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into account the nonlinearity of the objective func-
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as some other properties are proved. Computa-
tional results are provided for a number of linear
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1 Introduction

Since the publication of the article of Karmarkar
[1984] an impressive number of papers has been
written towards the convergence study of differ-
ent variants of interior- point methods, and the
implementation of the corresponding algorithms
for solving the linear programming problem.

All these methods could be classified into
three main categories:  projective-scaling
methods. affine-scaling methods and path-
following methods. Projective scaling meth-
ods have been proposed by Karmarkar [1984]
and studied by numerous researchers for the last
decade.  Affine scaling was originally consid-
eved by Dikin [1967] and further developed in
two directions: the range-space and the null-
space affine-scaling methods. Barnes [1986] and
Vanderbei, Meketon and Freedman [1986] pro-
posed a range-space version of the affine-scaling
method in primal form. Adler, Karmarkar,
Resende and Veiga [1986] proposed an affine-
scaling method in dual form. Nazareth [1987]
and Kim and Nazareth [1994] proposed and
studied a null-space version of the affine-scaling
method in primal form and tested its perfor-
mance on a number of small relatively dense
problems from the NETLIB collection [Gay,
1988]. A very important and significant advan-
tage of the null-space version over the range-
space version of the affine-scaling algorithms is
that that the descent direction can be computed
by an iterative method. i.e. it does not have to
be comuputed exactly as the case 1s also with the
projective-scaling methods.

The path-following algorithms start with the
paper of Sonnevend [1985], who introduced the
concepl of the analytic center of a polytope
as the unique point that minimizes the barrier
function associated with that polytope. The an-
alytic centers of all the constant-cost slices of
the feasible set of the polytope determine the
so- called central path. This path is a re-
gion with very attractive primal-dual properties,
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and has been a key concept in the development
of the path-following algorithins for linear pro-
pramming. Karmarkar's algorithm and its vari-
ants were the first to implement the idea of stay-
ing near the central path leading to a polynomial
complexity of Q(n??L) operations, lower than
Khachian's which was of O(n*L). (L is the to-
tal number of bits used in the description of the
problemn data.) Renegar [1988] followed the idea
of staying near the central path and obtained the
first real path-following algorithnn with a com-
plexity O(y/n L) lower than that of Karmarkar's
method O(nl)in terms of number of iterations.
Later. Vaidya [1990] and Conzaga [1991]. [ollow-
ing a penalty lunction approach. described algo-
rithms with a complexity of O(n®L) operations,

v limit that s still standing. Simultaneously,
I\u_]nna. Mizuno and Yoshise [1989a. 1986h].
Monteiro and Adler [1959). Ye [1991], Frennd
[1991] and Gonzaga [1990. 1991, 1992] developed
pritnal-dual path-following algorithms.

Recently,  Lustig.  Marsten  and  Shanno
[1991,1992,1994]. and Carpenter. Lustig, Mul-
vey and Shanno [1993] introduced a remar-
cable higher-order primal-dual and predictor-
corvector logarithmic barrier methods for lin-
ear programming. They developed the theory
of these methods and implemented the corre-
sponding algorithims e soine professional pack-
ages for linear programming (OB1 and ()H\)
and tested theiv performances on the NETL
collection.

Some  other efficient LP
interior- point methods have been developed.

codes based on
Almost all of them are based on primal-dual
or predictor-corrector algorithms, and they dif-
fer in many implementational aspects which ave
very nmiportant Lo cousider.  We can mention
here the public domain research codes developed
by

Vanderbei - LoQo. written o (' which is an
implementation of the predictor-corrector and
primal-dual algorithms for LP and QP. being
availlahble fron:
http://www.sor princeton.edu/ rvdb/:

Zhang - LIPSOL, written in MATLAB and
FORTRAN. also an unplementation ol the
predictor-corrector method, available from:
http://pedmathannbe.edu/ vahang/:

Giondzio - HOPDM, written in FORTRAN.
which 1s an implementation of the higher- order
primal-dual algorithm, avaiable from:
http://ecolu-infounige.ch/ logilab /software/:

Meszaros - BPMPD, written in FORTRAN.
which is another implementation of the higher-
order primal-dual algorithm, available from:
[tp://ftp.sztakihu/pub/oplab/SOFTWARE
/BPMPD.
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Being motivated by the performances of these
intertor- point path-following algorithms some
notably Kortanck, Potra and Ye
[1991]. Gold{farh, Liu and Wang [1991]. Wright
[1992]. and El-Bakry, Tapia, Tsuchiya and
Zhang {1996] have extended these miethods and

researchers.

algorithms to the nonlinear problems. In this
paper we shall present an extension of the
predictor-corrector approach to the linear optli-

mization problems with convex. vonlnear ob-

jective Tunctions.

2 Predictor-Corrector
Interior-Point Algorithms

The problem we are concerned with is:

man f ()
subject to: (2.1)
'li = b
0<e <u,
R" — R is a real. convex and at

two-differential function. 4 &
R and some or all of the upper bounds v nay

where f(ur) :

least continuously.

be infinite.

In fact we can consider the problem in the

following lori:

min f{.)

subject to: (2.2)
Ar =0,

r4+s=u,

r>0,8 210,

stack  vari-

where s & K7 is the vector of

ables, The predictor- corrector interior-point al-
gorithm is motivated by applying the logarith-
mic bareier function te eliminate the
ity constraints in {2.2).
done by incorporating them into the logarithmic

mequal-
This elimination can be

barrier function. thus obtaining:

mn f{r) — ,H} j_| I }_4 5

subject to: {2.3)

Ar=b,

£ s = .

The Lagrangean function of (2.3} is

L{r, sy ow. p)=

H Z;"‘: 1

fla) 71:2 _yInxj—

s —y"(Ax = b))+ w’ (2 4+ 5 —u).
J
(2.4)
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The first-order necessary optimality condi-
tions for a stationary point of (2.4) are:

Ar =0,
£ s =,
T = ATy — 4w =0, (2.5)
XNZe = je,
SV = e,

where XN. 205 and 1V are diagonal mairices with
lhv elements ;2055 and w; respectively, and
€ R 18 a vector of the dual slack variahles.

ﬂu;- above optimahty conditions express (he
primal and dual adnssibility as well as the com-
plementarity conditions: r;z; = p and sj0; =
je gz I,

The idea of all interior- point algorithms is
to solve the optimality conditions (2.5) by gen-
erating a «‘miuuncv ol strictly [easible solutions

T
{lo sy } that converges Lo an optimal fea-

1
J
f -
"

v
sihle pair {[a
such algorithms is to '.I]I\-P the duality gap to
zero. This is voplemented by solving the op-
timality conditions by means of the Newton
method. According to the techmiques used
solve the nonlinear svstem (2.5) the interior
point methods can he classified n:

Ly Primal-Duad iernor- point methods.

2) Predictor-Corrector interior- point neth-
ods,

3) tigher-order Predictor-Corrector nterior-
point ethods.

For linear progranuming probleims, the primal-
dual mterior- pomt methods were introduced
by Megiddo [1989] using a logarithmic barrier
function approach.  Megiddo's idea was devel-
oped by hojima, Mizuno and Yoshise [1989a.
1989D]. A different approach was proposed
Todd and Ye [1890]
on reducing a primal-dual potential Tunction

This latter was based

that was similar to Narmarkar's primal poten-
tial function.  Some other works on primal-
dual interior -point algorithms are desceribed
in [Monteiro and Adler, 1989], [Lustig, 18R],
[Gonzaga and Todd 1992]. [Choi. Monma and
Shanno 1990] [Lustig. Marsten and Shanno.
LO90 19911992, 1994]. [Zhang. Tapia and Den-
nis, 1992], [Zhang and Tapia ,1993)].

The predictor-corrector approach was intro-
duced by Mizuno. Todd and Ye [1990] 1o de-
seribe a particular algorithim which considered
a linear combination of a primal-dual aftive step
and a centered step. The predictor step s
the primal-clual afline step studied by Monteiro,
Adler and Resende [1900]. This step is then cor-
rected by a centering step toward the central
path, a concept introduced by Sonvevend [1983]
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and excellently presented by (onzaga [1992].
The ideas have heen extended and implemented
in computer programs by Lustig, Marsten and
Shanno [1992], Carpenter, Lustig, Mulvey and
Shanno [1993], Vanderbei and Carpenter [1993].
Potra [1996], Andersen, Gondzio. Meszaros and
Xu [1996].

Mehrotra [1490,1992] introduced the higher-
order predictor-corrector interior- point meth-
ods approach nto the arsenal of the interior-
point methods for tinear programming. This fol-
lows from the composite Newton method, and
has been studied and extended by Bayer and
Lagarias [1989]. Adler, Rarmarkar. Resende and
Veiga [1989a.1989b], Domich. Boggs. Rogers
and Witzgall [1984], Carpenter. Lustig, Mul-
vey and Shanno [1993], Tapia, Zhang. Saltzman
and Weiser [1996], Gondzio [1996], Andersen.
Gondzio, Meszaros and Xu [1996], ete.

Thus. the predictor-corrector interior-point
algorvithin for (2.1) is derived from the first-
order optimality conditions (2.5) by applving
the Newton miethod {to find a solution to (2.5))
for a fixed. positive value of p. and continuing
this until the complementarity gap is reduced to
a predetermimed value,

Supposing thal we have an estimation t =
[+ 5y U‘JI of the solution of (2.5) with &+ >
os > 0,2 > 0 and w > 0. then we can
compute the new imml T+ Al where Al =
[Ae As Ay Az _\H

ing nonlinear algebraic system:

18 a solution of the follow-

Al + Ar) = b,
[+ Ar)+ (s + As) = u,
AT (r+Xy)+ (- +A)—
(w+ Aw) =V fle+ Ar), {2.06)
(N +ANNZ + AXje = pr,
(S 4+ AS)HH + AW )e = pe.
where AN ASTAZ AN are diagonal matrices
with elements Awjo As;o Az and respectively
Aw; (j=1....0}.
Considering the objective f(r) a convex. con-
tinuously two-diffevential function. from (2.6)
we ablain:

AXe =b— Ay,
Ar4+As=u—r—s,
VAN + AT Ay + A - Aw =

Viry=ATy+w—-z (2.7)
NA+ XA =pe - XNAe — AXAZe,
SAw+ WAs = pe - SVe — ASAWEe,
As we can easily see. the great difference he-
tween (2.7) and the corresponding system for
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the linear programming case 1s the presence of
the Hessian matrix V7 f() of the objective func-
tion.

As in the case of linear programming, the idea
of the predictor-corrector interior-point method
1s to solve the system (2.7) in two stages,
[Mehrotra, 1990].

In the first stage, the so- called predic-
tion stage, we consider g = 0 and ignore the
quadratical terms ANAZ . and ASAN e thus
solving the linear svsten:

ANy =b— Ar,
Ar+ As=u—2r — s,
VI Ar + ATAy 4+ Az - Aw =
VA —ATy+w—: (2.8)
NA: 4+ ZAr = =-\NJ¢,
SAw+ IWAs = —5We,

ql]])JtC{ to the primal-dual afhne direction:
lo = [Axy Asy Ayq Azg Aw ]

1 hese directions are then nused for two distinct
purposes: to approximate the quadratical terms
in the right-hand side terms of (2.7), and to dy-
namically estimate the barrier parameter p.

For linear programiming problem. to estimate
g, some authors (Mehrotra [1990. 1992], Lustig,.
Marsten and Shanne [1991,1992,1994]). Clarpen-
ter, Lustig, Mulvey and Shanno [1993]} perform
the standard ratio test on both the primal and
the dual variables in order to determine the step
that would actually be taken if the primal-dual
affine direction given by (2.8) were used. LFor lin-
ear constrained optinization problems we con-
sider the same strategy. thus defining

JArg < 0},
‘I}illf=1-"1{T;”'—\‘Saj < 0}},
and (2.9)

(\,1_ min{minj = ,{ =5t

N -
= u:m{mm,:m{j—l_;‘-{—‘-.«_\;“j < 0}.

mitj= p{= ;H’ cAwgy < 01},

and considering

) A
By =T bp,
A
by =784
where 7 € (0. 1), (usually 7 = 0.99995).

Proposition 1. The duality gap corre-
sponding to the current solution is:

Proof. For the problem (2.1} and its dual,
the duality gap 1s
g=Vflz)a-bT 1;+ uTw. From (2 5) we have:
g=(glA+:T —w ).1-1')r +uTw=:Te+
wlw—2Tw=aTz4 s

The duality gap which would result from a
step in the affine direction 1s :

;}: (@ + 6pAxa) (2 + 8gAzq)+
(s + 8pAsa )T (w + baAw,e). (2.11)

With these simple algebraic constructions, an
estimation of the barrier parameter p s then:

p=1 ) (), if T4 8Tw > 1,
(TJ——wq - if el sTw< 1,

(2.12)
where ¢ € (0,1) 1s a parameter for modifying
the value of p (usually ¢ = 0.1).

With this value of g1 we can initiate the second
stage, the so -called correction (centering)
stage. in which the following linear algebraic
system s solved:

AAx =0
Ar+ As =0, (2.13)
VA + ATAy+ A — Aw =0,
NAz+ ZAe = pe — AN A X e,
SAw+ WAs = pe — AS, AW e,

aub]l‘(l to the fentmmg direction Af, =
[ » As. Ay Az Aw ]
put.( the actual new direction (the so -called
predictor- corrector direction) At = At, + At

Alternalively, we can compute the full direc-
tion At directly by solving the linear system:

thereby we can com-

AAr = b - Az,
Ar+As=u—212—s,
—V2f(e)Aw + _-4..1._\‘9 + Ar—Aw =
V)= ATy 4w -z (2.14)
NA-+ ZAv =pe — NZe — AN A7 e,
SAw 4+ WAs = pe — SWe — AS, AWge,

for Ar. As, Ay, Az and Aw. We notice that
the system (2.14) includes the correction terms
AN AZ e, and AS,; AW e in the right-hand
side of the Newton system.

Clearly. the difference between the two alge-
braic svstems (2.8) and (2.13), or (2.14) 1s the
right-hand side term. so the matrix algehra for
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solving (2.13) mainly remains the same as in the
solution of (2.8).
With this new direction At we perform the

Gy : : A
ratio tests to determine the actual step sizes o

al
and ay:

A . . i
gy S S >
(= 111111{11111|J:1,,,_{——_‘_\“!,' LAy < 0},

1r1inj:“,{f'”‘.i5j < 0}},
and (2.15)
ff;d: 1nin{1ninj:l:,,{:~':-f:,’_\:j < 0},
lIlill.j:]‘n{:%‘iT,;.An"j < 0},

and then the actual new point is computed as:

~ A
r= -4 ap Ax,

o A
5= 54 a, As,

Y= y+ aq Ay, (2.16)
T= e réw Az,

i A
w= 1w+ aog Aw.

Given a current estimate to the optimal point
that is primal and dual feasible, the direction At
15 a feasible divection il satisfyving:

AAF= 0,
Ar+ As =0, (2.17)
~VAf(o)Ar + A"Ay+ Az — Aw =0,

Proposition 2. For any
At = [Ar As Ay A: ;}.atr}[ that satisfy
(2.17). ArTAz + AsT Aw = ATV fle)Ax.

Proof. Using (2.17) we have: A: =
Vif(2)Ar + Aw — ATAy, and Ar = —As.
Hence, AeT Az + AsTAw = AeT(V2f(2)Ax +
Aw - ATAY) + AsTAw =
ATV ()Ae — AsTAw ~ (Ada)T Ay +
At A= NN f{u) Az,

For the predictor-corrector method, which we
are considering here, assuming the same step-
lengths are taken in ihe primal and the dual
subspaces. the change in complementarity is the
following:

(z+a(Arg+ AN (2 + oAz, + Az )+
(s + a(Asq + A5 ) (w0 + ol Aw, + Aw,)) =
J'T.: + st -

n(.z"-""_\:;] +:TAr + 2TAz. + 2T Az +
sTAw, + wT Asg + 5T Aw, + wT As )+
G20, 4 AEOT (A 484 (K554
As ) (Awe + Aw,) =

Studies in Informatics and Control. Vol.7. No.2. June 1998

2Tz 4+ sTw—a(aTs +sTw) — a(AzT Az, +

AsT Aw, — 2np)+

o?({Azg + Amn‘]T(Aza + Aze)+ (Asq +

As )T (Aw, + Aw,) =
T4+ sTw—a(z¥z+sTw+
ArTV2f(x)Ary — 2np)+

@ ((Axa + Az)T (Azg + Az.) + (Ase +

Asp)"r(;_\uh + Aw,)

by proposition 2. Since (At, + At.) is itself a
feasible direction, by proposition 2 we obtain:

(2 4+ oAy + Az)) (2 + a(Azy + Az ))+
(s + x(As, + _\.sr))T(w + a(Aw, + Aw,)) =
ele4sTw—a(elz+sTw+
ArTT2f(2)Az, — 2np)+
o ((Azg + Az T V2 fle)( Az, + Az.)).

In contrast with the primal-dual approach, for
the predictor- corrector method, although there
1s a second-order term apparently increasing
the complementarity, there is now a new first-
order term, AxlV?f(r)Ar, reducing the com-
plementarity. Thus, for the case of small step-
length. the predictor-corrector method has bet-
ter complementarity reduction than the primal-
dual one. Having in mind that a € (0,1) this
proves the convergence of the method.

2.1 The Predictor-Corrector Algorithm

The predictor-corrector interior-point algorithm
can now be described quite simply. It involves
the solving at each iteration of two linear alge-
braic systems with the same coefficient matrix,
but different right-hand side terms. as well as
some other shimple algebraic manipulations.

Algorithm PCLC
Stepl. Choose an initial approximation fy =
[z so yo zo wo)T for which zo > 0, s > 0,
zp > 0, and wo > 0. Consider ¢ = 0.1 and & = 0.
Step 2. Test the relative duality gap:
|V‘f[-"k =T yptuT wy |
LH e =V fle )T o+ 0Ty —uT wy

= e

Step 3. With this estimation of variables,
solve the linear algebraic system (2.8) subject
to the affine direction At,.

Step 4. Consider ¢ = min(o, .E:{;’k + 5T wy).
Compute the barrier parameter g as in (2.12),
where o is replaced by the value of ay.

Step 5. Solve the linear algebraic sys-
tem (2.14) for the full direction At =
[Ar As Ay Az -.lt.‘;]T .

Step 6. Choose 7 € (0,1) and consider a, =

Al Al N A
T o, and og = 7 ag, where v, and g are given
by (2.15).

Step 7. Consider the new estimation ty; of
the solution:
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Xhti = 2 + (1i,_l.1‘.
Sp41 = Sp + apds,
Ye41 = Yk + aqly,
Skl = Sk Foagdz
We41 = Wi + r,\dﬁu‘.

set k& = k + 1. and continne with step 2.

Some remarks are in order:

1. The systems we solve to determine the
predictor, the corrector. or the full predictor-
corrector direction involve the same matrix.
That is. each of these directions is obtained
hased on the same factorization of the matrix.

2. At each iteration of the algorithm we ob-
tain an admissible solution which satisfies the
primal and the dual constraints. The only mo-
tivation for continuing the iterations is to reduce
the duality gap.

3. In contrast with linear programming prob-
lems, in this case the corresponding Newton
systems (2.8) and (2.14) involve the Hessian
T2 f(x) of the ohjective function. This will in-
troduce some conmiplications to he further con-
sidered.

Example 1. Let us consider the following
problem:
minfa} + 05 4 0f 4+ dad — rpva ey — v -

3o +7.z-3 — rq+
et et e ]

subject to:

oy + 2o g+ g oy =30,
Jrg 4o+ 20— g+ o0 =4,
ro 4+ deg — a7 = 1.5,
0 g ag €100 = Loy T

The PCLC algorithin. initialized at pomnt:
2o = [0.5...0.5]T, 50 = il ol HEGGEETS
1) wy = [L..1] gives the following solu-
tion:

rp| 0.04421
o 109654
a0 0013306
g | 0.0000
2.8012
rg | 2.6346
v 0.0000

Considering: ¢ = 0.1, 7 = 0.99995, and
= 1073, the characteristics of the optimiza-

tion process are presented in the Table:

160

H No. | FobP ‘
I 4.0167
2 8.1241
3 6.8792
4 6.6720
5 5.303%
8 3.6913
7 3.5014
8 3.4887
9 3.4872
10 | 3.4871

FobD |
562.9565
1955.436
2580.719
1182.258
514250

3.6800

3.4820

34870

3.4871

34871

L [ 8 |
0.1098 10.5000 | 0.1149
12.3577 110.9070 | 0.1895
4.8041 $645.8158 | 0.1458

0.3451¢—7 | 1051.835 | 1.5102
0.1104e~T | 4631.276 | 1.0370
0.6004¢=7 42.4592 | 0.9972
0.99165e =3 0.4859 1.0137
014797 [ 0.2692¢-T 1 1.0115
0.6625¢ 7 [ 0.1801¢=% | 1.0035
0.2484¢ ~ ] 03488 =% T 1.0000

= J-:,f:;,. + sf wi. (duality gap)
o = min{a,, oz} (step length)

As one can see, the algorithm needs a small
number of Herations, and then of functions eval-
uations. At each iteration the current solution is
primal and dual feasible. The algorithm contin-
nes to execute iterations in order to reduce the
complementarity. The value of the barrier pa-
rameter g has a nonmonotonous evolution. This
is typical for the interior- point methods, being
a heritage from the penalty methods of Fiacco
and MeCormick [1968]. The step- length along
the full direction of minimization is going to 1.
exactly as in the Newton method.

2.2 The Multiple Predictor-Corrector
Algorithm

As already noticed, the process of solving the
necessary optimality conditions given by the
noulinear svstem (2.5) is split into the solving
of the system (2.8) for the affine direction and
the solving of the system (2.13) tor the correc-
tion direction. Tt is very lhikely that the affine
direction Af,. defined at step 3 of the PCLC al-
gorithim. points to the boundary of the positive
orthant, thus involving a very small step-length.
The role of the centering step At..defined by the
svstem (2.13) 1s to redress this situation. As in
the linear programming case, we can consider
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the composite Newton method for the de-
termination of the correction direction, thus ob-
taining a higher-order predictor- corrector
algorithm.

Considering the optimality conditions (2.5),
let us define the following nonlinear transforma-
tion:

Ar — b
T4 s —u
Fty=| Aly+:—w-Vflr) (2.18)
NZe

S

Then the PCLC algorithm at step 3 solves the
linear algebraie systen:

Fli A, = —F(ig), (2.19)
subject to the afline direction Af,. At step 5
the PCLC algorithm solves the following linear
algebraic system:

0
’ 0
Ft)Al = =F(14) + 0
= ANGAX ¢
fo— AS AW ¢
(2.20)

subject to the [ull direction Af.

The higher-order predictor method consid-
ers  the same strategy 1 determining  the
affine direction, but the composite Newton
method for the full direction.  Thus. the
level i) composite Newton interior -point
method, at iteration k. instead of solving one
linear system (2.20) lor the full direction, will
solve a number of g lincar systems with differ-
ent right-hand side terins of the following form:

) i—1
F )AL = =F(ly+ Y A1)+
J=0
0
0 (2.21)
0

= AN AL, e
o= AS AW e

fori=1....on. where Aty = Af,, and define
1
A= L Afj.

j=0
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Observe that at each iteration of the cor-
responding algorithm it is necessary to solve
my + 1 linear algebraic systems with the same
coeflicient matrix. After the coefficient matrix
has been factored, the additional work of the
composite predictor-corrector method is n the
extra backsolve to compute the full direction.
That what is gained from this extra woerk is a
better approximation of the centering direction.

Thus we can derive a level-m composite
Newton interior- point algorithm which is
the same as PCLC o which at step 5 a number
of iy (2.21) linear systems are solved for the
full direction.

Theorem 1. The predictor-corrector
interior- point algorithm PCLC is equiv-
alent to the level-1 composite Newton in-
terior -point algorithm.

Proot. This follows immediately from the
above discussions.

Instead of pursuing this strategy we can use
another one which could be considered as a gen-
eralization of the PCL(' algorithm in a multi-
ple predictor-corrector procedure. Instead
of solving the correcting system (2.13) once at
cach iteration of the predictor-corrector interior-
point method, it can be solved repetitively with
each direction corrected based on the previous
direction. The number of corrections my; in an
iteration k is dynamically chosen according to
the reduction of the duality gap.

Algorithmm MPCLC

Stepl. Choose an initial approximation {y =
[x0 s0 yo zu u:U]T for which g > 0, so > 0,
20 > 0, and wy > 0. Consider ¢ = 0.1 and £ = 0.

Step 2. Test the relative duality gap:

|V"f(.r'k!T;l';‘-b? .yk+1L?'t: A—‘ <
L e =V flec ) T+ 0Ty —uT wy | = =

n

s

Step 3. With this estimation of variables,
solve the himear algebraic svstem (2.8) subject
to the affine direction Af,.

Step 4. Consider o, = min(e, .r-:{_':;, + sf_-uu.],
Compute the barrier parameter poas in (2.12),
where @ is replaced hy the value of oy,

Step 5. For @ = 1, ...,my solve the following
linear system for

A = [Adf Ad Ay AL Awf]T

AA = b — Ar
A4+ A =u—ur —s

—VE(2)Ar + ATAY + A — Awt =(2.22)
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Vie)-ATy+w—=z
XAz + ZAr = pe — NZe — AXFLIAZ e
SAuw* + WAs' = pe — SWe — AST-IAW-Le

where AXY = AX, AZY = AZ,, AS® = AS,
and AW" = AW,
Define Af = At™* .

Step 6. Choose 7 & (0. 1) and consider «, =
A A A A f
7o, and ag = 7 g, where o), and oy are given

by (2.15).
Step 7. Consider the new estimation ;4 of
the solution:

Lpy1 = b+ apAr,
Sp41 = Sp + (}I,AR,
Uk+1 = Yi + gAY,
Skl = Sk + gz,
Wiyl = Wi + ngAw,

set k= k4 1, and continue with step 2.

Observe again that in the MPCLC algorithm,
after the coeflicient matrix of the svstem (2.8)
has heen factored. the additional algebra is in
some extra backsolve to compute the full direc-
tion.

Example 2. Let us consider the same
problem as in Example 1 above. Considering
the same initialization, the MPCLC algorithm
yields the same solution, hut the characteristics
of the optimization process are illustrated in the
Table below:

H N()! FobP l FobD | 7 ]

1 | 5.578T7 | -0.5044 0.4098

2 53408 | 7.7439 0.0463

3 147246 | 7.3848 | 0.3847¢°
4 [ 4.0469 | 5.8556 | 059717
5 | 3.4910 | 3.4285 | 0.1307¢~7
G | 34871 | 34871 | 0.6993¢7°
T | 34871 | 34871 | 0.9767¢~ 10

g ‘ cy

l my. |

10.500 0.1005 1
4.4531 0.1863 ]
22778 0.3008 1
1.3947 04714 | 1

0.6406 1.0081 | 10
p.i851e~ 1 | Loor | 7
0.6918¢~Y [ 0.9995 | 2

e .r’f:k + sf wy (duality gap)
« = min{a,, ag}.(step -length)
my = number of corrections at iteration k.
As one can see, the number of centering cor-
rections is relatively small. This is in line with

the theory of the composite Newton method,
as well as with the numerical experiments from
the linear programming case [Ortega and Rhein-
boldt, 1970], [Tapia, Zhang, Saltzman and
Weiser, 1996].

Theorem 2. If m; = 1 for all k
then the multiple predictor-corrector al-
gorithm (MPCLC) is equivalent to the
predictor-corrector algorithm (PCLC).

Proof. Considering my = 11in algorithm MP-
CLC {step 5), we must solve the system (2.22)
which is the same linear system as (2.14).

The following Theorem 1s a specialization of
Theorem 2.1 of CCarpenter, Lustig, Mulvey and
Shanno [1993].

Theorem 3. The multiple predictor-
corrector algorithm (MPCLC) is equiva-
lent to the composite Newton interior -
point method.

To prove the equivalence of these two algo-
rithis, notice that they are all identical. except
for step 5. then the proof of the Theorem re-
quires only that the direction At given by MP-
C'LC is the same as that given by the composite
Newton interior- point method. Before proceed-
ing with the proof of the Theorem we need to
prove some propositions.

Proposition 3. For any ¢ > | of the com-
posite Newton method, we have:

b— Alrp+ i A.‘I‘j) =0,

;=0
u— (rp+ zl: Art) — (sp+ i Asty =0,
ji=0 i=0
Vi) = AT+ 3 AY) — (54 2
j:Fl j=0

Azl) 4 (wp+ i: Auw’) = 0.

1=0

Proof. From the definition of F(t) in (2.18)
we have that

K
AAz = b — Alxp+ z Aal),
=0

i—1 .

. . i-1 ;
AT+ AS =u—(ep+ Y Avd)—(se+ Y As?),
=0 j=0
o ‘ ) i—1
ATAY + Az — Aw' = Vf(x) — AT (y+ 5
i=0
i—1 i—1

Ay) — (2t 3 ALY+ (wet 3 Awd).

j=0 j=0
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which bmmediately implies the result of the
proposition.

Proposition 4. For any i > 0 of the com-
posite Newton method, we have:

(XF4 Z AN ZF4 ‘_>: AZl)e = pe+

j=0 =
! 4“1 s
(3. A Z AZNe — ( Z.\\J ZAZJ]:?,
J=0 J=u Jj=0 j
S+Z_\.H’)H +ZAH«'r—,ur+
=0 _) 0
i 7 i i—1 =1 .
(37 AST)(Y AWNe — (3 ASN( Y. AW )e.
J=0 di=t) J=u J=u
Proof. Considering the first relation and

multiplying term by term, we have:

(X545 AN Y254 S AZije =

j=0 j=0
e /*f+z NEAZT 4 Z5A XY et
j=0
(3 AXNI) Y AZV)e. (2.23)
j=n J=u

But, from the composite Newton interior-
point method we have that:

(NFAZT 4 ZFAN?) = pe—
o o et i b e (2.24)
(N*4 3 AXNINZF+ 5 AZ e,

i=0 J=0

which implies that:

XEZket ST (NFAZT + ZFANT e+
=i

iy i (2.25)

(S AN AZT )

F=0 J=u

Now. adding and subtracting in the right-
=1
hand side of Equation (2.23) the term (3
=0
=l ,
AN AZT)e we get:
j=u

\+ZA\J VAR Z_\/J =

=0 =0

XEZEey Z (NFAZS 4+ ZFAXT )e+
j=0
i—1 =1
(50 AN AZ7)e + Z ANY)
j 0 j=n j=u
i—-1 -1
}: AZI) = (3 AXI)NY AZi)e

i=0 =0 i=0
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Using (2.25) for substituting ue for the first
three terms we get the result of the proposition.
Applying the same approach to the second rela-
tion in § and W matrices, we obtain the com-
plete proof of the proposi.’

Now if combining the results of the proposi-
tions 3 and 4 we have that

F(tF+ i At) =
i=0

: .

b— Alze+ 5 Axd)

=0

u— (zg+ i Azl)-

j=o0

(si+ i Asl)
j=0

V()= AT(y+ T Ay')-

(wi+ 3 Aw)
) j=0 ‘
(Xt 3 AXINZE4 3 AZd)e
i=0 j"_"[l
(S*4+ 5 ASHWrF+ Y AW)e

j=0 Jj=0

12.26)

0 i
0
0

L +(i A"\'j)(i: AZ e~
j=0 j=0

= =l 50 rd

- (¥ AXI)( Y AZi)e (2.27)

‘j:ll. ji=0
e+ (Y ASTY AW )e—

i=0 ] 0
i=1

(T AST) z AW )e

L j=0 J=0

To prove Theorem 3 we must prove that the
my

=3 At'is the same as the direc-
i=0
tion At™+ given by the MPCLC algorithm.
To do this, we note that Af solves the follow-
ing system:

direction At

AAxr = b— Az,
Ar+As=u—2a—s,
,17‘;\‘;’:-;- Az —Aw=Vf(z) - ATy +w -z,
A+ NAz = pe — XN Ze—

mg—1 my—1

( ED AXD Y AZiye

=0
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WAs+ SAw = pe — SWe—

my — 1 . m’L:i :
( 50 ASYH 3 AW*e.
=0 1=}

Thus, A" and Al solve precisely the same
mi_l _\{FJ me Afm"_],

1=

system w hen

Proposition 5. For all p > (0 we have that

!
(3 At') = AP,

Proof (by induction) For p = 0, the resuit of

proposition is true: MY given by the two algo-
rithms 1s the affine direction.

Assume that the proposition 1s true for 1 <
p < m — 1. We must prove that it is true for
p = m. By adding all the systeins defining each

. ni
Att we have that 57 A7" solves the system:
=0
m—1 A
N+ e 3 ) =
i=u j"[l
r m ) B
A5 A
=
m R il
S Arig 3 AS
=0 F=i)
n . 1 m
AT(S" A )+ 5 A= 5 At
=) 1=1) =1
ne . itk .
A0 ety A0 &)
r=() i=0
WSS As) + 83 Auf)
L =1 i=u E

(2.28)

A ) . )
where € is a veetor with | in the last 2u compo-
nents and 0 otherwise,

Replacing £7(t+ - A)

7=}

fronn (2.20) in (2.28)
we get:

Z (e —0(t+ S“ Atl)) =
=0 Ji—(.
b - Ar 7]
H— -8
NSy~ My-z4+w

je — NZo — ANCAZY 4 { > (e

[pic + (ZA\’ Y‘A;;/J)f-—

(Z ANT ) L AZDe)

=0 j=u

pre — S e — ASUALY,

=1

+ 1.2 (g~

r=1

(e +(i Ah’u’)(i AW e~
J=u J=u
=1 i .
(32 ASTH L AWe]))

L i=n J=4 J
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Taking into consideration the above relations
(2.25), within the braces the p terms cancel as
do the alternating terms in the summation over

This imiplies

m—1 i .
—1—2 ,ur‘—-:iwtz.'_\ﬂ)]:
=0 j=0
i b - Ar T
—TIr—2g
Viey=ATy— -+ w
-1 m—1 -
pe —NZo— (5 AXTY SOAZYe | T
=0 =0
m--1 m—1 .
pe = SWe = (3 WYL AW
L =1 : 1=0 J
b— Ar
i — ? ==y
Vir)-ATy—:+w

pe — XNZe — Af\ m=lp gm=lg
pe — Sihe — ASMTITAWT™ e J

the last equality being true by the induction hy-

pothesis.
m

Thus, > At and At are solution to the
i=l)
same system, which proves the proposition.

Proof of Theorem 3. The proof lollows di-
rectly from Proposition 5 applied when p = my,.

In order to complete the algorithm MPCLC
we must specily the number ol centering cor-
rections at step 5. This number 1s dynami-
cally sclected, based on the complementarity
let would result if a step were considered. Let
g" he the complementarity that would result if
taking a step m the direction obtamed after 1
corrections. We perform the (i41)-th correction
only il ¢ =1 and 1 1s less than the specified
maxinun nutber of corrections. If ¢ > g~}
then the correcting process is interrupted and
the direction A7 is used. This is the strategy
considered i an expernmental implementation
of the MPCLC" algorithin .

2.3 Cubic Convergeuce

The convergence  analysis of the  predictor-
corrector algorithims follows divectly from the
books written by Ortega and Rheinboldt [1970]
and by Dennis and Sehmabel [1983] and the
paper of Tapia. Zhang. Saltzman and Weiser
[1996).

The pure Newton method applied to the sys-
tem P = 0, where F(#) is given in (2.18) can
be written as:

Ny =1- F'(H~ F(L).

On the other hand, the predictor-corrector in-
terior -point method can be written as:
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Q (Y=t —aF{)7 P+ F(N() — p ?]
Therefore

N

N@)—t"=t—t" = F ()" {F)+ F(N{ )

(L= )F () TR () + FIN( ]}|TH,(!1‘ (i)

F'm-im N~ FIN())~ )f*}

([J—n)f - YF( ) PN D)) + m,ul )yt e=

()" {fl\rm m-w( N - *)}
[F( )-/ (OJCN() =) 8+

(L= o) F'()~' !-m+ FIN@ ot (0770

q__

H)

+

In a neighbourhood of the solntion I i the
standard Newton method analysis we know that
¥ - 1= Ol = )

But || F(t) ||l= O t=t* |]) and || F(N(O)) |I=
O] + =t [I7). Henee, from the above relation
we immediately obtain :

IV () =1 l= O 1= 1)+ Ot = 1* [P+
L —a Ot =t ]]) + pO(1),

which can be simplified to:

A p
N =t |l=0(t -t P+
[L—=a | Ot =t |])+ p0(1). (2.29)

Now. the term pO(1) can be made O(]) t -
* 11*) by the choice of g The only term which
must be very carefully analysed s | [ — o | O]
t =1 {f). It is quite clear that for cubic conver-
gence we need | 1 —a | to he O] = * {]*).

In the case of linear programuting problems,

[or primal-dual interior -point method, Zhang,
Tapia and Dennis [1992] obtained, assuming
that strict complementarity, {5 1s feasible, and ¢
15 a nondegeneraie verfex solution. the following

uscful expression:

['1=a% |= ‘]% + 00T y), (2.30)
where 7 and o, are as in the PCLO algo-
rithm, and 0, € (L.1]. This is also valid for
the predictor-corrector interior -point method.
Since for feasible £ we have ,r'i'_'yh SRR
then Q> =01 =1 |]).

The predictor-corrector methods could  be

viewed as a perturbed Newton method. The
pecturbation to the right-hand side is p ¢
—F( = ()7 PN From the above estima-
tion ol |
the choices for 7o and o, this terim is at best
O] t=t* ) and the predictor-carrector mterior-
point. method cannot. even for nondegenerate

Stuclies in Informatios and Control, Vol.7,
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problems, he shown to be cubically convergent.
However, by choociug o = | near solution and
pr = O((xTy)?), from (2.29) we see that it is
possible cubic convergence that is obtained. All
these observations could be assembled into

Theorem 4. Let t. = [x; sp yn z¢ wi)’
be generated by the PCLC predictor- cor-
rector interior- point algorithm with ¢,
strictly feasible. Assume:

1) Strict complementarity.

2) «” is a nondegenerate vertex., and

3) The sequence {{,} converges to {*.
If the choice of o, and 7. satisfies:

0 < o < min(o, er(2fyi)) (2.31)

and

0<m <nmn{r, | - C’-"(J‘EHA:]) (2.32)

where o € [0,1),7 € (0.1) and ¢, 0 > 0,
then the convergence is gquadratic, 1.e.
there is the positive constant v, > 0 such
that tor k large

Higgr =t ||< |l te —t7 |

On the other hand. if instead of (2.31) we
have

0 < op <minfo,ep(¢Ty)”)  (2.33)

and for large k ap = 1, then the conver-
gence is cubic. 1.e. there exists the posi-
tive constant 5+ > 0 such that for k large

e = NI e =t 17

Proot. The proof follows directly from the
above discussions combined with some details
giveir in [Zhang. Tapia and Dennis, 1992] and in
[Tapia. Zhang, Saltzman and Weiser, 1946].

The remarkable aspect of Theorem 4 is that
il into a neighbourhood of the solution the
step-length one is selected (like in the New-
ton method). and the centering barrier pa-
rameter g is of the order of the duality gap
cubed (as Mehrotra suggests), then for nonde-
generate problems. the predictor-corrector algo-
rithms have a cubic convergence. Therefore, the
predictor-corrector interior- point method and



its variants for solving linear counstrained op-
timization problems should he implemented in
such a manner that near solution the centering
barrier parameter is zero and the step-length is
one, exactly as in the classical Newton method.

In order to consolidate the understanding of
8

the behaviour of the predictor-corrector interior-
point algorithims, we shall present a large-scale
linear constrained optimization problem.

Example 3. Let us consider the problem:

3m

min y . age”
k=1

Ty

subject to:

Ty + 28, + Toym =5,
x4 2004 F Py =10+
{i = by i)
0<x; <10

1
7

The PCLC and MPCLC algorithms, initial-
ized in the point: ro = [0.1..0.1]7. for different
values of m, give the results rom the following
Table.

” m [ n ] vio ”
500 [ 1500 | 84.279940
1000 | 3000 | 168.469280
1200 | 3600 [ 202.149807
1500 | 4500 | 252.6731338
2000 | 6000 | 336.882043
3000 | 9000 | 505.311133

PC'LC MPCLC
it I nf | Time it | nf ! Time
1011 ]0:0:05:77 [ 8 1 9 | 0:0:10:44
10 ] 11 | 0:0:57:62 | 8 | 9 | 0:0:32:40
10 111 | 0:0:09:91 {8 | 9 | 0:0:43:50

10 ] 11 0:2:0:67 819 0:1:4:3
10 [ 11 [ 0:3:40:30 | 8 | 9 | 0:1:55:02
1011 ] 0:741:54 ] 819 | 0:3:52:50

m = number of constraints

1 = number of variables

vfo = value of the abjective function

it = number of iteratious

n{ = number of ohjective function evaluations

2.4 Alternative Formulation

The systems of Eqs (2.8) and (2.14) with the
coefficient matrix

A
i i

—V2f(x) AT T -] (2.34)
Z by

W S

are usually not solved directly, instead they are
algebraically simplified.

Firstly, simple algebraic manipulations show
that the solving of the above linear systems
could be reduced to that of factorizing the ma-
trix:

ap --1 —1y T
—[V*f(x) +,‘i1 Z+S5'W] A (2.35)
Note that the matrix (2.35) is symmetric
whereas the original matrix (2.34) is not. On the
other hand, the reduction process from (2.34) to
(2.35) entails no off-diagonal fill-in in the system
of equations, which is very appealing. However,
the matrix (2.35) is indefinite.

The factorization of symmetric indefinite ma-
trices, like (2.35) has been considered by Van-
derbei and Carpenter [1993] (the LoQo and
ALPO packages for linear programming, [Van-
derbei, 1990a, 1990b, 1991]). Gill, Saunders and
Shinnerl [1996], Gill, Murray, Ponceledn and
Saunders [1995], Fourer and Mehrotra [1991].
Gill, Murray, Ponceleén and Saunders [1995].
and Fourer and Mehrotra [1991] show that per-
forming the Bunch-Parlett [1971] factorization
of the indefinite matrix (2.35) will prevent fill-
in.

Secondly, it 18 quite clear that the reduction
process of the above linear systems (2.8) and
(2.14) could be continued, finally the computa-
tion of the predictor-corrector direction involv-
ing the factorization of the symmetric matrix:

ANV () + X124+ 51 )~ L AT (2.36)

Due to the convexity of the function f(x), the
advantage of factorizing the matrix (2.36) over
(2.35) 1s in that it is based on a symmetric pos-
itive definite matrix guaranteed to yield a fac-
torization of the form LALT | where L is a lower
triangular matrix with unit diagonal elements,
and A is a diagonal matrix with strictly positive
entries.

However, the great disadvantage of solving
the system with matrix (2.36) 1s that it suffers a
great deal of fill-in when (2.36) is formed. This
is especially true due to the presence of the Hes-
sian V2 f(r) of the objective function. and if the
A matrix has a number of dense columns.
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For linear programming problems, most of
the implementations of interior- point meth-
ods, like those of Lustig, Marsten and Shanno
[1991, 1992, 1994] (the OBI1 package). Carpen-
ter, Lustig, Mulvey and Shanno [1993] (the OBN
package), Gondzio [1996] (the HOPDM pack-
age), Andersen and Andersen [1097] (the APOS
package), or Meszaros [1994] (the BPMPD pack-
age) are based on factorizing the matrix (2.36)
where Y7 f(a) = 0.

For linear constrained optimization problems,
in an experimental code, we shall consider the
solving of the limear system with the coefficient
matrix (2.35).

3  Numerical Examples

In this Section we shall present some numerical
examples.

Problem P1. [Hock and Schittkowski, 1951],
Problem 112, page 121, Chemical equilibrinm)

10

; Gl [, Ty
min E{ ri(c; +1In = )
J:

subject to:

Rl | —+ 2.['-_1 + 2.1’;5 + £ + Jing = 2.
Ly F 205+ g+ ey =1,
r3+ e ug+2rg g =1
Table PL (¢ = 0.1, 7 = (.99095, ¢ = 10™%)

il 7 i el M B4
-6.089 0.0001 | 0.1 | 0.040668 | 100.0
-17.164 || 0.0001 | 0.1 | 0.147732 | 100.0
-34.054 || 0.0001 | 0.1 | 0.783150 | 100.0
-5.914 0.0001 | 0.1 | 0.001414 | 100.0
-24.7210 ] 0.0000 1 0.1 | 0.485246 | 100.0
-14.986 | o000 | 0.1 ] 0.000693 | 100.0
=24.100 | 0.0001 | 0.1 ] 0.27399 1000
-10.708 || 0.0001 | 0.1 ] 0.017947 | 100.0
-26.662 || 0.0001 | 0.1 | 0.037314 | 100.0
S22.179 1 0.0001 | 0.1 ] 0.096872 | 100.0

Sle*)y = =47.76109.
Problem P2.

13 7
min Y (faf 4 kap + k2)?
k=1

subject to:

a4 s+ s+ e+ e = 10,
Iy 4 2xg 4 3eg + daeg + by = 20,
20— day + 8y = 30,
—r; + 3.?'.-1 = -').1‘7 + g — Ly = U,
rp+2ry + Aoy + 8eg 4+ e = 100,
i 3.’1'3 + 6y — Yrg+ 13 = 0.
Table P2, (o = 0.1. 7. = 0.99995. ¢ = 10~%)
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Lower | g x* Upper
bound bound
0.0 0.1 ] 5.666234 | 100.0
0.0 0.1 | 4.966837 | 100.0

0. 0.1 | 4.333765 | 100.0
0.0 0.1 2.5 100.0
0.0 0:1 0.0 100.0
0.0 0.1 0.0 100.0
0.0 0.1 0.0 100.0
0.0 0.1 2.5 100.0
0.0 0.1 0.0 100.0
0.0 0.1 0.0 100.0
0.0 0.1 ] 1.833765 | 100.0
0.0 0.1 | 54.33377 | 100.0
0.0 0.1 | 31.33247 | 100.0

[{r™) = 1562547.3
Problem P3.

15 14

min Y. i+ Y (2k + Lrg1)
k=1 K=l

suhject to:

0.1ry + 0. 1lay + 0325+ 0209 + 02201 =1,
0.les +020s+ 0329 + 0.4y + 211 = 2,
U.1-1‘;3-{-0.2,1‘g+0.3i1'9+0.3.l‘9-|-U.4.I,‘]n+2..‘5‘11 =3
rg+ rs+ 0500 4+ 0520+ 211 — 292 = 3,
2rs + g+ 05w+ 0.5eg + 02300 + 0,252 +
0.5.1'11 — 13 = 4,
Ly + 25+ rs+ 2o+ ri0+ 2y — g =5,
O ley + 1207+ 120+ 1 drg+ 1. 1oyg+ 204y —

ri5 = 6.
Table P3. (¢ = 0.1, 7, = 0.99995,¢ = 107%)
Lower | xo ¥ Upper
bound bound

0.0 0.1 | 0.452456 | 100.0
0.0 0.1 | 0.266273 | 100.0
0.0 0.1 0.0 100.0
0.0 0.1 0.0 100.0
0.0 0.1 | 1.096372 | 100.0
0.0 0.1 | 0.048186 | 100.0
0.0 0.1 0.0 100.0
0.0 0.1 | 1.492774 | 100.0
0.0 0.1 ] 1.507682 | 100.0
0.0 0.1 | 0.489488 | 100.0
0.0 0.1 ] 1.026627 | 100.0
0.0 0.1 | 0.518137 | 100.0
0.0 0.1 0.0 100.0
0.0 0.1 0.0 100.0
0.0 0.1 | 0.539443 | 100.0

fla*) = 21.718976.

Problem P4.
min[3ape~%1 % 4 dpy + 23 + Tog + % + z¢]

subject to:



—xy+ 25— a5 = 0.1,

Tytagtrytratistagt+rrtrgtrotay = 20,

Bay + 3oo 4+ dusg + vy + a5 + 27 = 10,
200 + 6o+ 3+ 3oy + 25 + x3 = 13,
20 4+ a0+ vy + 3y — v = 2,
r+ 4.'!,':; + -‘3,)‘3 + 2.17_4 + g = 15,

Tahle P4. (o = 0.1, 7, = 0.99995, ¢ = 107%)

L wer A { oper
('agltt{nfd? 0 1 i "nﬁfnr({f
0.0 0.1 u.0 10.0

0.0 0.1 ] 0.893288 | 10.0
0.0 0.1 ] L116728 10.0

0.0 0.1 0.0 10.0
0.0 0.1 2.733221 10.0
0.0 0.1 ] 2.633221 10.0
0.0 0.1 0.0 10.0

0.0 0.1 ] 3.860319 10.0
0.0 0.1 ] 0.040016 10.0
0.0 0.1 | 8.693204 10.0

Jl®) = 11.180048.
Problem P5.

5 10
min Y (2p — rpp) + Y (0p —2pp)?
k=1 k=05
subject to:
2L+ 2.1',;-_{.] + 3.1‘);-4_:: =),
(h=1.....8)
To -+ 2—.1','1(1 + :{.I'f;l = 4.

Table P5. (¢ = 0.1, 7, = 0.99995. 2 = 1078)

Lower | vy i {7 pper
bound boird

0.0 0.1 ] L.016505 10.0
0.0 0.1 1 1.004545 10.0
0.0 0.1 | 0.991468 10.0
1
.

0.0 0.1 004173 10.0
0.0 0.1 000062 1.0
0.0 0.1 | 0.998567 10.0
0.0 0.1 1.000934 10.0
0.0 0.1 1 0.999854 16.0
0.0 .l 0999785 10.0
0.0 0.1 1 1.000191 10.0
(.0 0o 1999944 10.0

Fle®) = 0.9995046.

Problem P6.

min Y

168

suhject to:

£ —+ 2:.!‘2 —+ L3 = 3.
ry+ oy + 2.11j+] + Xjyo = 4,
(§=2,...m}

Table P6 (m=20)
(¢ =0.1, 7 = 0.99995,¢ = 1078)

fower | safl = [(Une
0.0 0.1 ] 2.003768 10.0
0.0 0.1 | 0.031407 10.0
0.0 0.1 ] 0.933417 10.0
0.0 0.1 | 0.097989 10.0
0.0 0.1 | 0.866834 10.0
0.0 0.1 | 0.164572 10.0
0.0 0.1 1 0.800251 10.0
0.0 0.1 ] 0.231155 10.0
0.0 0.1 | 0.733668 10.0
0.0 0.1 | 0.297738 10.0
0.0 0.1 | 0.667085 10.0
0.0 0.1 1 0.364321 10.0
0.0 0.1 | 0.600502 10.0
0.0 0.1 1 0.430904 10.0
0.0 0.1 1 0.533919 10.0
0.0 0.1 0.497487 10.0
0.0 0.1 1 0.467336 10.0
0.0 0.1 ] 0.364070 10.0
0.0 0.1 ] 0.400753 10.0
0.0 0.1 ] 0.630653 10.0
0.0 0.1 1 0.334170 10.0
0.0 0.1 1 0.697236 10.0

Fla™) = 10.345477.

Problem P7T.

m+4
min Y | zk + Z2rp 4 G)eT "k
=1
subject to:
Iy —’-2..!3-!- s = 4,
rj 4 240+ rjpa = 8,
(3 =2 il

Table PT7 (m=10)
(o =0.1. 7 = 0.99995, « = 10~5)
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Lower | ap x” [Tpper

baund bound
0.0 0.1 1 0.274447 10.0
0.0 0.1 | 2.286694 10.0
0.0 0.1 0.202727 10.0
(0.0 0.1 1713305 10.0
0.0 0.1 | 3.320098 10.0
0.0 0.1 | 2.286695 10.0
0.0 0.0 LIAT0TT 10.0
(.0 O LT13305 10.0
0.0 0.1 | 2.365749 10.0
0.0 0.1 2.286695 | 10.0
0.0 0.1 2111426 | 10.0
0.0 0.1 1713305 1 10.0
0.0 0.1 | L411399 1 10.0
0.0 0.1 ] 2.286695 10.0

flem) = 33.242855.
Problem P8.

3m
min . ,_:j_i g
L=1

subject {o:

I+ 2‘1'111-}—1 + Vo4l = 4,
; oo ]
L+ 245 + Lage; = 84+ 7
(== Do i)

Table P8 (1m=5H)
(= 0.1 7 = 090995 = = 107%)

Lower | a4 T Upper
bownd bound
0.0 o0 ]o336228] 100
0.0 0.1 | 0.332300 ] 10.0
0.0 | 0.1 | 0333421 [ 100
0.0 [ 0.1 0333997 [ 10.0
0.0 100 ]0.334348 [ 10.0
0.0 |00 | 16037701 100
0.0 [ 0.0 [ 3917699 | 10.0
00 | 0.1 ]3.833245 | 10.0
0.0 0.1 { 3791002 | 100 |
0.0 [0.1 73765650 10.0
0.0 0.0 [0336228 1 100
0.0 [ 0.1 [0.332300] 10.0
0.0 [ 0.1]0.333421 10.0
0.0 | 0.1 ]0.333097 [ 10.0
0.0 | 0.1 ]0.334348 [ 10.0

Fle®) = 1.821042

In oder to compare the interior -point meth-
ods with the classical methods we shall solve
these problems with the following packages for

mathematical programming:

Studies in Informatics and Control. Vol.7. No.2. June 1998

” Name Package } Author H
TOLMIN M.J].D. Powell
University of Cambridge
PCLC N.Andrei
ICT - Bucharest
NLPQL Ix.Schittkowski
Bayreuth University
MINOS B.Murtagh, M.Saunders
Stanford University
SPENBAR N.Andrei
1T Bucharest

The characteristics of the solving process cor-
responding to the P1-P& lmear optimization
problems are presented in the following Tables.

We emphasize that the TOLMIN and PCLC
packages are specialized in linear optimization
problems. The MINOS package is for large-scale
nonlinear optimization and NLPQL and SPEN-
BAR are dedicated to solving small- or medium-
scale, strongly nonlinear programunng problems

H Prob ” n ] m ”

I

|

J

Pl 107 3
P2 13716
P3 15| 7
P4 1101 6
P5 |[11] 9
P6 || 22 120
P7 | 14 | 10
P |15 1] 5
I TOLMIN PCLC I

H i | [1f| Tune

I
T

Infi Time H

28 | 36 | 0:0:0:106 || 8 9 1 0:0:0:83
220 341 0:0:0:16 1| 37 | 38 | 0:0:3:40
9 1 L3 0:0:0:6 9 | 10 | 0:0:1:15
5116 0:0:0:5 38 | 39 | 0:0:2:80
4 8 0:0:0:5 8 9 | 0:0:1:05
7013 0:0:0:16 9 | 10} 0:0:0:15
12 ] 33| 0:0:0:16 || 12 | 13 | 0:0:0:17
L3 20 ] 0:0:0:17 {1 9 | 10 | (:0:0:11
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Prob NLPQL MINOS SPENBAR
it [ of [ Tune oit [ it [ nf [ Time oit [ init [ nf [ Time

1 21 30 0:0:0:44 1 19 | 46 | 0:0:0:27 6 228 1263 0:0:5:77
B2 T 104h | 0:0:0:50 1 18 | 156 | 0:0:0:17 9 395 2308 | 0:0:14:94
P3 5 5 0:0:0:16 1 18 | 14 | 0:0:0:22 9 276 1898 | 0:0:14:44
P4 10 10 0:0:0:17 1 12 8 | 0:0:0:11 4 401 2384 | 0:0:12:74
P5 § T 0:0:0:39 1 12 9 | 0:0:0:16 {5 94 515 0:0:3:41
P6 5 T 0:0:2:09 1 25 1T | 0:0:0:38 8 1021 | 10877 | 0:3:13:95
P7 16 16 0:0:1:59 1 20 | 21 | 0:0:0:27 ) 156 991 0:0:8:73
Ps 14 18 0:0:1:10 1 15 | 26 | 0:0:0:16 4 54 303 0:0:2:41

n = number of variables

m = number of constraints

it = number of iterations

init = number of inner (1ninor) iterations

oit = number of outer (major) iterations

nf = number of ohjective function evaluations -

In the following we shall present a comparison among these optimization packages corresponding to
the above PG-P8 problems in case of medium- and large- scale dimensions.

The following Tables give the characteristics of solving the problem P6. for different values of m,
with TOLMIN and PCLC packages and MINOS and NLPQL packages, respectively.

m n vio TOLMIN PCLC

it [ nf [ Time it | ol [ Time
20 22 10345477 )| 7 | 13 | 0:0:0:22 9 10 | 0:0:0:15
40 42 16.464030 || 3 T 0:0:0:72 10 | 11 | 0:0:0:59
650 G2 22664322 | 4 | 20 | 0:0:1:64 10 ] 11 | 0:0:1:15
&0 82 28.8809140 || 3 8 0:0:3:18 9 10 1 0:0:1:92
100 | 102 4 35.1239306 || 2 06 0:0:5:83 10| 12 | 0:0:4:22
200 | 202 || 66.343333 || 6 | 30 | 0:0:46:47 6 T 1 0:0:5:76

m i vio MINOS NLPQL
i | nf ] Time i \ nfl Time

20 22 10345477 ) 25 | 11 0:0:0:30 || 5 | 7 | 0:0:2:03
40 42 16.164030 13 T 00T 3] 4 0:0:6:92
G0 (2 22.664322 63 T00:0:0:320 31 4 1 0:0:19:61
801 82 || 288389140 || 85 T 002205 ] 31 4 | 0:0:41:03
1001 102 ] 35123936 1) 104 | 6 | 0:0:3:02 | 4 ] 4 | 0:1:46:28
200 1 202 || 66.343333 | 204 1 6 1 0:0:9:94 || 2 | 2 | 0:5:55:53

For large scale dimensions the MINOS and PCLC' packages have the following behaviour:

m n vio MINOS PCLC

1 l nf ] Time 1t | nf [ Time
500 502 160.074858 503 G | 0:0:50:20 |} 11 | 12 | 0:1:12:19
1000 | 1002 || 316.318633 || 1003 | 6 | 0:2:42:36 | 11 | 12 | 0:4:38:36
L200 | 1202 || 378.817653 || 1203 | ¢ | 0:3:51:29 || 11 | 12 | 0:5:37:47

1500 | 1502 || 472.566623 a IT | 12 ] 0:9:16:45
2000 | 2002 || 628.815592 a Ltz | 0:16:13:12
3000 | 3002 f 9141.314562 a 11 112 1:4:24:6

a = insufficient memory

For the problem P7 the following Tables illustrate the hehaviour of TOLMIN and PCLC packages
and of MINOS and NLPQI.. respectively, for different values of ni.
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11 vio TOLMIN PCLC
‘ it [ nf [ Time it | nf [ Time

9 24 [0 52688300 [ 1130 0:0:0:38 [[ 11 [ 12 | 0:0:0:28

{
40 44 953.8785306 11125 0:0:1:26 10 | 11 | 0:0:0:55
60 G4 134.9155894 || 5 7 0:0:2:26 10 ] 11 | 0:0:1:05
80 84 I7H917332 ) 7 | 25 | 0:0:4:51 10 ] 11 | 0:0:1:82

100 | 104 | 216.893341 70 24| 0:0:7:31 1O | 11 | 0:0:2:58
2000 204 1) 420719855 | 11 | 43 | 0:0:49:10 || 10 | 11 | 0:0:9:51

m u vio MINOS NLPQL

it ] of [ Time it | nf| Time
20 24 52.08830¢ 16 | 28 | 0:0:0:44 16 | 16 0:0:6:70
40 44 3878536 16 13 1 0:0:0:83 10 | 10 0:0:22:41
GO (54 134915594 G6 12 | 0:0:1:43 10| 10 0:1:5:04
80 84 175.912732 86 112 | 0:0:2:19 4| 10 | 10 | 0:2:22:00
1OO | 104 |} 216.893341 W6 | 12 1 0:0:3:7 10 1 10| 0:4:25:51
200 | 204 || 421.719855 || 206 | 13 | 0:0:10:H 12 1 12 ] 0:39:40:42

U

For large -scale dimensions the MINOS and PCLC! give the results from the Table below:

! m n vio | MINOS PCLC

| | it [ of [ Tine it [ nf ] Time
H00 H04 1036.073610 h09 19 | 0:0:49:15 15 | 16 | 0:1:37:22
1OOO | 1004 2059953591 1010 | 20 | 0:2:40:05 11112 0:5:3:62
1200 | 1204 || 2469503050 || 1210 { 20 | 0:3:35:96 1 12 | 13 | 0:8:19:77
IH00 | 1504 || 3083.826330 a 13 | 14 | 0:15:11:49
2000 | 2004 || 4107.697251 a 13 | 14 | 0:25:26:21
3000 | 3004 G150.437271 a 14 | 15 | 1:04:48:56

a = insufficient memory.

The Tables which follow give the results of solving the problem P8 with TOLMIN and PCLC and
MINOS and NLPQL, respectively. Tor different values of m.

I I vio TOLMIN PCLC

i it f nf Thne it ‘ nf ! Time
20 60 9.076395 38 T4 0:0:4:78 9 10 | 0:0:0:17
40 120 18.600455 || 41 81 0:0:22:85 9 10 | 0:0:0:39
60 IS0 |l 28.086333 1 36 | 81 0:0:54:49 10 11 ] 0:0:0:71
SO0 | 210 |] 37.556382 || 37 | 95 0:1:52:44 10| 11 | 0:0:0:99
LOO | 300 || AT.017712 4] 37 | 106 | 0:3:20:59 10 ] 11 | 0:0:1:3%8
20001 600 p S4267018 |1 36 1 106G | 0:21:49:59 L1 | 12 ] 0:0:4:45
m | uw [ o MINOS NLPQL

l o It ! nf [ Thne 1 ‘ nf I Time

20 (G0 9.076595 3 31 (0:0:0:99 17120 0:0:45:81
40 | 120 18.600455 Hs 42 0:0:3:42 20 | 21 0:6:5:86
G0 IS0 | 28.086333 8 42 0:0:6:143 200 22 | 0:19:42:98
a0 240 37056382 98 42 0:0:10:55 18 | 19 | 0:41:55:54
LOO 1 300 || 47.017712 [Is 1 41 O:0:15:82 || 20 | 22 | 1:30:24:22
200 i GOO || 94267018 || 415 | 631 U:4:58:8 I

h = Execution time greater that 4 hours

Tor large -seale dimensions the PCLC package gives the following results:
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m n vio PCLC

it | nf ! Time
500 1500 235.856441 12113 0:0:22:8
1000 | 3000 471.724819 12 1 13 Qe 212
1200 | 3600 566.059177 121 13 0:1:57:10
1500 | 4500 T07.553823 12113 0:3:0:54
2000 | 6000 043.366696 12 | 13 | 0:5:10:44
3000 | 9000 || 1414.969173 || 12 | 13 | 0:11:21:79

It is very instrnctive to notice the behaviour of the MPCLC algorithm in case of the problem P83
in which the maxinmum number of centering corrections at each iteration is linited to 5. The Table
below illustrates this behaviour for different values of m.

i I vio MPCLC

it [nf [ Tine
500 1500 235.856441 81 9 ] 0:0:15:38
1000 { 3000 471724819 319 | 0:0:52:78
1200 | 3600 566.059177 809 | 0:1:15:47
1500 | 4500 T07.553823 09 | 0:1:51:33
2000 | 6000 943366696 809 ] 0:3:12:30
3000 | 9000 1414969173 || & | 9 | 0:6:58:42
4000 | 12000 || 188635535315 || 8 | 9 | 0:12:21:22

The analysis of the results obtained on this limited set of problems illustrates that the predictor-
corrector interior- point algorithms are a powerful alternative to solving linear constrained optimization
problems.

Still, PCLC (and MPCLC') is a development code. but we notice that for small- scale problems all
the packages have the same hehaviour, Significant differences appear in the case of medium- and large
-scale problems.

For predictor-corrector interior- point algorithms the number of iterations and function evaluations
seems to be independent of the number of variables or constraints.

For the class of problems P6-P8, with a number of constraints between 20 and 200, from the above
Tables it follows that the total time (in milliseconds) needed by the 4 packages considered here is given
in the Table helow:

Problem Packages
TOLMIN | PCLC [ MINOS | NLPQL
P6 5806 1379 L7549 53140
PT (3452 1579 1801 201217
P8 [T0474 809 35529

It follows that for medium- scale linear constrained optimization problems the PCLC and MINOS
are the most suited packages. Anyway, MINOS remains the state-of-the-art and the most respectable
package for large-scale optimization. For the moment, TOLMIN does not. implement sparse matrices
techniques. Iutroducing these technicques in TOLMIN could result in a very competitive package.
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4 Conclusion

In this paper we have extended the predictor-
corrector interior -pomt approach te the lin-
ear constraint optimization problems with con-
vex, nonlinear objective function. The idea
nsed i linear programming case  and  im-
plemented in some state-of-the-art predictor-
corrector interior- point packages is also consid-
ered in the case of lnear constrained problems.
Firstly, the algorithms allow iterates to be very
close to the boundary of the positive orthant,
and secondly they correct this step using a cen-
tering step. The theoreims proved here provide
a theoretical justification for such a practice in
fast convergence.

The numerical results presented here are oh-
tained with a crude experimental code which is
still in progress of development. We expect im-

provements both in terms of efficiency and of

robustiiess. These could mainly be obtained us-
ing advanced sirategies for solving augmented
indefinite linear systems like (2.35). The very
good stability properties of the angmented sys-
tem approach motivated their incorporation into
several interior- point codes [Dufl, Gould, Reid,
Scott and Turner. 1991]. [Fourer and Mehro-
tra, 1993] [Maros and Meszaros, 1995], Turner
[1991] and [Vanderbei and Carpenter, 1993].
Other advantages of this approach. namely an
easy to do handling ol dense columns in A and
the ability of its casy extension to the quadratic
prograimming problems emphasized the iinpor-
tance of the angmented system approach.

It 1s quite clear that the success of the aug-
mented systent factorization highly depends on
the efficiency ol the pivol selection strategy.
For the class of problems considered here this
strategy must also take mto consideration the
structure of the Hessian matrix of the objective
function.  Thisx will introduce some complica-
tions. We must find a “good™ partition both
for A and V2ffr) matrices in order 1o deter-
mine which block can be inexpensively pivoted
out and which one should be delaved as much as
possible. These algehbraic mechanising ave under
current consideration.
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