
an adaptive-PID was employed in order to reduce 
the instantaneous error and improves the tracking 
accuracy when the vehicle is under a wide range 
of parameter changes and disturbances. In (Han 
et al., 2017), the neural network PID was used for 
the lateral path tracking control of an intelligent 
vehicle. In (Mohan et al., 2019), a two-degree-
of-freedom fractional-order fuzzy PID controller 
based on expert intelligence was proposed and 
used for trajectory tracking. In (Huang et al., 2019), 
researchers classified the working environment of 
electronic vehicles into seven typical types, and 
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established a sub-model set to describe them, and 
then constructed a multi-model control system 
based on the BP-PID controller, which is designed 
for the lateral control of electronic vehicles.

However, when solving the problem of vehicle 
lateral control, due to the fact that the vehicle 
dynamic model is highly affected by the 
environment, it is often difficult for the adaptive 
PID based on this model to determine the 
reference model. PID based on expert experience 
requires a lot of prior knowledge to build an 
accurate knowledge base. However, when a 
vehicle is driving under unknown conditions, it is 
difficult to obtain comprehensive prior knowledge. 
For PID controllers based on neural networks, if 
the network is simple, the control effect will be 
poor when faced with complex situations; if the 
network is complex, the amount of calculation 
will be greatly increased. 

In practical applications, except for the design of 
the controller, tuning of the controller parameters 
is also important. The Ziegler-Nichols method 
is often used for PID parameter tuning, but this 
tuning method pays more attention to noise 
suppression, and the parameters obtained by 
using this method often lead to large overshoots. 
In order to obtain better control parameters, 
intelligent algorithms such as PSO and GA were 
widely used in parameter tuning of PID controllers 
(Rodríguez-Molina et al., 2020).

In (Allou & Zennir, 2018), two PID controllers 
were used for vehicle trajectory tracking, and 
through PSO to tuning PID parameters. In 
(Zhao et al., 2019), GA was used for tuning 
PID parameters. In (Prasad et al., 2021), a non-
dominated Sorting GA was designed with a view 
to optimizing vehicles’ PID controller. In (Xu, 
Wang & Zhang 2021), a PI controller based on 
proportional-integral-radius and improved PSO 
controller, was designed in order to reduce the 
overshoot of unmanned articulated vehicle and 
improve the path tracking accuracy. In (Qiao et 
al., 2020), an improved PSO was employed for 
optimizing PID controller parameters, and the 
optimized controller was used for vehicle lateral 
control. In (Wang et al., 2019), the adaptive 
fuzzy PID controller based on segmented PID 
was designed and an improved PSO was used for 
optimizing the parameters.

When PID parameters are optimized by a single 
intelligent algorithm (He et al., 2020), it is 

often due to inherent defects of that intelligent 
algorithm, or to the fact that the population 
convergences slowly, or the population converges 
prematurely, which results in the failure to converge 
to the global optimum, and affects the control effect 
(Tam et al., 2019). Therefore, in order to obtain a 
better control effect, many researchers consider the 
use of improved intelligent algorithms (Xiang et al., 
2020, Li et al., 2020) for adjusting the controller 
parameters in order to achieve better control effects.

In order to allow the controller to adapt to different 
vehicle speeds and reduce the dependence on 
accurate models, a segmented fuzzy PID controller 
is designed in this paper. Firstly, the vehicle 
speed is divided into several intervals, different 
PID parameters are used in each interval, these 
parameters are compensated by a fuzzy controller, 
and the vehicle steering angle of the front wheel 
is calculated to control the steering of the vehicle. 
Secondly, PCAG algorithm is used for optimal 
parameter tuning of segmented PID controller in 
each speed range and for making each controller 
reduce the overshoot and stabilization time as much 
as possible. Finally, the simulation results show the 
convergence ability, global optimization of PCAG 
algorithm and the effect of controller path tracking 
at different vehicle speeds.

The remainder of this paper is structured as 
follows. The vehicle kinematic model is presented 
in Section 2. The controller structure is discussed in 
Section 3. Section 4 presents the PCAG algorithm. 
Section 5 presents the fuzzy controller. Section 6 
sets forth the simulation results and the conclusion 
is provided in Section 7.

2. Vehicle Kinematic Model

A vehicle kinematic model established based on 
the geodetic coordinate system XOY  describes 
the movement state of the vehicle in the process of 
traveling, as it is shown in Figure 1. The following 
assumptions are made in this paper to simplify 
the model: 

1.	 The influence of the steering mechanism is 
ignored, the two front and rear wheels have 
the same law of motion. The front and rear 
wheels are described by one wheel each; 

2.	 The movement in the vertical direction is 
ignored and only the lateral movement of the 
vehicle is considered.
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Figure 1. Schematic figure of vehicle kinematic model

According to the theorem of kinematics, the 
update iteration equations for each state quantity 
of the vehicle is as follows:

1 cos( )t t t tx x v dtψ β+ = + + ×                         (1)
1 sin( )t t t ty y v dtψ β+ = + + ×                        (2)

t+1 ( / ) sin( )t t bv l dtψ ψ β= + × ×                      (3)
1t tv v a dt+ = + ×                                                  (4)

where β  can be obtained from equation (5).
1tan {[ / ( )] tan( )}b f b fl l lβ δ−= + ×                         (5)

x  and y  are the current vehicle coordinates. a is 
the vehicle acceleration. ψ  is the angle between 
the vehicle body and the x-axis. v is the vehicle 
linear velocity. β  is the tire slip angle. fδ  is the 
angle between the wheel and the vehicle body. fl  
and bl  are the distance to vehicle body center from 
the front and rear wheels. O  is the steering center, 
and dt  is the control cycle.

3. Controller Structure Design

When using a single PID controller it is usually 
hard to achieve an excellent control effect when 
vehicle speed varies over a wide range. The use of 
a segmented PID controller can increase the speed 
adaptability, but when the controller parameters are 
not selected properly and the PID parameters of 
two different speed ranges are frequently switched, 
the discontinuous characteristics of the segmented 
PID controller may make the system unstable 
(Wang et al., 2019). Therefore, PCAG algorithm 
is designed for optimal parameter tuning to make 
the PID parameters of each speed range have 
the smallest possible overshoot and stabilization 
time, and a fuzzy controller is used for parameter 
compensation in order to increase the length of the 
speed division interval, reduce the frequency of 
PID parameter switching, and reduce the oscillation 
caused by segmented PID parameter switching.

The controller system is shown in Figure 2. In 
this controller, the input value is the deviation 
between the vehicle and the path. PCAG algorithm 
is used for offline tuning to obtain the segment 
PID parameter table for the PID controller, and 
according to the vehicle speed v, the switcher is 
used for determining which set of PID parameters 
is currently used. The pseudo-code of the 
switcher is expressed in equation (7). The input 
of fuzzy controller consists in vehicle speed v and 
acceleration a, and the output of fuzzy controller is 
used as an increment, which is added to the output 
parameters by the segmented PID parameter table 
to act on the PID controller in order to obtain the 
final steering angle of the vehicle and act on the 
vehicle controller.

Offline tuning
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Figure 2. Controller structure
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where ( )u t  is the PID output, kp, ki, kd are the 
parameters of segmented PID determined by 
the switcher, and ∆kp, ∆ki, ∆kd are the output 
parameters of fuzzy controller. ( ), ( 1)e t e t −  
represent the vehicle error of current time and last 
time, respectively.

[ ] [ ]
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(7)

where v  is the vehicle speed, num  is number of 
segments, range  is vehicle speed range.

4. PSO-GA Hybrid  
Optimization Algorithm

Because there are many parameters of the 
controller which need to be tuned, it is difficult 
to adjust them with conventional methods, and 
the optimal control effect may not be obtained. 
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Therefore, intelligent algorithms are employed 
for adjusting the controller parameters. As a 
commonly used intelligent algorithm, PSO has 
the characteristics of low time complexity and 
fast convergence, many researchers use it for the 
tuning of various controller parameters (Amiri, 
Ramli & Ibrahim, 2019).

PSO has been used in many cases, but it has low 
diverse particle, a low global search ability, and 
can easily to fall into a situation of premature 
local optimality (Lalwani et al., 2019). GA has a 
diverse population, strong global search ability, 
but individual particles in population have no 
memory, genetic manipulation is blind and 
directionless, it requires a long convergence time 
(Freire, Moura Oliveira & Solteiro Pires, 2017; 
Koessler & Almomani, 2020). Therefore, in the 
research  related to the improved PSO, GA is 
often combined with PSO (Dziwiński & Bartczuk 
2019). In comparison with each of them, the 
algorithm which results from their combination 
has the advantages of a better global optimization 
and convergence ability (Cheng et al., 2018; 
Farnad, Jafarian & Baleanu, 2018).

The combination of PSO and GA includes parallel 
hybrid, serial hybrid, embedded hybrid systems, 
etc (Wang et al., 2018; Roshanzamir et al., 2020). 
Among them, the serial hybrid performance is 
restricted by the sequence of the two algorithms 
and the switching point of the two algorithms, 
while embedded hybrid performance is related to 
the embedding mode of the two related algorithms. 
Parallel hybrid makes full use of the performance 
of PSO and GA, has a wide search range and faster 
convergence, which is usually used in the case of 
parameter optimization (Subotic, Manasijevic, & 
Kupusinac, 2020).

Therefore, a new PSO-GA hybrid optimization 
algorithm named PCAG is presented in this paper, 
which is based on PSO, PSO-CF, APSO and GA.

4.1 PSO and GA

PSO treats each target as a “particle”, each 
particle has attributes of current position, flight 
speed and individual optimal fitness. The 
current position of particles is represented by 

1 2 3( , , , , )i i i i inX X X X X=  , and flying speed of 
particles is described by 1 2 3( , , , , )i i i i inV V V V V=  . 
Among them, inX  and inV  represent the position 
and speed of i-th particle in the n-th dimension. 
When the algorithm is initialized, a random position 

Xi and speed Vi are assigned to each particle, and the 
position coordinates of particles are used as input 
values to calculate the fitness f . After that, the 
speed and position update are started, the speed and 
position update rules are shown in equation (8).

1

2

( 1) ( ) ( ( ))
( ( ))

( 1) ( ) ( 1)

id id id id

gd id

id id id

V t V t c rand P X t
c rand P X t

X t X t V t

ω+ = + × × −
+ × × −

+ = + +   

(8)

where rand  is a number randomly obtained 
in 0~1, 1c  and 2c  are self-learning factor and 
social learning factor, ω  is inertia weight, Pgd is 
the global best fitness of all particles, Pid is the 
best fitness of the i-th particle individual. After 
the speed and position are updated, the best fitness 
of individual particles and global fitness of the 
particles are updated according to the fitness 
function, and then one iteration is completed at 
this time. After the set number of iterations is 
completed or the convergence condition is met, 
the optimization ends. 

PSO-CF (Houssein et al., 2021) and APSO  
(Li et al., 2019) are improved PSO algorithms. 
PSO-CF adds a convergence factor based on PSO 
algorithm, so that the algorithm can converge 
quickly. The PSO-CF velocity update rules are 
expressed in equations (9) and (10), position 
update rules are the same as for PSO.

id id 1

2

(t+1)= ( ( ) ( ( ))
( ( )))

id id

gd id

V V t c rand P X t
c rand P X t

λ + × × −
+ × × −   

(9)

2

1 2

=2/|2-C- 4 |
C=c c

C Cλ +
+                                   

(10)

where λ  is convergence factor, and C  is the sum 
of self-learning factor and social learning factor.

APSO uses the Sugeno function as the inertial 
weight decreasing curve, and global search and 
local search can be automatically adjusted. It 
reduces the possibility that the algorithm falls into 
local optimization. APSO velocity update rules 
are expressed in equations (11) and (12), position 
update rules are the same as for PSO. 

1

2

( 1) ( ) ( ( ))
( - ( ))

id id id id

gd id

V t V t c rand P X t
c rand P X t
ω+ = + × × −
+ × ×  

(11)

1- ( / ) /1- ( / )t T s t Tω =                                  (12)
where s is a constant greater than -1, T  is the total 
number of iterations, and t is the current number 
of iterations.
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PSO-CF improves the convergence ability of 
PSO, but it is easier for the particles to converge 
prematurely. APSO uses the method of dynamic 
weight to adaptively adjust global and local 
search, but it is easy to cause particles to diverge. 
Therefore, when choosing an algorithm, these 
algorithms are used to complement each other.

GA through simulated natural selection, heredity, 
replication and cross variation, keeps the highly 
adaptable individuals to form a new group. The 
new group inherits the information of its parents, 
and converges to the global optimum more easily. 
The steps of GA are as follows:

1.	 Generate individual populations randomly, 
and calculate the fitness of each individual;

2.	 Determine whether individuals in the 
population are inherited or eliminated 
according to fitness;

3.	 Take the individuals selected for inheritance 
as the parents, the partial code values of the 
two individuals are exchanged to obtain a 
new individual;

4.	 According to the mutation probability, 
randomly change the code value of the 
individual to obtain a new individual  
after mutation.

4.2 PCAG Algorithm

PCAG algorithm combines the characteristics of 
PSO, PSO-CF, APSO and the GA. Based on these 
four algorithms, it optimizes and expands the 
scope of particle search, so that each population 
can share the global optimal information with 
other populations. After every iteration, each 
population uses the global optimal particles of 
other populations to replace the worst particles 
it includes, so as to ensure that the population 
continues to move in the optimal direction. The 
PCAG algorithm uses the fast convergence feature 
of PSO to allow the population to converge 
quickly, while utilizing the strong search ability 
of GA to make the population converge to the 
global optimum. So it can quickly converge and 
effectively avoid the situation of local optimality.

PCAG algorithm uses equation (13) as the 
definition of fitness function to evaluate the pros 
and cons of each particle and of the parameters. 
The parameters found by PCAG algorithm with 
the smallest fitness are the optimal parameters.

0
t e(t) dtJ

∞
= ∫                                            

(13)

where t  is the current moment, and ( )e t  is the 
vehicle error at the current moment.

The steps of the PCAG algorithm are as follows:

1.	 Determine the fitness function, determine the 
population size, number of iterations of each 
intelligent algorithm, initialize the location 
of the population, fitness, etc.;

2.	 According to the update rules of the four 
selected algorithms, update the corresponding 
parameters of each particle, calculate the 
fitness and update individual best fitness and 
global best fitness;

3.	 Replace the global worst particles of a 
population with the global optimal particles 
of other populations;

4.	 Determine whether the condition of 
convergence or the number of iterations is 
reached, if this condition is satisfied, go to 
step 5, else go to step 2;

5.	 The iteration is completed and the global 
optimum is obtained.

The PCAG algorithm flow chart is illustrated  in 
Figure 3:
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Figure 3. PCAG algorithm flow chart
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The pseudo-code of PCAG algorithm is as follows:
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5. Fuzzy Controller Design

In order to reduce the oscillation of segmented 
PID during parameter switching and expand the 
applicable range of parameters, a fuzzy controller is 
employed with the purpose of performing parameter 
compensation on the basis of the segmented PID. 

5.1 Fuzzification

Take the vehicle speed v and acceleration a as the 
input of fuzzy control, where the domain of v is 

[0,30], and the domain of a is [0,3], the output of 
fuzzy control is represented by PID parameters 
∆kp, ∆ki, ∆kd. The quantization level is set to 7, 
namely Negative Big (NB), Negative Medium 
(NM), Negative Small (NS), Zero (ZO), Positive 
Small (PS), Positive Medium (PM), Positive Big 
(PB). As the membership function is concerned, 
triangle and S-shaped  membership functions 
were adopted, in which context, NB and PB 
use S-shaped membership functions, in order 
to respond quickly when there is a big error. 
NM, NS, ZO, PS and PM adopt the triangular 
membership function with high resolution 
and sensitivity. The membership functions 
diagrams for v and a are shown in Figures 4 and  
5, respectively. 

5.2 Fuzzy Rules

Fuzzy rules have a very obvious influence on 
control effect. This paper uses “if-then” rules, 49 
rules are set for each parameter, that is kp, ki, kd. 
The specific rules are shown in Table 1, from left 
to right, they are fuzzy rules of kp, ki, kd.

5.3 Fuzzy Reasoning and Defuzzification

The fuzzy reasoning method used in this paper 
is Mamdani method, it is essentially a synthetic 

Table 1. Fuzzy rules for p i dk k k, ,  

v a

NB NM NS ZO PS PM PB

NB PB/NB/PS PM/NM/NS PM/NS/NB PM/ZO/NB PM/PS/NB PS/PM/NM ZO/PB/PS

NM PM/PB/PS PM/PM/NS PS/PS/NB PS/NB/NM PS/NM/NM ZO/NS/NS NS/ZO/ZO

NS PM/PM/ZO PS/PS/NS PS/PS/NM PS/NM/NM ZO/PS/NS NS/ZO/NS NS/NS/ZO

ZO PM/PS/ZO PM/PS/NS PS/PS/NS ZO/NS/NS NS/ZO/NS NS/NS/NS NS/NM/ZO

PS PS/NM/ZO PS/NS/ZO ZO/NS/ZO PS/ZO/ZO NS/PS/ZO NS/PS/ZO NM/PS/ZO

PM PS/NM/PB ZO/NS/NS PS/ZO/PS PM/NS/PS NS/PS/PS NM/PS/PS NM/PM/PB

PB ZO/NS/PB PS/ZO/PM PM/PS/PM PB/NM/PM NM/PS/PS NM/PS/PS NB/PM/PB
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reasoning method, namely Ri: if v is Ej and a is Ek 
then u is Ujk, where iR  represents the i-th control 
rule, and ,j kE E  represent the j  row and the k  
column respectively. After fuzzy reasoning, a 
fuzzy set can be obtained, but the fuzzy set cannot 
be directly used in the controller and needs to be 
converted into an accurate value that the controller 
can use. This process is called defuzzification. In 
this paper, the defuzzification adopts the center of 
gravity method, as it is shown in equation (14).

1 1
( ) / ( )

m m

i i i
i i

u u u uµ µ
= =

=∑ ∑
                             

(14)

where m represents the number of quantization 
level, which is 7 in this paper. ui represents 
the value in the range of fuzzy controller, μ(ui) 
represents the membership value of ui, and u is the 
final output value after defuzzification.

Through fuzzy reasoning and defuzzification, 
the fuzzy control output parameters can be  
finally obtained.

6. Simulation Experiments

In this section, several simulation experiments are 
conducted to display the superior capability of the 
proposed controller. In all simulation experiments, 
the sampling time is set at 0.1s.

Case 1. To verify the optimization ability of 
the PCAG algorithm, a comparative experiment 
of optimization and vehicle path tracking  
was performed.

Based on the vehicle model proposed in this paper, 
PSO, PSO-CF, APSO, GA, and PCAG algorithms 
are used for optimizing. The population size for 
all algorithms is 50, and the number of iterations 
is 200. The initial deviation of the vehicle is set 
at 0.5m, the vehicle speed at 5m/s and 20m/s, and 
there is no acceleration.

Equation (13) is used to calculate the fitness of 
each algorithm, so as to compare the convergence 
ability and optimization ability of each algorithm. 
The fitness convergence results related to 
optimization effects are shown in Figures 6 and 7.

Figure 6 shows the optimization effects of each 
algorithm when the vehicle speed is set at 5m/s. 
It can be noticed that at the 13th iteration, the 

fitness of PCAG algorithm is already better 
than that of the other algorithms and it finally 
converged at 59th iteration, and its optimal 
fitness is 1.2. By contrast, GA has the minimum 
fitness among the selected algorithms, and it 
converges at the 14th. 
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Figure 6. Comparison of optimization effects at 5m/s

As it is illustrated in Figure 7, when the vehicle 
speed is 20m/s, the PCAG algorithm converges at 
the 22th iteration, and its optimal fitness is 2.58. 
However, GA has the minimum fitness among 
the selected algorithms, which is 2.61, and it 
converges at the 111th iteration.
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Figure 7. Comparison of optimization effects at 
20m/s

It can be seen that because the PCAG algorithm 
shares the optimal particles of the four populations 
related to the other algorithms, in comparison with 
any single algorithm, it improves the global search 
ability, and it is easier to avoid the local optimality 
and find better results. 

Figures 8-9 respectively show the comparison 
of vehicle path tracking deviation effects when 
using PSO, PSO-CF, APSO, GA, and PCAG to 
adjust PID controller parameters under different 
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set speeds. As demonstrated in Figure 8, when the 
set speed is 5m/s, the maximum overshoot of the 
vehicle is 0.1m and adjustment time is 7s in the 
case of using the parameters adjusted by PCAG 
algorithm, whereas when using the parameters 
tuned by GA the minimum overshoot is 0.23m 
and the adjustment time is 13s.
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Figure 8. Comparison of control effects at 5m/s

As it is shown in Figure 9, when the set speed 
is 20m/s and the PCAG algorithm is used to 
adjust the parameters, the maximum overshoot of 
the vehicle is 0.4m and adjustment time is 28s, 
while when using the parameters tuned by PSO 
the minimum overshoot is 0.52m and when using 
the parameters tuned by APSO the minimum 
adjustment time is 31.2s.
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Figure 9. Comparison of control effects at 20m/s

It is clear that because the optimization effect of 
PCAG is better than that of the other algorithms, 
when adopting the parameters adjusted by PCAG 
algorithm, the vehicle path tracking control system 
has a smaller overshoot and adjustment time.

Case 2. To verify the control effect at constant 
speed for the segmented PID and fuzzy controller, 
the comparative experiment of vehicle path 
tracking at constant speed was performed. 

Based on the vehicle model proposed in this paper, 
the PCAG algorithm is used for tuning the optimal 
parameters of segmented PID at constant vehicle 
speeds of 10m/s, 15m/s, and 20m/s. Segmented 
PID and segmented fuzzy PID controller are used 
to conduct the vehicle lateral path tracking and 
the vehicle path tracking effects under the two 
controllers are compared.

Figures 10 to 12 respectively show the comparison 
of the effect of segmented PID and segmented PID 
+ fuzzy control at different constant speeds. After 
adding fuzzy control for parameter compensation, 
when the set speed is 10m/s, the path tracking 
error is reduced from 0.31m~-0.11m to 0.3m~-
0.059m, and the adjustment time is reduced from 
16s to 10s. When the set speed is 15m/s, the path 
tracking error is reduced from 0.5m~-0.18m to 
0.42m~-0.1m, and the adjustment time is reduced 
from 20s to 17s. When the set speed is 20m/s, 
the path tracking error is reduced from 0.49m~-
0.18m to 0.42m~-0.12m, and the adjustment time 
is reduced from 27s to 20s. 

0 5 10 15 20 25 30 35 40

Times[s]

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Er
ro

r[m
]

Segmented PID

Segmented PID+Fuzzy control

1.8 2 2.2

0.305

0.31

0.315

16 18

-0.04

-0.02

0

0.02

Figure 10. Comparison of control effects at 10m/s

5 10 15 20 25 30 35 40 45

Times[s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Er
ro

r[m
]

Segmented PID

Segmented PID+Fuzzy control

2 4 6

0.4

0.45

0.5

17 18 19

-0.02

0

0.02

0.04

Figure 11. Comparison of control effects at 15m/s



	 63

ICI Bucharest © Copyright 2012-2021. All rights reserved

Design of Improved PID Controller Based on PSO-GA Hybrid Optimization Algorithm...

0 5 10 15 20 25 30 35 40

Times[s]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Er
ro

r[m
]

Segmented PID

Segmented PID+Fuzzy control

2 4 6

0.4

0.45

0.5

22.5 23 23.5 24

-0.02

0

0.02

Figure 12. Comparison of control effects at 20m/s

It can be noticed that due to the use of fuzzy 
control for parameter compensation, the overshoot 
of vehicle is reduced, and the vehicle can be 
adjusted to near predetermined position faster at 
a constant speed.

Case 3. To verify the control effect at variable 
speed of the segmented fuzzy PID controller, a 
comparative experiment of vehicle path tracking 
at variable speed was performed. 

The PCAG algorithm is used for tuning the 
optimal parameters of segmented PID at variable 
vehicle speeds of 0-10m/s, 0-20m/s acceleration 
and deceleration.

Figure 13 shows path tracking error in the case of 
variable speed. Let the speed be accelerated from 
0 m/s to 10m/s, and then decelerated from 10m/s 
to 0m/s. Using segmented PID control, after the 
vehicle is stabilized, the error is within the range 
of ±0.1m. After adding fuzzy control, the error of 
the vehicle after stabilization is within the range 
of ±0.05m.
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Figure 13. Comparison of control effects when the 
vehicle is accelerating

In the case of acceleration and deceleration, 
only segmented PID control can be used. Due to 
continuous switching of controller parameters, 
the control is unstable when the vehicle speed 
changes and the vehicle control accuracy is 
reduced. However, the use of fuzzy control for 
parameter compensation improves the continuity 
of parameters and improves the stability and 
accuracy of vehicle control.

As it is illustrated in Figure 14, when the vehicle 
accelerates to 20m/s, the use of segmented PID 
and fuzzy control can effectively suppress the 
oscillation of the vehicle. When the speed is high, 
the vehicle vibration decreases from 0.1~-0.05m 
to ±0.01m.
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When the vehicle is running at a high speed, the 
control discontinuity caused by frequent switching 
of control parameters is more obvious. If the 
parameters are set improperly, it is easy to cause 
the system to diverge. After adding fuzzy control 
for parameter compensation, it can effectively 
reduce the vibration of the vehicle under high-
speed path tracking.

Based on the experiments above, it can be noticed 
that, compared with PSO, PSO-CF, APSO 
and GA, PCAG has the advantages of faster 
convergence speed, stronger global optimization 
ability, and smaller parameter overshoot, along 
with a higher control accuracy after the controller 
uses it. Regardless of the different vehicle speeds 
or acceleration/deceleration conditions, in 
comparison with segmented PID controller, the 
segmented fuzzy PID controller can effectively 
reduce the vehicle lateral tracking deviation, 
improve the accuracy of vehicle lateral tracking, 
and effectively suppress the oscillation caused by 
segmented PID parameter switching.



https://www.sic.ici.ro

64 Shenqi Gao, Song Gao, Weigang Pan, Mushu Wang

7. Conclusion

This paper takes the vehicle kinematic model 
as the research object, focusing on the problem 
that the vehicle path lateral tracking control is 
difficult to adapt to different vehicle speeds. A 
segmented fuzzy PID controller is proposed, 
and PCAG algorithm is used for optimizing the 
segmented PID parameters. On the simulation 
platform built by means of MATLAB, the lateral 
control simulation experiments for the above-
mentioned control algorithm were carried out for 
different vehicle speeds. The experimental results 
show that the proposed controller can effectively 
control the vehicle to track the vehicle path under 
the conditions of constant speed, acceleration and 
deceleration, and improve the control accuracy. 

However, the method proposed in this paper 
also has some shortcomings. PCAG algorithm 

uses multi-intelligent algorithms for parallel 
optimization, which increases the time complexity. 
The proposed controller uses a fixed global fuzzy 
controller for the compensation of segmented PID 
parameters, but once the speed range is too large, 
the control effect would decrease. Future works 
could focus on how to reduce the time complexity 
of PCAG and consider using the variable universe 
fuzzy controller for parameter compensation.
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