An Algorithm To Manage Multiple Inheritance in An
Object-Oriented Software Engineering Tool

Franck Barbier

IRIN (Computer Science Research Institute of Nantes)
University of Nantes

2, rue de la Houssiniére

44072 Nantes CEDEX 03

FRANCE

e-mail: Franck.Barbier@irin.univ-nantes.fr

Abstract: Object-oriented methods lead to the construction
of models -—in other words, ensure the formal definition of
requirements— in which inheritance relationships,
sometimes multiple inheritance relationships, are depicted
A techmique for wvalidating models using multiple
inheritance consists of defining, during the early activity of
software development, precise semantics of inheritance to
estimate appropriateness and relevance of the models
constructed: to understand them, to make them conform to
requirements. to validate them in order to pursue software
development up to implementation. This technique is
automated with the help of an algorithm implemented into a
software engineering tool, which is now operational.

Keywords: object-oriented methods, object-oriented
software engineering tools, multiple inheritance,
requirements engineering, model verification

1. Introduction

In the realm of software engineering, inheritance
is often known as an object-oriented languages
programming technique which ensures software
reusability. In the realm of artificial intelligence,
inheritance is known as a knowledge
representation technique. When used in object-
oriented methods, inheritance encompasses both
of these aspects because besides the need for
reusability, formalizing requirements cannot be
ignored.

Within an industrial context, use of object-
oriented methods cannot take place without
object-oriented software engineering tools as
characterized in [Meyer, 1994]. Unfortunately,
implementation of object-oriented software
engineering tools is difficult to do due to the
(often graphical) poor specification language of
most current object-oriented methods.
Therefore, tools cannot effectively assist
software engineers during the formal definition
of requirements and, in practice, implementation
of object-oriented software engineering tools
often distorts methods by "adapting” their
graphical syntax. in other words. their
description capability.

Studies in Informatics and Control, Vol. 7. No. 2. June 1998

Inheritance is at the central point of this
problem because most popular object-oriented
methods advocate multiple inheritance. Let us
consider a model which incorporates multiple
inheritance relationships. What type of a
verification can be performed to ensure
consistency, and then correctness of the model;
in other words, which is the validation technique
that can contribute to rigorous model
construction?

In order to answer this question, this article
presents a reflection upon and solutions relevant
to the use of multiple inheritance in object-
oriented software development methods when
supported by software engineering tools. This
article first reviews the need for checking
functions in object-oriented software
engineering tools. Such checking functions are
rather ill-defined if no precise semantics of
inheritance and of additional notation is
established. In this respect, the choice made in
this article is the inheritance relationship as that
of inclusion according to set theory.

Next, with the help of the above hypothesis and
of an example, a general technique to validate a
multiple inheritance graph is empirically
described. In the proposed logic, the initial
multiple inheritance graph is transformed into
an equivalent single inheritance graph. This
transformation is possible thanks to the use of
additional notation in the model: as it happens,
exclusion and totality constraints concerning
object types linked to one given object type.
Then, the technique is accurately described with
the help of an algorithm.

Before closing, this article will point out some
of the advantages as well as disadvantages of
the proposed technique, such as combinatorial
problems, precisions concerning the algorithm's
functioning and several implementation
strategies based on various development
systems (object-oriented programming
languages with multiple inheritance or not,
relational database management systems, etc.).

2. Subject Area

2.1 Theme

The wide and systematic use of object-oriented
methods in industry leads to the implementation
of these methods into object-oriented software
engineering tools. Object-oriented software
engineering tools essentially provide supports to
construct object-oriented models based on
object-oriented methods and their associated
graphical notation. Roughly speaking, the
construction of object-oriented models —with
or without the help of object-oriented software
engineering tools— generates two activities.
The first is the formalization of the
requirements. The second is the verification of
the requirements. Note that the term
"verification" means «The process of evaluating
the products of a given software development
activity to determine correctness and
consistency with respect to the products and
standards provided as input to that activity.»
(DOD-STD-2167A, 1988).

Formal means "leading to a mathematical
interpretation of models". Therefore, most
popular object-oriented methods and their
associated informal notation often limit model
verification capability.

In this respect, this article focuses on the
activity of object-oriented model verification —
especiaily, automatic or semiautomatic
verification while emphasizing the
implementation of object-oriented methods into
object-oriented software engineering tools—
and focuses on inheritance -—multiple
inheritance in particular— because inheritance
is a fundamental concept of object-orientation
and is widely held in object-oriented models.

2.2 Implementation of Object-
oriented Software Engineering Tools

Building object-oriented representations is often
limited to the mastery of a graphical syntax. For
this reason, object-oriented software
engineering tools are above all editors dedicated
to such a graphical syntax. This purpose is
necessary but greatly insufficient. The semantics

/'formalization*

requirements

models

&eriﬁcation /

Figure 1. Model Construction = Requirements Formalization + Model Verification

In this line of reasoning, models, which are
formalized requirements, express software goals
with more precision than sentences in natural
language. As for verification, in such a context,
it precisely consists of the process of evaluating
the models resulting from the requirements
formalization activity to determine correctness
and consistency with respect to the requirements
in natural language provided as input to that
activity.

However, if formalizing requirements improves
precision so that elimination of ambiguity,
inconsistency and incompleteness increases
[Davis, 1988], use of graphical notation cannot
ensure at all the same deep and robust model
verification as use of formal notation can do.

122

of object-oriented representations is often not
properly taken into account due to the lack of
formal bases of most current object-oriented
methods. In fact, a major expectation of a
software engineer who uses an object-oriented
software engineering tool is not only editing
functions but checking functions of the
representations built. To implement such
checking functions, verification algorithms have
to be defined and the formal nature of a method
greatly helps this definition.

2.2.1 Related Expericnce

This remark is based on practical experience in
implementing the object-oriented software

Studies m Informatics and Control. Vol. 7. No. 2. June 1998

engineering tool [Barbier and Reich,1997]
which supports the theoretical results presented
in this article. A main criticism of Version 1.0
of this software has been the absence of
"evaluation" of inheritance graphs. when built
with multiple inheritance relationships and with
another concept called "overlapping
generalization" in the OMT method [Rumbaugh
et al, 1991], "disjoint and non-disjoint sub-
types" in the Syntropy method [Cook and
Daniels, 1994] or "selective multiple
inheritance" in [Dori and Tatcher. 1994]. The
algorithm detailed in this article is the result of
the search for a general technique to manage
multiple inheritance in object-oriented software
engineering tools. "general” means that the
technique is free from a given method and
established with an extension and a precise
definition of the concept above, afterwards
called "exclusion constraint”. This technique is
fully described in this article and is now
operational in Version 2.0 or later of the
software. Since this software was written in
Smalltalk-80 [Goldberg and Robson, 1983], a
small section of code of the algorithm is
presented in Annex. The aim of this Section of
code is just to clarify and improve the
understanding of a central point of the proposed
algorithm.

2.2.2 Problem Resolution Strategy

Before becoming a problem of 1ool
implementation, the problem rests above all of
methods. A prevailing trend is to create formal
object-oriented methods, consequently new
notation, to facilitate the impleinentation of
these methods. The Room method [Selic,
Gullekson and Ward, 1994] or object-oriented
modeling with statecharts [Harel and Gery,
1997], which both focus on dynamic
requirement aspects and on model verification
based on model executability as characterized in
[Blumofe and Hecht. 1988] or in [Barbier,
1992], are archetypes. Another prevailing trend
is to expand informal object-oriented methods
instead of creating formal ones. This is the case
for example in [Cook and Daniels, 1994], in
{André et al, 1995] or in [Bourdeau and Cheng,
1995] concerning the improvement of the OMT
notation. The approach of Cooks and Daniels is
inspired by Z to model static requirement
aspects and by statecharts to model dynamic
requirement aspects. The approach of André et
al mixes up algebraic specifications and
statecharts to model dynamic requirement
aspects, and ignores static requirement aspects.
The approach of Bourdeau and Cheng is taken
from algebraic specifications to model static

Studies in Informatics and Control, Vol. 7, No. 2, June 1998

requirement aspects and ignores dynamic
requirement aspects.

Concerning the second trend. the difficulty is
the choice of an approprize mathematical
theory on which lies the formal notation. Type
theory, for example, seems a promising way to
follow. However, in industry. few methods, and
thus, few software engineering tools, support
type theories while incorporating object-
orientation, these theories being too
complicated, heavy, and above all not stabilized
[Danforth and Tomlinson, 1988]. The recent
results concerning the most widespread object-
oriented methods [Hutt, 1994a] [Hutt, 1994b]
confirm the opinion above —for example, none
of these methods supports fully and efficiently a
given type theory. These results describe and
compare methods like the Objectory method
[Jacobson et al. 1992] illustrating what is
regarded as a non formal method or the Demeter
method [Lieberherr. 1996], once more an
archetype of what really is a formal object-
oriented method.

2.3 Semantics of Inheritance in
Object-oriented Methods

Inheritance is rather known as a programming
language technique. Therelore, most research
results have been obtained in this area and
synthesized in [Ducournau and Habib, 1989]!
and [Ducournau et al, 1995]. In object-oriented
methods, the expression
"generalization/specialization” is used instead of
"inheritance”, or simply "specialization" in
[Hutt, 1994b] in which it is defined as
«Specialization: which occurs when an object
type inherits operations. attribute types and
relationship types from one or more super-types
(with possible restrictions).».

2.3.1 Minimal Semantics

Use of inheritance in object-oriented methods is
very intuitive. Contrary to programming
languages, methods serve conceptualization
concerns rather than implementation concerns
—within the classification proposed in [Lalonde
and Pugh, 1991], conceptualization concerns
can freely correspond to the "is-a" relationship
or to the "subtyping” one, rather than to the
"subclassing” one which is programming
languages-dependent. In this respect, as
observed in [Taivalsaari, 1996]. one cannot
emphasize this strongly enough: «On the basis

Van entire formalization of multiple inheritance can

be found in this article.

of the preceding discussion it appears that the
analogy between inheritance and conceptual
specialization is a lot weaker than has often
been claimed.». According to this remark, a
commonly accepted semantics compatible with
almost all the methods has to be found, these
methods considering inheritance either as a
static mechanism of representation or as a
support for polymorphism. In this sense, the
semantics of the inheritance relationship
considered as the inclusion relationship, is
chosen. This point of view is the same as that
found in [Atzeni and Parker, 1988]: «(...) an is-a
can be considered as an integrity constraint,
requiring the set of instances of a type to be
subset of another.». As a result, this leads to a
mathematical interpretation of inheritance as

follows?2:

inherits from A

because B is inciuded in A

In the wake of object-oriented programming
languages, object-oriented methods support
multiple inheritance relationships between
object types, such as:

nherits from A C

Figure 3

By their very nature, multiple inheritance
relationships are the source of many conflicts
and consequent ambiguities. For example, if p is
a property of A and C, what is the status of B in
relation to p? In object-oriented programming
languages, the ambiguities are eliminated with
the help of various complex algorithms
supported by graph theory [Demichiel, 1988]
[Ducournau and Habib, 1989] [Ducournau et al,
1995]. "various" means that each algorithm is
strongly linked to a given programming
language. Though these verification algorithms

2the Venn diagram is a useful widespread technique
to depict such a mathematical interpretation.

124

A
&
B

Figure 2. If object type B inherits from object type A
then an object b1 belonging to set B belongs to set A

B

may solve the problems, and especially
programming problems, they are not easily
understood by the average software engineer
because they do not rest on a common uniform
interpretation of inheritance in programming
languages.

In object-oriented methods, the use of
inheritance is, contrary to what is found in
object-oriented programming languages, seldom
rigorous. In this context, the use of multiple
inheritance in object-oriented methods is
beneficial if the resuiting description of the
requirements in question does not hinder the
understanding, and thus the verification, of the
models which represent these requirements.
This point becomes more and more involved
when using additional notation to increase
description capability of a method. This
additional notation consists of the
concept of "exclusion constraint" and
the concept of "abstract” object type.

2.3.2 Modeling Concepts Linked To
the Inheritance Concept

Once more, use of this additional
notation is awkward if it is not
associated with precise semantics,
especially with that of the inheritance
relationship as an inclusion relationship.

Let us firstly consider the concept of "abstract"
object type. If this concept is clear in object-
oriented programming languages, this is not the
case in object-oriented methods.
For example in Eiffel [Meyer,
1992], the term "deferred” is used
in place of the term "abstract" with
this definition: «A class which has
one or more deferred routines is
itself said to be deferred». The
advantage of giving semantics to
inheritance, when it is used with
conceptualization concerns. leads
to the unique mathematical interpretation of the
concept of "abstract” object type in Figure 4.

This mathematical interpretation is not
innovative and known for example as a
"constraint of totality between two or more
object types which directly inherit from one
given object type" in the NIAM (Nijssen
Information Analysis Method) method [Habrias,
1988].

Let us secondly consider the concept of
“exclusion constraint” which is not innovative
either and is used once again in the NIAM
method (it is known as a "constraint of

Studies in Informatics and Control, Vol. 7, No. 2, June 1998

nherits from

f
abstract D B

object type

Bl : rceion indicating the empty set (i.e. ©)

languages and is known as the
problem of "methods
interoperability". In this context,
this article does not explore deep
semantics of inheritance to make
the proposed results methods-
independent.

2.4 Verification

Figure 4. There is no object which belongs to set A which does

not belong to set B or (not exclusively) set D

exclusion between two or more object types
which directly inherit from one given object
type") as well as in other approaches concerning
knowledge representation such as that presented
in [Atzeni and Parker, 1988] or that presented in
[Agopian, 1992].

inherits from

@ exclusion
constraint D

BB : recion indicating the empty set (i.e. @)

Figure S. If an object belongs to set B then it does not

belong to set D (and vice versa)

2.3.3 Extended Semantics

More advanced mathematical interpretations of
inheritance exist, like Bourdeau's and Cheng's
approach, where "subtyping" is defined as a
total function from a subtype to its unique direct
super-type. Although this approach avoids
"multiple subtyping", the proposed semantics is
different —and in this respect, rather original—
from many other recognized and widely held
approaches, especially Cooks' and Daniels' or
Shlaer's and Mellor's [Shlaer and Mellor, 1992],
where semantics of inheritance is defined with
the help of relationships between finite state
machines.

Considering almost all the methods, minimal
semantics of inheritance is the same as that
chosen in this article (see for example,
{Rumbaugh et al. 1991, pp.65-69] or [Cooks
and Daniels, 1994, pp.67-70]. However,
extended semantics of inheritance, if it exists, is
not the same from one method to another. It is
therefore difficult to be free from one method
when implementing an object-oriented software
engineering tool. So. the problem becomes the
same as that of the object-oriented programming

Studies in Informatics and Control, Vol. 7, No. 2, June 1998

A

J B
2]

B

As written above, verification is
the general process of evaluating
the products of a given software development
activity. In this sense. test is a kind of
verification. This article focuses on one kind of
verification, that of the early activity of software
development, often called "Object-Oriented
Analysis" in many object-oriented methods
[Shlaer and Mellor, 1988] [Coad and Yourdon,
1991a] [Rumbaugh et al, 1991] or
called "Software Requirements
Analysis" in [DOD-STD-2167A,
1988] or "Object Analysis
Modelling" in [Hutt, 1994b]
according to whom «The purpose o6f
[object] analysis modelling is to
obtain a thorough description of a
problem domain, so that the
requirements for applications
supporting the domain can be
formalized and the environment in
which those applications are to be
used is well understood.».

In this perspective, verification determines
whether object-oriented models are consistent,
and then correct, according to two criteria:

e is an object-oriented model self-
consistent? For example within an
object-oriented model, if an object
type A inherits from an object type B
and B inherits from A, there exists an
error which can be detected
independently of the input
requirements. Object-oriented
software engineering tools have to deal
with these "first degree" verifications
like avoiding cycles between object
types linked by inheritance
relationships or like avoiding repeated
inheritance (an example of repeated
inheritance is shown and explained in
Figure 7).

e is an object-oriented model a correct
model of a list of requirements? This
implies that verification is the process
of comparing a list of requirements in

125

natural language to an object-oriented
model which is its formalization.
These "second degree" verifications
are complicated, or even undefined
because based on natural language
processing, Furthermore, verification
does not only address inheritance and
the list of verifications which have to
be implemented into object-oriented
software engineering tools is varied
and sizeable. Current research results
in natural language processing are not
sufficiently advanced given the issue
at stake.

Faced with the second criterion, the main idea
of this article is to ftransform models
incorporating multiple inheritance relationships
so that the verification process is simplified and
effectively assisted by the tool. The proposed
technique follows the same idea as that of the
Demeter method: «However, we don't intend for
our algorithms be used to restructure class
hierarchies [inheritance graphs] without human
control. We believe that the output of our
algorithms makes valuable proposals to the
human designer who then makes a final
decision» [Lieberherr, 1996]. Thus, this
technique works without natural language
processing on the assumption that a model
which has multiple inheritance relationships is
difficult to understand and hence difficult to
validate by a software engineer, while a model
which has single inheritance relationships is not
subject to these limitations. This assertion is
empirically studied with the help of an example
and can now be illustrated in Figure 6.

3. Intuitive Approach

The general goal of this Section is to illustrate
the introduction of two distinct parts, afterwards
called phases, in the proposed algorithm. An
example helps us to achieve this goal.

3.1 Presentation of An Example

The following example is a multiple inheritance
graph resulting from an analysis. This example
will facilitate several tasks:

e explaining in greater detail the
meaning of the constraints of
exclusion and of totality;

e transforming empirically this multiple
inheritance graph into a single
inheritance graph;

¢ invalidating the multiple inheritance
graph since, as asserted in this article,
a single inheritance graph is its
equivalent. Consequently, to invalidate
the single inheritance graph is
equivalent to invalidating the multiple
inheritance graph.

One can criticize this model, in particular show
the redundant relationship between "F=Spy
helicopter” and "C=Military helicopter” (it is a
typical example of repeated inheritance). This
"first degree" criticism (in fact, as written
above, made independently of the input

requirements

verification

models
incorporating
multiple inheritance
relationships

xnsrommion
models

incorporating
single inheritance
relationships

/’/

Figure 6

Studies in Informatics and Control, Vol. 7, No. 2, June 1998

A=Helicopter

A
@/

/ -
D=Civilian

@ . exclusion constraint

@ : totality constraint

- inherits from

helicopter
L C=Military
B=Armed helicopter
helicopter

E=Fighter
helicopter

S

A

®/

G=0Offensive F=Spy
helicopter helicopter
Figure 7

requirements) can be implemented as a warning
into an object-oriented software engineering
tool. However, a deeper study shows a totality
constraint partly supported by this relationship
between F and C and therefore a more precise
study is necessary.

The model shown in Figure 7 shows object
types linked by inheritance relationships. The &
sign is a constraint of exclusion between object
types which directly inherit from one common
object type. It is important to note the fact that
such a constraint cannot be expressed between
object types which are not directly linked to one
given object type. This latter object type is
called the father object type, while those which
are directly linked to it are called son object
types. According to set theory, a constraint of
exclusion between son object types means that
their intersection is equal to the empty set.

The sign @ is a constraint of totality between the
son object types of a given object type, subject
to the same remarks as noted above. Again,
according to set theory, a constraint of totality
between son object types means that their union
is equal to the set represented by the father
object type.

Studies in Informatics and Control, Vol. 7, No. 2, June 1998

A set theory interpretation of Figure 7 yields
those presented in Figure 8.

There. one may observe that:

e the squares and the ellipses are sets
associated with the object types within
Figure 7. When an ellipse is located
within a square, this indicates, as far as
the inheritance relationship is
considered as that of inclusion, an
inclusion relationship between two
sets. Thus, one may consider Figure 8
as a set theory interpretation of Figure
7.

s the black areas are regions eliminated
after having satisfied the constraints of
exclusion and of totality. In fact, these
regions indicate the empty set (i.e. @);

Before describing intuitively and formally the
proposed verification technique and its
associated algorithm, two points have to be
emphasized.

127

A (5 -: region eliminated after having satisfied the
constraints of exclusion and of totality (i.e.
region indicating the empty set: @)

between () : number of regions remaining after
having satisfied the constraints of exclusion and

of totality (i.e. r')
A level NO

A

@D
B (2) @

E level N2
‘ F level N3

set theory interpretation of initial initial inheritance graph (figure 7)
inheritance graph

Figure 8

without cycle GIr=(N, H, A) with a root A. N is
a set of object types derived from the object

1} According to [Ducournau and Habib, 1989], type_ A, called ,the Inazir f’bjecF tipe I
an inheritance graph is an oriented graph relation to the inheritance relationship H. An

128 Studies in Informatics and Control, Vol. 7, No. 2, June 1998

object type ng is a father object type for an
object type np if [npng] € H. An object type np
is a son object type for an object type n, if
[npng] € H.

A graph without cycle can be ordered with the
help of an algorithm which defines a
relationship of equivalence for N and which
then breaks down N into equivalence classes
called levels.

Level 0 is defined by NO={n eN/I['H(n)=J}.
'y is a mapping from N to P(N) (powerset)
such that n' € I'ig(n) if [nn'] € H. In this respect,
Fum) = Tpm), MPym = TaClam) =
k

. G

H (n)
o

Ly G (n)) = n‘kr)*" | R

[N
and finally T y(n)=) T'* H(n) where [N] is
k=1
the cardinal of N. Level i when i>0 is then
defined by
A = ine N-UN, IUN 2 r‘H(n)}.
=0

P

Formally. T*H(n) is the transitive closure of n

without {n}. Intuitively, F*H(n) is a subset of N
made up of attainable object types from n

according to H. By definition, an inheritance
graph GH=(N, H, A) is such that NO={A} and

VYneNng F*H(n). For example, in Figure 7,
I'y(F)={C, E} and T {(F)={A, B. C, E}.

2) Let n € N. If m is the number of n's son
object types, then a set theory interpretation of
the m inheritance relationships pernits a
graphical representation of r regions where
r=2m,

The expression of the constraints of exclusion
and of totality among the m son object types of
n leads to the introduction of r' such that r'<r: r'
regions should remain after the elimination of
regions following the satisfaction of constraints.

For example, in the model shown in Figure 8,
object type A has 3 son object types: B, C. and
D, thus r=8. The constraint B@&D implies the
elimination of the regions associated with BND
since BmD=, and BNCnD since BnDD
BMCnD. The constraint C®D implies the
elimination of the regions associated with CD,

Studies in Informatics and Control, Vol. 7, No. 2, June 1998

and BNCND which is already eliminated, thus
r'=5.

Henceforth, regions are named by the
concatenation of the object types which they are
composed of. For example, at level N2 of
Figure 8, the remaining regions are E, EF, and
EG (the region EFG has disappeared since
F®G). In region E, the instances of object types
belong to set E. In region EF, the instances of
object types belong to both set E and set F, ete.

These two points having been taken into
consideration, it is now possible to comment in
detail, for each level and each of the levels'
object types, upon the regions which remain
after the satisfaction of the constraints of
exclusion and of totality.

When passing from a level Ni to a level Ni-1
when i=max to 1 (max is the index of the last
leve] Nmax after ordering the graph), it is
possible for each object type of the level Ni-1
to take into account the constraints associated
with its son object types. For example, at level
N2 of Figure 8, EDF, which implies that the
complementary set of E in EUF is equal to the
empty set. This is not the case at level N1 of the
same Figure, the complementary set of E in
EUF is not equal to the empty set, but to the
region CF.

In order to eliminate this contradiction, the
region CF of level NI in Figure 8§ must be
eliminated. In general, a constraint satisfied for
a son object type should also be applied to its
father object types. According to this logic,
Figure 9 presents the results for the example
shown in Figure 8.

The final result of this process is the obtaining
of a list of regions associated with level NO. In
Figure 9. the list is as follows: A, AB, AD,
ABCE, ABCEF. and ABCEG. This list enables
one to sum up the whole of the constraints of
exclusion and of totality of the model shown in
Figure 8. Now, two questions arise: what does
one do with this list? How does one
automatically compute this list? The technique
proposed in this article answers both these
questions.

The posed hypothesis is that there exists an
algorithm P1 (phase 1) which, when activated
with as input a multiple inheritance graph,
allows one to compute a list of regions
associated with level NO; in other words
associated with the root of the graph. Next, an
ordering algorithm P2 (phase 2) is proposed
with as input the list of regions associated with

129

level NO, so as to obtain single inheritance
graph(s) equivalent to the original multiple
inheritance graph. Reasoning by analysis and
synthesis leads first to the study of the
feasibility of phase 2 (analysis) and then to the
consideration of the feasibility of phase 1
(synthesis).

A
B
5 E
G
E
F
G

3.2 Phase 2 (P2)

The process of ordering each region of the list
consists in retaining at each iteration, an object
type n which remains from the previous
iteration, such that n appears the most often in
each region of the list. For example, in Figure

130

10, for the first iteration, n=A since A appears
in 6 regions among 6; for the second iteration,
n=B. etc. A, the root of the original multiple
inheritance graph, is always the object type
retained at the first iteration.

Phase 2 extracts from the list of regions

: region eliminated after having passed from
a fevel Ni to a level Ni-1 with i=3 to 1 (i.e. region
indicating the empty set: ©)

d

- - g : list of regions remaining after having
passed from a level Ni to a level Ni-1 with i=3 to 1

A---- A

AB AB

AC AD g final

AD ABCE result

ABC ABCEF

‘ ABCEG

B--» B CE--#» CE

BE BE CF CEF

‘ BEF CEF CEG
BEG

E

EF

EG

Figure 9

associated with level NO, M (M=2 in the
example) single inheritance graphs equivalent to
the original multiple inheritance graph
according to the tree property defined in
[Lieberherr, 1996]: «A collection of subsets of a
set S has the tree property if for any pair of
subsets of S one element of the pair is
completely contained in the other. or if the two
subsets are disjoint.». So, let Instances be a

Studies in Informatics and Control, Vol. 7, No. 2, June 1998

mapping from L (L is the list of regions
associated with level NO and is formally defined

n eN' —{A'}, there exists only one path
between n and A' denoted n—>p' A'.

in paragraph 3) to P(O) (O the set of

constructable objects from the system modeled
in Figure 7 and P(O) is the powerset),
Instances(A) is the set of objects from type A.
Instances(AB) is the set of objects from type A
and type B, etc. Then the tree property is useful
if and only if S=Instances(A) and
Instances(A)>Instances(A),
Instances(A)>Instances(AB), etc. In this logic,
the following process is proposed:

Let Gg=(N', H'. A") be a single inheritance
graph. Let F(N') be a subset of N' such that
F(N)=in € N' —{A'} /3n' € N' - {A"} /
IMg(n) w {n'} oT*g(n) U {n}) = n'=n}. The
family of paths n —p' A' such that n € F(N')
defines the graph Gy

For example. in Figure 10 there are two single

Iteration 3 Iteration 4 Iteration 5

\ v

ordering of € g CideninzolE P Crdenngof D Fand G

{in 3 regrons) {in 3 regions) tin | region)

A—(—0—D) A—0—0—0—D) A—{(—0—0—D—0

Iteration | Iteration 2 A—B—C—(E) A—B—C—E—() —
A—B—C—(EF) A—B—C—E—(F) A—B—C—E~F—()
' A—B—C—(EG) A—B—C—E—G) A—B—C—E—G—()
T el O
2
A A—() s
AB A—(B) A—B—()
AD A—(D) A—()—(D)
ABCE A-—(BCE) A—B—(CE)
ABCEF A—(BCEF) A—B—(CEF)
ABCEG Ai(B(EG) A*’B*’(CEG) d e ordering of C ordering of D. F and G
Gniregonsy I regions) — gl '
list of regions A——0—(D) A—0—0—0—D) A—0—(—(—D—0
associated to A—B—E—(C) A—B—E—C—() _
level NO A—B—E—CF) A—B—E—C—F) A—B—E—C—F—()
A-—-B—E—(CG) A—B—E—C—(G) A—B—E—C—G—)

Figure 10

Intuitively, the object type retained at each
iteration is the most "general” —according to
the "generalization/specialization” logic—
object type remaining from the previous
iteration. More specifically, the ordering of each
region of the list consists in enumerating one of
several families of paths, a family defining a
single inheritance graph which is equivalent to
the original multiple inheritance graph.

Note: an inheritance graph Gy=(N', H', A") is a
single inheritance graph if and only if, for all of

Studies in Informatics and Control. Vol. 7, No. 2. June 1998

inheritance graphs which are equivalent to the
original multiple inheritance graph. The first
graph is defined by the following family of three
paths: D —A (|[DA]), F — A ([FE], [EC], [CB],
[BA]) and G —A ([GE], [EC], [CB]. [BA]).
The second graph is defined by the following
family of three paths: D — A ([DA]), F - A
([FC], [CE], [EB]. [BA]) and G —A ([GC],
[CE]. [EB], [BA]).

Hence, from the example shown in Figure 7, the
two single inheritance graphs in Figure 11 have
been obtained:

131

solution 1

A=Helicopter

D=Civilian
helicopter

B=Armed
helicopter

C=Military
helicopter

abstract
object type

E=Fighter
helicopter

\\

G=Offensive F=Spy
helicopter helicopter

In the first solution, C is an abstract object type.
in the second. E is an abslract object type. As a
matter of fact, note that at iteration 3 of Figure
10. C has been ordered in the first solution, E in
the second. What does the first solution show?
That there is no instance of C which is not an
instance of E (and vice versa in the second
solution).

In studying solution 1 as well as solution 2
(Figure 11). one shall notice that a helicopter
cannot be a military helicopter without being an
armed helicopter which is discerned with
difficulty in the model presented in Figure 7,
because there is not at all a direct or indirect
inheritance relationship from "Military
helicopter" to "Armed helicopter"! Furthermore,
let us imagine that the "Troop transportation
helicopter” object type is directly linked to the
"Military helicopter” object type in Figure 7. It
surely means, according to Figure 11, that
“Troop transportation helicopter” inherits from
"Armed helicopter”. How to detect this error in
Figure 7 while it is easy to detect it in Figure
117

solution 2

A=Helicopter

B=Armed D=Civilian
helicopter ~ helicopter
E=Fighter
helicopter

C=Military
helicopter

G=0Offensive F=Spy
helicopter helicopter

Figure 11

To sum up, taking into account the comparison
of the inheritance relationship to the inclusion
one, and taking into account the fact that the
multiple inheritance graph in Figure 7 is
equivalent to the two single inheritance graphs
in Figure 11. the model shown in Figure 7 is
invalid.

3.3 Phase 1 (P1)

In order to come to this conclusion, it is
assumed that there exists an algorithm P! which
allows one to compute the list of regions
associated with the root of the multiple
inheritance graph shown in Figure 7. Here is an
empirical presentation of this algorithm P1,
illustrated by a matrix representation (Figure
12): let Ma be a matrix associated to object
type A, such that (on the line 0 of M are found

' regions resulting from the expression of the
constraints of exclusion and of totality between
B. C, and D; and in column 0O there are found
the regions associated with B and C
respectively, the result of taking into

Studies m Informatics and Control, Vol. 7, No. 2, June 1998

consideration possible contradictions between
levels 2 and | (D is absent from column 0
because D does not pose a problem insofar as it
is not a father object type for any object types).
In the matrix M, all of possible concatenations
of regions are double-outlined. Algorithm P1,
made up of three rules which will be presented,
eliminates regions which are incompatible with

italics. This region is in fact inacceptable since
it ignores at a level i~1, a constraint which was
satisfied at a level i. Thus, the application of
rule 1 yields those presented in Figure 13,

In Mc for example, line 3. column 2. CEFG is
in italics since, in column O of Mg, the
sequence EFG does not appear while it could

the constraints already satisfied. have theoretically appeared through the

Ma 0] 2 3 4 5
0 N1 to NO A AB AC AD ABC

ke sk ok ok o ok ok ok ok sk ok ok ok sk ok sk sk ok ok ok 3 ok ok ok ok sk ok ok 3K ok 3 3k 3 ok 3k ok oK ok 3k o oK ok 3K ok ok ok ok ok ok sk sk ok ok o 3 ok 3 ok ok ok o ok ok ok ok R K
] B AB AB ABC ABD ABC
2 BE ABE ABE ABCE ABDE ABCE
3 BEF ABEF ABEF ABCEF ABDEF ABCEF
4 BEG ABEG ABEG ABCEG ABDEG ABCEG

33 oK o ok ok ok sk sk ok o o sk sk ok ok s sk sk sk sk sk sk ok ok 3k 3K oK ok sk ok ok ok ok ok sk 3k ok ok ok ok 3k ke sk sk 3K ok 8 5 3k ok ok oK ok ok % ok o o ok ok 3k ok ok ok o o ok sk ok ok
5 CE ACE ABCE ACE ACDE ABCE
6 CEF ACEF ABCEF ACEF ACDEF ABCEF
7 CEG ACEG ABCEG ACEG ACDEG ABCEG
k) i

Mg 0 1 2 Mc 0 1 2 3
0 N2 to N1 B BE 0 N2 to N1 CE CF CEF

e sk ok ok ok ok 3 s s sk sk ok Sk o 3k sk 3k ok ok ok o ok ok s ok ok o o o ok ok o ok K sk ok sk ok ok ok o ok ok ok ok ok oK o ok 3 3 oK oK ok sk ok ok ok K s ok 3 ok ok 3k ok o 3 oK oK o ok oKk KoKk ok
| E BE BE 1 E CE CEF CEF
2 EF BLF BEF 2 EF CEF CEF CEF

| 3 EG BEG BEG 3 EG CEG CEFG CEFG
initalics: redundant region with possible region
in bold-type: possible region
Figure 12

Note that in Figure 12 one must first compute
the list of matrix Mg: B, BE, BEF, and BEG, as
well as the list of matrix Mc: CE, CEF, and
CEG before being able to compute the list of
Ma. Indeed. B, BE, BEF, BEG and CE, CEF,
CEG make up column 0 of Mp in Figure 12. In

Figure 15, B, BE, BEF, BEG and CE, CFEF,
CEG are the final result within Mg and Mc.

Rule I:if in a given mauix (here. the double-
outlined area in MA. MR. or M¢), there is a
region which includes a sequence of letters (i.c.
a region which groups together a number of
object types) that could have theoretically

appeared in the 0 line or the O column of the
matrix, the region is eliminated by putting it i

Studies in Informatics and Control, Vol. 7, No. 2. June 1998

grouping of EF and EG.

Rule 2: if, in a given matrix, a region including
a sequence of lefters that is incompatible with a
sequence of letters from the 0 line or the 0
column of the matrix, this region is eliminated
by putting it in iralics. As in rule 1, this region is
inacceptable since it ignores at a level i-1, a
constraint satisfied at a level i. The application
of rule 2 yields those presented in Figure 14.

133

Ma 0 1 2 3 4 5
0 N1 to NO A AB AC AD ABC
e 3k sk ok ok ok 3k oK oK 3K oK oK ok o oK 3ok ok 3k ok sk ok ok o ok ok o o ok o ok sk ok ok 3 oK sk o o ok sk ok ok sk ok sk ok ok ok sk ok ok R sk ok sk sk sk ks ok sk ok
1 B ABD
2 BE ABE ABCE ABDE
3 BEF ABEF ABCEF ABDEF
4 BEG ABEG ABCEG ABDEG
e sk e ok ok o ok 3 ok 3k K 3 o 3 oK 38 s ok oF ok 8 3 o ok o ok ok oK ok o ok 3 oK oK 8 oK o oK ok o ok ok K ok ok ok sk ok R ROR KR Kok ok sk ok sk Rk ok Rk ok
5 CE ACE ACDE
6 CEF ACEF ACDEF
7 CEG ACEG ACDEG

) T

MB 0 1 2 Mc 0 1 2 3
0 N2 to N1 B BE 0 |N2toNI CE CF CEF
sk ok ok ok 3k 3k ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok kR ok Rk kok sk 3k sk ok 3K K ok o o sk 3k ok 3k ok ok ok ok o ok ok ok ok ok ok 3 ok ok K oK oK K ok K ok K K
1 E 1 E
2 EF BEF 2 EF
3 EG BEG 3 EG CEG CEFG
Figure 13
Ma 0 1 2 3 4 5
0 NI to NO A AB AC AD ABC
Sk sk ke ok 3k ok ok sk sk ok ok 3 sk sk sk ok s s sk ok ok sk sk ok Sk ok ok sk ok sk ok 3k ok ok sk ok 3k ok ok sk sk sk ok Ok sk ok ok ok ok ok ok sk ok sk ok sk ok ok ok sk ok ok sk skok ok
1 B
2 BE ABE ABCE
3 BEF ABEF ABCEF
4 BEG ABEG ABCEG
3k sk ok o ok ok ok ok o ok ok ok sk sk oK ok 3k ok ok 3k 3 oK 3K 3k ok ok 3 ok 3k 3k ok ok ok ok ok ok 3 ok sk ok ok ok ok ok K 3K sk ok ok ok ok skok ok sk sk ok ok ok R ok koK Rk R
5 CE ACE
6 CEF ACEF
7 CEG ACEG

MB 0 1 2 M 0 1 2 3
0 N2 to N1 B BE 0 N2 1o N1 CE CF CEF
sk sk sk o ok o ok ok ok ok ok ok sk ok s sk sk sk sk sk sk sk sk ok ok kokok sk okokokok s 3k 3 ok ok sk sk ok ok ok ok ok sk ok ook sk ok ok sk Sk ko sk sk sk sk sk skosk kol R ok ke ke ke kok skokok ok
1 E 1 E
2 EF BEF 2 EF
3 EG BEG 3 EG CEG
Figure 14

134 ‘ Studies in Informatics and Control, Vol. 7, No. 2, June 1998

In M for example, line 5. column 1, ACE is in
iralics since this sequence is incompatible with
lines 1 through 4, column 0 of MA: each time
object type E is encountered. so is B, which
means that E cannot occur without B. In ACE, E
occurs without B, hence the incompatibility.

set, such that L is composed of the list of
regions associated with the root A of Gp.

The general algorithm propc & is composed of
two phases: P1 and P2. In the first phase, L is
computed. In the second phase. using L as a
basis, the single inheritance graph(s) equivalent

Ma 0 1 2 3 4 5
0 | NitoNO A AB AC AD ABC
ok ok ok ok oK 3 oK oK Sk o oK sk oK ok ok o s e o sk K ok sk ok sk o ok 3ok sk ok sk ok sk o ok ok ok ok ok ok ok oK R o K K oK R K ok ok 3 K ok 3 o ok 3R oK sk Rk
1 B
2 BE ABCE
3 BEF ABCEF
4 BEG ABCEG
Sk ok 3 sk sk 3 ok ok ok sk ok ok ok 3 ok o ok ok e ok ok sk ok ok ok ok o ok ok ok o e ok ok ok ok ok 3k sk sk ok ok ok K 3 oK 3K 3 3K 3 ok oK 3 3K 3K 3 oK oK oK ok K oK kR ok R K
5 CE
6 CEF
7 CEG
T)
MR 0 1 | 2 Mc 0 1 2 3
0 | N2toNI B | BE | 0 [N2woNI| CE CF CEF
kkkokkkkokkskskkokkckskkkskkkkckskkkkkkkkkkk kokkckkokkkokkkokkkskokokokskskokokkskok sk sk sk sk sk ok sk kR sk sk ok
I E 1 E
2 EF BEF 2 EF
3 EG BEG 2 EG CEG
Figure 15

Rule 2" this is rule 2 applied to line 0 of a given
matrix. The application of rule 2' yields those
presented in Figure 15.

In line 0 of Mc for example, CF is in italics
since this sequence is incompatible with lines 1
through 3. column 0 of M(: each time object
type F occurs, object type E occurs along with
it, which means that F cannot occur without E.
In CF, F occurs without E, hence the

incompatibility.

The final result of this process is L. the list of

regions A, AB. AB. ABCE. ABCEF and
ABCEG of matrix Ma_. This is the same list as
in the model shown in Figure 9. but obtained in
a different way.

4. Formal Approach

Let GH=(N, H, A) be a multiple inheritance

graph. Let L be the subset of the set (denoted
P*(N)) of the parts of N not including the empty

Studies in Informatics and Control, Vol. 7. No 2, June 1998

to the original multiple inheritance graph is (are)
computed. N is broken down into a number of
levels Ni with i=max to 0.

4.1 Phase 1 (P1)
Let N7 =1{n, e N, /T, (n,) % ¢}

;) -1 ol
with 1, el (n,) zj“[n!.l,;zl.lle H and
i=max—1 to 0. Therefore, N/ =Ny={A} it H#J.

Let L:Jf be the subset of the set (denoted
P(I','(n,))) of the parts of
f’,’;'(n”)\ (#n,) without the empty set, such
that Lf’f represents the list of regions associated
with njj. after the constraints of exclusion and of
totality have been satisfied (Figure 8) and
before the possible contradictions which may

appear when passing from one level to the next
have been taken into consideration (Figure 9).

135

Let L;{ be the subset of the set (denoted
P (n;))) of the parts of
l_";] (n,)(n,) without the empty set, such

that Lg,.f represents the list of regions associated

with njj, after having taken into consideration
the possible contradictions which may appear
when passing from one level to the next.

Therefore, LY =L. Here is P1:

Ior pceamax--1 5 0 Lstep !

Tae Nicompute \I‘
2
For j- 1L INVE L step
be
compute 1
i
ilf{il-b‘('
1 '

he
Fop Kol .ll,:; Lstep |

e | be

e :
fel Ilji: el

i -
Eop pa—1 87 anjtostep |
" H ™t I

~1
fetnp e ¥H (njj?
af
fer L
-
: al
r <1 !.‘fr‘l Cstep |
al L af
et e
Py P _
af b
theorehcal regiond—| Ul
*] 1K

theorenical region = x such that

| . Che
xe P s.iH ingiand e (e

e a ol ;
henl ,;ru Lt {theoretcal region
S

ind for
Lind for
End for
pante
I

Lior Keoe1 0 :l,?:i Cstep |
af al
iLlI::;_, [1.”
= I
For pa—1 ,:!’H ¥ ostep 1
tet [.?“
IeRules £anf 2y
;t'

af a
LY veduses 1,
-p 1k

Then n/.\t.)‘i';{.- B,\D;'J U i";fk;
End for
End for
lil ‘:I| RA[).,I[
i i

angd
Finid duy

4.2 Phase 2 (P2)

M shall be the number of single inheritance
graphs which are equivalent to the original
muttiple inheritance graph.

136

GH;, =N
inheritance graph equivalent to the original
multiple inheritance graph with m=1 to M.

_H ;H,A) shall represent a single

m?

N? shall be the set of candidate object types
for the ordering at iteration 1. The computation
of N/is immediate as long as the candidate

object types have not been chosen yet and
belong to the largest number of elements of L.

Note that [L|<2Nl. N ,:f' shall be the set of object

types chosen at iteration i with N ﬁf =,

Principle of independence at iteration i: nj

e N7.ng e N{, V1 e L, nj is independent of
ng if and only if'nj € 1 then nj ¢ 1.

Principle of dependence at iteration i: nj € N -

ng € Nf, let nj Dj ng (nj is dependent on nk
according to Dj) if and only if 31 € L such that
nj € 1 and ng € L. Dj is a relationship of

equivalence for NV f and breaks down N [.C into

equivalence classes called classes of
dependence at iteration i. In addition, let V' nj €

N{ with j=1 to | N[|, Djj={nk € N[/njDj
nkj. Let di be the number of classes of

dependence at iteration i; in other words, the
number of sets Djj mutually different. Here is

P2:

Me i
1<~ 1

;
While N, 28

Yne ,\‘-NH comipuie \:

<oty istep
[SEI LRI
eke Dy Lygslle Linge idund

|
I :\|—E‘]l':‘ N

dkilye i-"EE‘,:k Ly /e dyand e Iy
and Z e Ly e hand ¢ I
Lag me—1 o M Lstep |

Lop e Fillygosiep 1
fge Figy: i'mu;k:-n-,_,t)h [;{.:Lnd

NN GEUTE dapitiam
m 1y m ‘TL ilmd

B Gt R inelr it
Hye Hyy o Soaih il iy

fud fix
i fog

A ! 2
.’\ifru.\i“; ing}

[L8

ol i€

Studies in Informatics and Control, Vol. 7, No. 2, June 1998

The introduction of the relationship Pm, which
associates a set of substitution object types for
each equivalent single inheritance graph and for
each object type of N, can be illustrated by the
following example:

Let L be the list of regions computed after phase
1: A, AB. AC, AD, ABC, ABD. ACD and ABE.
Note that N;={C, D}, D31={C, D},

L311={AC, ABC, ACD}, F311={A, B},
L312={AD, ABD, ACD} and F312={A, B}.

It is thus substituted first at C, C1 and C2 such
that P(C) =Cl and P,(C) =C2 so that

]\('Y,;? & Ni;? o {Cl’ Cz} and
H, <« H v {C14],[C2B]}.
It 1s then substituted at D, DI, D2, D3 and D4

such that P, (D)=DI, P,(D)=D2, P,(D)=D3,
P, (D)=D4 so that ¥ « ~. u{Dl. D2, D3, D4} and

H, « H, U{D141,[D2B],[D3C1],[D4C2]}

3 Advantages and
Disadvantages of the Proposed
Technique

5.1 Disadvantages

There are two important problems posed by the
proposed technique and its associated algorithm.

.. iterahon | A .’_ iteraion 2 B _....,._

The first is the problem of generating a large
number of single inheritance graphs equivalent
to the original multiple inheritance graph. The
root of this problem is the chrice between
several candidate object types ir: o process of
ordering in phase 2 at iteration i. In the example
at paragraph 3.2, the choice between object
types C and E at iteration 3 poses precisely this
problem. There are two possible solutions, not
developed here. The first is to resolve the
problem interactively by questioning the
software engineer so as to be able to choose one
object type over another (this is the choice made
in [Barbier and Reich, 97]). The second solution
is to compute, a priori if possible, the number
of equivalent single inheritance graphs. If this is
a large number, inform the software engineer on
the intrinsic complexity of the original multiple
inheritance graph.

The second problem is the increase in the
number of object types of the original multiple
inheritance graph. At the end of phase 2, a
family of paths defines an equivalent single
inheritance graph. During phase 2, if there exists
q paths going from the object type chosen for
ordering through to the root of the graph, it is
necessary to introduce at least q object types in
an equivalent single inheritance graph in order
to replace the chosen object type of the original
multiple inheritance graph. This problem can be
illustrated as in Figure 16.

In the example shown in Figure 16, at iteration
3 of phase 2, there are the path from C to A
which is ([CA]) and the path from C to A which

teration 3 - C —————{f— feration 4 Dand E ——————— e iteration 5. F. G, Hand |

A A0 A—() A—() A—() A—0)
AB A—(B) A—B—() o= APl A—B—()
AC A—(C) A—()—(C) A—(—C—() A—()—C1—() A—(—Cl1—()
AD A—(D) A—()—(D) A—(—0—(D) A—(}—(—D—() A—{(—(—DI—()
ABC A—(BC) A—B—(C) Aoy AsBeu(ey A—B—C1—()
ABD A—(BD) A—B—(D) AR (Jst D) A—B—(—D—() SeBe il
ACF A—(CF) A—()}—(CF) A—()—C—F) A—(—Cl—(—(F) A—()—Cl—(—F-—()
AEH A—(EH) A—(—(EH) A—(—(—(EH) A—(p=()-=E=itD) A—(—O—El—H—()
ABCF A—(BCF) A—B—(CF) A—B—C—(F) A—B—C2—()}—F) AeBieiEr ()= Fiay
ABDG A—(BDG) A—B—(DG) A—B—()—(DG) A SR e W I T
ABEH A—(BEH) A—B—(EH) A—B—{(}—(EH) v Bl B Fl) A—B—()—E2—H—()
ABEI A—(BEI) A—B—(El) A—B—()—(El) A—B—()—E—{1) L
A—() A—() A—()
A—B—() A—B—() A—B—()
A—(—Ci—() A—(—C1—() A{)=Clg)
list of A—(—(—D) A—(—)—DI—() A—(—(—D1—()
regions increase in the i_Bi;Q%) A R
el A—B—()—(D) AP} D10} AscBeg)- 07
:‘0“?3“1"]“;‘5 mumberof ———m,_, R A—(—C1—(—(F) A—(—C1—O)—F1—()
object types A—(—(—(EH) A—(—(—E1—(H) A== -2k j==()
A—B-—C2—(F) A—~B—ET~}~(F) AcaBretleane b, ol
A—B—0—DG) A=B=(=D2-{0) A—B—()—D2—G—()
A—B—(}—EH) A—B—(—E2—(H) A—B-20—E2-13i-fy
A—B—()—(El) A—B—(—E2—(I) As-B{ybrei -5
Figure 16
Studies in Informatics and Control, Vol. 7, No. 2. June 1998 137

is ([CB]. [BA]). The object types C1 and CZ are
then introduced such that C1 — A and C2 -» B.
The final result of this process is the following
single inheritance graph:

\

D1

2\
\

Thus, the model shown in Figure 17 remains
easily usable, in spite of the increase in the
number of object types. In general, the increase
in the number of object types is acceptable

abstract

\ object type

El
El

T

E2 H1

\\

I Hz
Figure 17
The original multiple inheritance graph was the following:
A=Resource
(C=Machine D=Labor B=Flexible E=Inventory
resource resource resource /(3
i G=Flexible I=Fluctuation H=Common
F=Robot work force inventory inventory

How could one interpret the model shown in
Figure 177

o there are two types of "Robot” (F1 and
F2) because there are two types of
"Machine resource" (Cl and C2). The
first inherits directly from "Resource"
(A), the second from "Resource” (A)
via "Flexible resource" (B). Certain
robots are {flexible resources while
others are not: is this a true statement?
I the model shown in Figure 18 valid?

e all "Flexible work force" (G) are a
"Flexible resource" (B): is this a true
statement? Is the model shown in
Figure 18 valid?, etc.

Figure 18

within certain limits. In the above example, the
increase of 9 to 14 object types is acceptable
since the single inheritance graph can still be
understcod. However, there are certain
examples where the increase is inacceptable,
and these show that the original multiple
inheritance graph was quite complex. One
possible solution is to compute, once again «
priori if possible, the increase in the number of
object types. Here is an example of a multiple
inheritance graph which generates too large a
number of object types, when transformed into
an equivalent single inheritance graph (an
increase of 8 to 23 object types) as shown in
Figure 19.

Studies in Informatics and Control, Vol. 7, No. 2, June 1998

A=Article

~0
D

E=Article
from review

D=Article
from book

C=Article from
proceedings

B=Translation
of article

)

H=Translation of
article from review

G=Translation of
article from book
Figure 19

F=Translation of article
from proceedings

It is important to insist upon the fact that the
technique here proposed is not one for
implementation but for comprehension, and thus
verification, of a multiple inheritance graph. For
example, the model shown in Figure 17 is not
meant to be implemented as it is. However. in
the activity which follows analysis, the foremost
considerations are those of implementation.
This important aspect of the development
process shall be discussed in the next Section.

5.2 Advantages

The main advantage of the proposed technique
is the understanding of the model constructed.
In the activity which follows analysis, the main
question is to know, insofar as the model is
valid. if the multiple inheritance graph or an
equivalent single inheritance graph should be
used in order to initiate the design of the
software.

If the programming language does not employ
multiple inheritance, there is no choice. Here
are two pertinent examples:

Example |
In the OMT method, multiple inheritance is

advocated during the analysis activity
[Rumbaugh et al, 1991, p.65]. There a technique

Studies in Informatics and Control, Vol. 7. No. 2, June 1998

of the implementation of OMT models with the
help of relational databases is proposed
[Rumbaugh et al, 1991, p.373]. Unfortunately
(or voluntarily?), the implementation of multiple
inheritance graphs was not addressed, while that
of single inheritance graphs was: how should
one then handle multiple graphs?

How can one justify an object-oriented method
as an improvement over a traditional method if
it cannot respond to this important —even
fundamental— question? This criticism of OMT
could possibly be equally applicable to other
methods.

Example 2

Concerning the code generation function of the
tool presented in [Barbier and Reich, 1997], a
technique of implementation of the OMT
models with the help of Smalltalk-80 is
proposed. Since Smalltalk-80 does not employ
multiple inheritance, it was necessary to use the
verification technique presented in this article in
order to solve the problem.

In general. even if the development system
proposes the use of multiple inheritance, it is
still critical to address the possibility of
conflicts. Take the Eiffel object-oriented
programming language as an example: it
employs multiple inheritance, but leaves the
resolution of conflicts up to the initiative of the
software engineer. Within the realm of
industrial development which has come to mean

139

essentiallv the automatic construction of
software through the use of a software
engineering tool, the technique herein proposed
is a sure guide to defining strategies of
implementation.

6. Conclusion

Inheritance appears to be a major asset in the
software industry, whether one's priorities be
with respect to conceptualization or with respect
to implementation. However, concerning
conceptualization priorities, the haphazard
manner in which certain object-oriented
methods employ inheritance, and in particular
multiple inheritance, is incompatible with the
systematic verification of object-oriented
models needed by software engineers when
using object-oriented software engineering
tools.

Solving the problem of object-oriented model
verification especially stumbles over the
absence of a commonly accepted rich
inheritance semantics. In this sense, the choice
made in this article can contribute to methods
interoperability, but it introduces a non
sufficiently rich inheritance semantics. OMG
results on methods interoperability are not
available yet, while this does not prevent
methods diffusion, this decreases methods
credibility because tools cannot be powerful. A
recent French study about users of object-
oriented methods and tools tends to prove that
software quality, in particular reusability and
maintainability, is practically difficult to
improve with the help of object-oriented
methods and/or tools.

A current trend is to create formal object-
oriented methods with efficient associated tools.
As for these methods, this tends te complicate
the definition of methods interoperability. As
for these tools, this tends to strongly couple
together application developments with a given
tool, and consequently with a given method.
Whereas a method must basically ensure
programming languages-independent software
developments, such an approach generates other
problems because it becomes difficult to switch
easily from one method notation to another.

140

ANNEX

"instances of class 'Regions'
embody areas depicted in Figure
8. This class implements the
'refuses:' method"

refuses: aRegion
| refuses
aSubSetOfEachRegionsAfter
aDictionary |
refuses := false.
aRegion
detect:
[:eachRegionltenm |
aSubSetOfEachRegionsAfter
:= Set new.
self do:
[:eachRegionsAfterl |
(eachRegionsAfterl includes:
eachRegionItem)
1fTrue:
[aSubSetOfEachRegionsAfter add:
eachRegionsAfterl]].
aDictionary := Dictionary
new.
aSubSetOfEachRegionsAfter
do: f[:eachRegionsAfter2 |
eachRegionsAfterZ do:

[:eachRegionsAfter2Item |

eachRegionsAfterZ2litem =
eachRegionItem
1T e
[eachRegionsAfter? size =1
ifTrue: [aDictionary at:
eachRegionsAfter2Item put: 1]]
ifFalse:
{ (aDictionary includesKey:
eachRegionsAfter2Item)
ifTrue:
{aDictionary at:
eachRegionsAfter2Item put:

(aDicticnary at:
csachRegionsAfterZIlitem) + 1}
ifFalse:
[aDictionary at:
eachRegionsAfter2Item put:
11117,
aDictionary isEmpty
ifFalse: [aDictionary keys
detect: [:eachKey | aRegion
includes: eachKey]
1fNone: [refuses :=
true]].)
refuses | aDictionary
isEmpty ifFalse: [aDictionary
keys detect: [:eachKey |
refuses
:= (aRegion includes: eachKey)
not and:

[(aDictionary at: eachKey) =
aSubSetOfFachRegionsAfter size]]

Studies in Informatics and Control, Vol. 7, No. 2, June 1998

ifNone: []].
refuses]
ifNone: [1.
“refuses! !

REFERENCES

AGOPIAN, L., Specification of Specialization
Constraints with Venn Diagrams and
Textual Language, INFORSID '92
Proceedings, Clermont-Ferrand, France, 1992,
pp.265-284.

ANDRE, P., BARBIER. F. and ROYER. J.-C.,
An Experimentation of Object-oricnted
Formal Development, C OMPUTER SCIENCE
AND TECHNIQUE. HERMES EDITIONS,
Voi. 14, 8, 1995,

ATZENI, P. and PARKER, D.S.. Formal

Properties of Net-based Knowledge
Representation Schemes, DATA &
KNOWLEDGE ENGINEERING, 3,

ELSEVIER SCIENCE PUBLISHERS, North-
Holland, 1988, pp.137-147.

BARBIER, F., Object-oriented Analysis of
Systems Through Their Dynamical Aspects,
JOURNAL OF OBJECT-ORIENTED
PROGRAMMING, SIGS Publications, Vol. 3,
2, 1992,

BARBIER, F. and REICH, G.-P., Intelligent
Software Factory/Analysis and Design,
ISF/AD USER'S GUIDE, Version 1.0 - 2.6,
1993 - 1997.

BLUMOFE, R. and HECHT. A.. Executing
Real-time Structured Analysis Specifications,
SOFTWARE ENGINEERING NOTES. Vol
13,3, ACM. 1988.

BOURDEAU, R. and CHENG, B., A Formal
Semantics of Object Model Diagrams, IEEE
TRANSACTIONS ON SOFTWARE
ENGINEERING. Vol. 21, 10, 1995.

COAD, P. and YOURDON, E., O0A —
Object-Oriented Analysis, YOURDON
PRESS, 2nd Edition, 1991,

COAD, P. and YOURDON. E. OOD —
Object-Oriented Design, YOURDON PRESS.
1991,

COOK, S. and DANIELS, 1., Designing Object
Systems, Object-oriented Modelling with
Syntropy, PRENTICE HALL. the Object-
oriented Series. 1994,

Studies in Informatics and Control, Vol 7, No. 2, June 1998

DANFORTH, S. and TOMLINSON, C., Type
Theories and Object-oriented Programming,

ACM COMPUTING SURVEYS, Vol. 20, 1,
1988, pp.29-72.

DAVIS, A., A Comparison of Techniques for
the Specification of External System
Behavior, COMMUNICATIONS OF THE
ACM, Vol. 31, 9, 1988.

DEMICHIEL, L.G., Overview: the Common
Lisp Object System, LISP AND SYMBOLIC
COMPUTATION, 1, 1988, pp.227-244.

DOD-STD-2167A, Military Standard for
Defense System Software Development, ref,
AMSC No. N4327, Department of Defense,
Washington, D.C.,1988.

DORI, D. and TATCHER, E., Embryonic
Classes: Enabling Selective Multiple
Inheritance, JOURNAL OF OBJECT-
ORIENTED PROGRAMMING, SIGS
Publications, 1994, pp.36-40.

DUCOURNAU, R. and HABIB, M.. The
Inheritance Multiplicity in Object-oriented
Languages, COMPUTER SCIENCE AND
TECHNIQUE, HERMES EDITIONS, Vol. 8,
1, 1989.

DUCOURNAU. R. HABIB. M. , HUCHARD,
M.. MUGNIER. M.-L. and NAPOLI, A., Latest
Results Concerning Multiple Inheritance,
COMPUTER SCIENCE AND TECHNIQUE,
HERMES EDITIONS . Vol. 14, 3, 1995.

GOLDBERG, A. and ROBSON, D., Smalltalk-
80, the Language and Its Implementation,
ADDISON-WESLEY, 1983.

HABRIAS, H., The Binary Relational Model,
IA Methed (NIAM), EYROLLES EDITIONS,
1988.

HAREL, D. and GERY, Executable Object
Modeling with Statecharts, IEEE
COMPUTER, 1997.

HUTT. A., Object Analysis and Design,
Description of Methods. JOHN WILEY &
SONS. OMG, 1994,

HUTT. A., Object Analysis and Design,
Comparison of Methods, JOHN WILEY &
SONS , OMG, 1994,

JACOBSON, 1., CHRISTERSON, M.,
JONSSON, P. and OVERGAARD, G., Object-
oriented Software Engineering, ADDISON-
WESLEY, ACM Press, 1992.

LALONDE, W. and PUGH, J., Subclassing #
Subtyping # is-a, JOURNAL OF OBJECT-
ORIENTED PROGRAMMING, SIGS
Publications, 1991, pp.57-62.

LIEBERHERR, K., Adaptative Object-
oriented Software, the Demeter Method with
Propagation Patterns, PWS . 1996.

MEYER, B., Eiffel, the Language, PRENTICE
HALL, the Object-oriented Series, 1992,

MEYER, B., An Object-oriented
Environment, Principles and Application,
PRENTICE HALL, the Object-oriented Series,
1994.

142

RUMBAUGH, I, BLAHA, M.,
PREMERLANI, W.. EDDY., F. and
LORENSEN, W., Object-oriented Modeling
and Design, PRENTICE HALL, 1991.

SELIC, B., GULLEKSON, G. and WARD, P,
Real-time Object-oriented Modeling, JOHN
WILEY & SONS, 1994,

SHLAER, S. and MELLOR, S.I., Object-
oriented Systems Analysis, Modeling the
World in Data, YOURDON PRESS, 1988.

SHLAER, S. and MELLOR, S.J.. Object
Lifecycles, Modeling the World in States,
YOURDON PRESS, 1992,

TAIVALSAARI, A., On the Notion of
Inheritance, ACM COMPUTING SURVEYS,
Vol. 28, 3, 1996.

Studies in Informatics and Control, Vol 7, No. 2, June 1998

