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Abstract: This paper presents a new method for optimizing
both the shape and the internal parameters of fuzzy
membership functions. Given a specific shape of
membership  functions, the corresponding  internal
parameters are optimized by a genetic algorithm. The
overall optimization of membership functions is done using
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algorithms each running n its own parameters space. At
each step, this learning automaton permits to randomly
select the next parameters space according to the behavior
evaluation of the current genetic algorithm.
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1. Introduction

A large number of contributions has recently
been devoted to modeling nonlinear systems
using Fuzzy Logic Controllers (FLCs).
Theoretically. FLCs have been proved to be
universal approximators under very weak
assumptions, i.e. they are capable of
approximating any real continuous function on a
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compact set to arbitrary accuracy [Wan 92a]
[Cas 95]. In practice, many industrial problems
have been successfully solved using FLCs.

A FLC has the characteristic of representing
human knowledge or experiences as fuzzy rules.
However, in most of the existing FLCs, shapes
and internal parameters of membership
functions and fuzzy rules are determined and
runed through trial and error by operators.
Therefore, it is necessary to design FLCs so that
these elements can be optimized [Shi 95]. Some
self-tuning methods have been proposed to
solve this problem using neural networks, the
backpropagation algorithm, genetic algorithms,
etc. However, these methods often suppose that
the number and shapes of membership functions
are defined a priori. Then, the extracted fuzzy
rules and fuzzy partitions in the input space and
the output space are not globally optimal due to
these constraints.

In this paper, we present a new method for self-
tuning together the shape and internal
parameters of membership functions. This fuzzy
model is designed in order to approximate a
multi-inputs/single output continuous function
where the relationship between input variables
and output variable is unknown. Our paper is
organized as follows.

First, we present a procedure given in [Abe 95]
for extracting fuzzy rules directly from the
numerical data of the knowledge base. In this
procedure, the universe of the output is divided
into a number of intervals. By putting these data
into different classes according to the output
intervals, we define two kinds of regions in the
input space: activation hyperboxes and
inhibition hyperboxes. For a given class of input
data, an activation hyperbox contains all data
belonging to this class and an inhibition
hyperbox inhibits the existence of data for this
class. Inhibition hyperboxes can be located by
finding overlaps between neighboring activation
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hyperboxes. In these located inlubition
hyperboxes can be defined new activation and
inhibition hyperboxes for the next level. This
procedure is repeated until overlaps are solved.

In this paper, the input variables are assumed to
be non-redundant, i.e. the total number of fuzzy
rules for a given number of classes decreases
when an input variable is deleted. Thus. the
fuzzy rules are defined by activation and
inhibition hyperboxes. By selecting a proper
Gaussian or trapezoidal function as membership
function, we calculate the output value using
Sugeno's defuzzification method.

By comparison with other methods of fuzzy
rules extraction which assume that the space of
input variables is partitioned into a number of
fixed regions [Ton 80], [Wan 92b], this
procedure permits to obtain more accurate fuzzy
partition and fuzzy rules and it has a potential
applicability to problems having a high-
dimensional input space.

The second part of this paper deals with the
optimization problem of parameters of the fuzzy
model. The shapes and the parameters of
membership  functions can be optimized
together using a learning automaton coupled
with two geneiic algorithms. The learning
automaton is a stochastic approach permitting to
alternate between different parameters spaces
each corresponding to a genetic algorithm. The
parameiers optimization problem is solved
using genetic algorithms because our searching
space is complex and there exist many local
minima. Unlike conventional search methods,
genetic algorithms deal with multple solutions
simultaneously and provide global near-optimal
solutions for various complex optimization
problems.

At the end of this paper, several simulation
results are given in order to show the
effectiveness of the proposed methed. This
method is applied in approximating several
sample functions, each of them dealing with
mulri-input variables and a strongly non-linear
relationship betwzen the input space and the
output space.

2. Extraction of Fuzzy Rules
From Data

The procedure of tuzzy rules extraction [Abe
95] is briefly presented below. The fuzzy model
is considered as an universal approximator for
any continuous function which has an one-
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dimensional output y and an n-dimensional
input vector X. First we partition the universe of
discourse y into m intervals as follows:

Ci=lye. v1]: Yosysy:
Co=(y1, Y21 y1<y<y2
Co=(Ym1, :V'm-j: Yu1<Y<Vn

Let a set of input data for the output interval C;
be X, where i=1, .., m. First, using X,, an
activation hyperbox of level 1, denoted as
A1), is defined as follows:

A(D={X | viid 1) < x £ Vi D}

where x;: the k-th element of input vector X
v;i(1): the minimum value of x, of XeX; and
Vi(1): the maximum value of x, of XeX,.

If there is no overlap between activation
hyperboxes A;i(1) and A;(1) (j#i, j=1, .... m}), we
obtain a fuzzy rule of level 1 for the output
interval 1 as follows:

(1) If X is Ay(1) theny is C.

If there are some overlaps, we resolve them
recursively, If an overlap exists between the
activation hyperboxes A,(1) and Aj(l), we
define the overlapped region as the inhibition
hyperbox of level 1 denoted by I;;(1):

Li(1) = Ay(DnA()

Denoting w(1) and Wi (1) the lower and the
upper bounds of Ijj on the axis x,, we have
Vi Dswid DEW( DVl 1),

Then we define a fuzzy rule of level 1 with
inhibition by

ri(1): X is Ay(1) and X is not L(1), then y is
G

If some data belonging to X, exist in Ij(1), the
activation hyperbox of level 2 Aj(2) is defined
within I;(1). This procedure is repeated until all
overlaps are resolved. At level ] (22), the fuzzy
rule corresponding to A;(/) without inhibition is

(0 I X is Aj(D), then y is C,.

The membership degree of the fuzzy rule ry(/)
can be calculated by
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dr,,(f]{X) = .U,Lf(:)(X)

The fuzzy rule corresponding to Ay(7) with
inhibition is

(1) If X is Ay(/) and X is not L;(/), then y is C,.

The corresponding fuzzy rule 1(/) can be
calculated by

d, (X)=max(0,u A._,(r)(X) —#, (X))
where [{ A (D) (X) and /llu(f) (X) are the

membership degrees of the =ctivation hyperbox
Ai(]) and the inhibition hyperbox [;(/) defined
below.

The procedure of fuzzy rules extraction is
illustrated schematically in Figure 1.

A 1—,—(.1)

Level /=2

) e

Ay(3) —p

Level /[ =3

[H—A(3)

Figure 1. Recursive Definition of Activation and Inhibition Hyperboxes

The membership degree of each input vector X
with respect to a hyperbox Z (Ay(/) or I;(7)) is
defined by

0= gl:in{ﬂ 7 (X ey )}

WAX, 7o) 1s the membership degree for each
element of X: x,. It is defined as a function of
three parameters: u,, U, and v, The interval

1

[ug, U] is the projection of the hyperbox Z on
the axis x, and vy, is a sensitivity parameter,

In this paper, the membership degree for each
input variable adopts one of the two shapes: 1)
symmetric trapezoidal shape; 2) Gaussian
shape. The trapezoidal membership function
(see Figure 2) is defined as follows.

X € [“kaUk]

M (xy) =1 -max(0, min(L, ¥ , (u, -x,))) X, <u,

1= max(0,min(l, y, (x, -U,)))
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Figure 2. Trapezoidal Membership Function for pz(xy, vi)

The Gaussian membership function (Figure 3) is defined as follows.

2
] (Xk - centerkj
nuz(xk,}/k):e)(p _3__ 5
Z y .
u, +U
-k Tk
Genterk = 5
with y,#0 for any ke {1. 2, ... n}
membership degree
1
+U,
center, = o + Uy
2
e’ Y« ) va Y
0 "
U center, 19

Figure 3. Gaussian Membership Function for pz(xy, )
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The final membership degree of X with respect
to a set of fuzzy rules {r;(/) | /=1, ...} denoted as

dr”([) (X) is given by

d, (X)= /I-]:l?,).{..(#r"f”) (X))

The membership degree of X with respect to the

output interval C; denoted by di(X) is given by

dc0o= . min (d, (X))
JELj=luan Y

Al'i (l)f\ A}] (1)iq)

By assuming that y obeys a pre-defined
membership function in each output interval C,,
the defuzzification procedure permits to

calculate the approximative output } as
follows.

2.4 (X)-m; o,

~ — =1

2. 0;-d;(X)
i=1

p—
=

where m; and o; are the mean and the variance
of the membership degree corresponding to C,.

The main elements affecting the precision of )7
include the shapes of membership functions of
tz(xg, v for all x; and the corresponding
parameters uy, Uy and y, These parameters
constitute a very complex high dimensional
function of the approximative output)}. The

optimization of these parameters as well as the
decomposition of this complex fuzzy model
have been done using genetic algorithms.

3. Genetic Algorithms

Genetic algorithms have shown increasing
interest in engineering applications since the
publication of Holland's paper in 1975 [Hol
75]. Genetic algorithms are designed to find a
global maximum of a function of many
variables by performing a particular kind of
genetic-inclined search in the space of these
variables. This form of search is especially
interesting when solving complex optimization
tasks, including the structure and parameters
optimization problem [Ped 96]. The main
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principle of a genetic algorithm is described as
follows.

It begins with an initial set (also called
population) of randomly generated potential
solutions to an optimization problem. The value
of a fitness function is evaluated for each
solution, and the “best” solutions are selected
for survival according to the selection
probabilities. For each solution, the selection
probability is defined as a function of its fitness
value. Then. the genetic algorithm manipulates
these selected solutions in its search for better
solutions. Each solution is encoded into a binary
string, so that new encoded solutions can be
generated through the exchange of information
among surviving solutions (crossovers) as well
as sporadic alternations in the bit string
encodings of the solutions (mutations).

According to [Mic 94], the power of genetic
algorithms is in their capacity of simultaneously
exploring several regions in the space of
potential solutions. They can be run without a
learning base. During the running of a genetic
algorithm, the search concentrates progressively
on the regions where the optimum is located in.

Typically, a genetic algorithm is characterized
by the following components [Mic 94]:

1) a string representation for the feasible
solutions to the optimization problem,

2) a population of encoded solutions,

3) a fitness function that evaluates each
solution,

4) genetic operators that generate a new
population from the existing population.

In this paper, genetic algorithms are applied for
solving the parameters optimization problem in
a fuzzy model where fuzzy rules and fuzzy
partitions have been obtained according to the
method presented in Section 2. Our objective is
to find the best shapes and the most appropriate
parameters of the membership functions so that
the total error between the outputs of fuzzy
models and desired outputs derived from the
learning data is minimized.

4. Optimization of Membership
Functions

In our paper the membership functions are
limited to symmetric trapezoidal shape and
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Gaussian shape. A space of internal parameters
(Ui, uy, v defined in Section 2 is associated
with each shape. In order to obtain the overall
optimum of membership functions, we have to
consider both parameiers optimization and
shape optimization. One efficient way to do so
is the application of two genetic algorithms
together each running in one parameters space
for its optimization. In this case, it is necessary
to define an adaptive mechanism to alternate
between these two parameters spaces according
to the environment or the reward/penalty signal

i

Environment

emitted from the running of the current genetic
algorithm.

In this paper we use a learning automaton
coupled with two genetic algorithms to realize
this functicn. A learning automaton is a
stochastic automaton in feedback connection
with a random environment [Nar 74]. [Nar 89].
The output of the automaton (actions) is the
input to the environment and the output of the
environment (responses) is the input to the
automation

\

Reward/Penalty

Signal Generator

Learning Automation

'y

Figure 4. Learning Automaton and Its Environment

[n general, a learning automaton (Figure 4) is
defined by (A, Q, R, T) and the environment by
(A, R, D), where

A={0, Uy ey o} is the set of all actions of

the automaton. The action of the automaton at
period k is denoted by a(k) and c(k)eA for
k=0, 1, 2, ...... . Bvidently. A is the set of outputs
of the automaton and it is also the set of inputs
to the environment.

R is the domain of responses from the
environment. Let Bk denote the
response/penalty  signal received by the
automnaton at period k where B(k)eR, Vk. B(k)
is the output of the environment at period k and
it is also the input to the automaton.

D={d;, ds ..., d,} is the set of reward
probabilities, where

dik)=E[Bk) | ak)=a]

If the d's are independent of k, the environment
is called stationary. Otherwise, it s
nonstationary. The reward probabilities are

unknowrn to the automaton.

(0 1s the state of the automaton detined by
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Qk)=[ Px). D(K) |

where P(K)=[p (k). ......, p(k)}]
(K, we have 0<pi<l, Z pk)=1)

is the action probability vector and

D(k) = '[c?‘(k), ....... d (k)

is the wvector of estimates of the reward
probabilities at the k-th period.

T is the learning algorithm or the reinforcement
scheme which is used by the automaton in erder
to update its state. At period k we get from T

Q(k+1)=T(Q(k), a(k), p(k))

During the running of algorithm T, the
automaton randomly selects an action of(k) from
the set of actions A at each period k. The
selection of actions depends on their current
action probability vector P(k). The selected
action a(k) becomes input to the environment
and the environment gives to the input of the
automaton a random response [(k) whose
expected wvalue is d if a(k)=o;. Next, the
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automaton caiculates  Q(k+1) using the
reinforcement scheme T.

The previous procedure is repeated until the
optimal action on the environment is found. In
this case, we have

d,= max{dj% where o, is the optimal
J ’

action.

The action «,, has the maximum probability of
being rewarded. [t is desired that the action
probability correspending to , (i.e. p,) tends
to unity as the time k goes to infinity.

For simplicity of notations, we do noi
distinguish between the reward probabilities and
their estimates in the tollowing discussion.

In our optimization procedure, two shapes of
membership function are available. So, the
learning automaton is designed to have the
following two actions (1=2): o,=symmetric
trapezoidal membership function, a,=Gaussian
membership function. Each action is associated
with one genetic algorithm for optimizing its
corresponding  parameters  of  membership
functions (u,, Uy, y.). At each period k. the
genetic algorithm runs independently in its
parameters space for five generations.

The behavior of each genetic algorithm can be
evaluated from the total error of the learning

N

| Q. e :
input/output data E= —\—,Zf)‘ - ;‘ (N is the
N o=

total number of learning data). The error E is a
function of the parameters (uy, Uy  7i)
{k=1, ..., m) corresponding to the current genetic
. o .
algorithm because the value of each Y, is
calculated from the fuzzy model associated with
the specitic fuzzy parameters. In each genetic
algorithm, E is taken as fitness function and the
encoding scheme is given as follows.

1) For trapezoidal membership functions:

For a given input variable x, (ke{l. ..., n}) and
a given output interval C,. the parameters Uy, uy
are rewritten by

Ukzvnk(f)"rsk(vu!\u)-vuk(”) ﬂnd
VDA QU Va(D-vi (D)) for  the  activation
hyperbox A;; when /=1 and

U=V s VipdD-vid) and

u=VO+HqU VD-vi(D)  for the  activation
hyperbox A, when /1.
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U= W (s (Wi D-win7) and
u=Wind D+qd Wi D-wi()) for the inhibition
hyperbox [j;.

where s,, q; are real numbers varying between -
0.1 and 0.1, which adjust the upper bound and
the lower bound on the axis x, of the
corresponding hyperbox.

For simplicity, we adopt the same values of s;'s
and q's for different levels of hyperboxes and
different output intervals.

The parameter vy is rewritten by

n=tan(oy) where o is associated with the input
variable x, and varies between n/4 and m/2,
which adjusts the slope of the corresponding
membership function.

Equally partitioning the universe of discourse
of each a, into 16 subintervals and that of each
parameter of the sy's and the qy's into 4 sub-
intervals, we encode these parameters into 4 bits
and 2 bits respectively. Then, we obtain 8n bits
for each solution of the searching space.

2) For Gaussian membership functions:

Uy and uy are calculated from Ug=center,+y, and
U =center,-vy,

centery is the center of the corresponding
hyperbox on the axis x; with

center,=(Viu )tvip D) 2+si Vi H-viji(D)  for
the activation hyperbox A;; at level / (i=j when
=1 and i when =1) or
center,=( Wi D wiin( D) 2+s( Wi D-wiun(D)  for
the inhibition hyperbox 1;; at level L.

5y is a real number varying between -0.1 and
0.1, which adjusts the center's position of the
corresponding membership function.

v varies between 0 and its maximal value v,

which adjusts the variance of the membership
function.

Equally partitioning the universe of discourse
of each s, into 4 subintervals and that of each y,
into 16 subintervals, we encode them into 2 bits
and 4 bits respectively. Then, we obtain 6n bits
for each solution of the searching space.

The optimization of membership functions leads
us to search for the overall optimal solution for
both of the parameters spaces. The learmning
automaton is used to alternate dynamically
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Figure 5. General Scheme of the

5. Simulation Results

In order to show the effectiveness of the
proposed method, we apply it for approximating
two multi-input nonlinear functions.
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Optimization of Membership Functions

Example 1: approximation of the function
1

v= = (4xy XXX tXs) with x4, ..., x50, 1]

In this example, we take uniformly 5 samples
for each input variable. Then, we obtain
5°=3125 input/output data from this function for



building the learning base €2, 1e Q {X:, v |
i=1, ..., 3125} where X, is the i" input vector
and y, the output value corresponding to X;. The
interval of the output variable y [0, 0.5] is
equally partitioned into 8 classes as follows.
C,=[0, 0.0625], C,=]0.0625, 0.125], C5=]0.125,
0.1875], C,=]0.1875, 0.25],

Cs=10.25, 0.3125], C=]0.3125, 0.375],
C7=10.375, 0.4375], Cs=]0.4375, 0.5].

The uniform partition of y leads to defining for
each output interval C; the mean value m; and
the variance o, in an uniform way:

mF% (C ;nin + Cimax ) ;
1

U‘ZE(C?’“ -cpn)

where C?lm and anax
bounds of C, respectively.

are lower and upper

The criterion of optimization E is calculated by

= 21y,
B 3 ¥ =%
3125 =17
In genetic algorithms, the parameters are
selected as follows:

e the crossover probability p=0.25;

e the mutation probability p,,=0.01;

e  population size =20
Running genetic algorithms leads to the
following results. Fig-6 shows the evolution of
reward probabilities varying with time. After
the learning automaton has run for 120 periods,
the probability correspending to the trapezoidal
shape is higher than 0.9 and tends towards 1.
So, it is finally taken as the optimal shape of a
membership function.

0.9 threshold

0,88
g
£ 086
'.g = (aussian shape
e 0,84 ¢ — Trapezoidal shape
=
= 0,82
1
=
Z o0s

0,78

0,76

=} = = < = (=4 >
Number of periods

Figure 6. Evolution of Reward Probabilities for Example 1

Having run the learning automaton for
optimizing the shape and the internal parameters
of membership functions, we calculate the
averaged error E between the optimized fuzzy
model and the original function. We obtain:
E=0.0032117.
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Example 2: approximation of the function
Uy x, + +2si (” ]
ﬁ— XX X, X S| — X
Y 1*2 7 3% 375
with x,, ..., xs€[0, 1].
In this example, we also take 3125 input/output

learning data from the function. The simulation
results are shown as follows.
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Figure 7. Evolution of Reward Probabilities for Example 2

As in Example 1, the trapezoidal shape is the
best shape of membership functions. After the
optimization, we obtain the averaged error as
follows: E=0,003862. We can see from these
two examples that the optimized fuzzy model
provides us with the results very close to those
of the original functions. So, the effectiveness
of the proposed method is verified.

6. Conclusion

As many existing works did, the optimization of
membership functions of our fuzzy model was
solved by genetic algorithms, which are
considered as very efficient methods dealing
with  complex  optimization  problems.
According to our experience, the behavior of
genetic algorithms is strongly related to the size
of the searching space. It is not necessary to
apply genetic algorithms if the number of
solutions is too small and meanwhile it is
difficult to obtain sclutions close to the
optimum if the searching space is too large or
the continuity of the searching space is not
taken into account by the encoding scheme of
chromosomes. This constraint leads to
decomposing big size complex optimization
problems into several smaller subproblems and
to designing a mechanism such as learning
automata which alternates between the
corresponding subspaces in order to find the
global optimum.
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