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1. Introduction

The importance of the public procurement is 
well known. In terms of projects and cost, the 
largest adjudicators of a country are the public 
procurement agencies. For example, the public 
authorities of the European Union (EU) spent 
around 14% of their GDP (around €2 trillion) on 
public procurement (purchase of services, works 
and supplies) in 2017 (European Commission, 
2017). Therefore, improving public procurement 
can yield enormous savings: even a 1% efficiency 
gain could save €20 billion per year. It is crucial to 
analyse the public procurement notice (also called 
auctions, requests for tender or simply tenders) 
in order to understand its behaviour in terms of 
prices. Through the use of new technologies, 
like machine learning (ML), among others, new 
tools can be created to improve these public 
procurement processes.

ML involves computer algorithms that are used 
for knowledge discovery from large amounts 
of data. It is considered to be a type of artificial 
intelligence (AI), and it is regarded as one of 
the most disruptive innovations and a strong 
enabler of competitive advantages. While ML 
has been around for more than 60 years, it has 
only recently showed significant potential for 
disrupting economies and societies (Lee & Shin, 
2020). Mirroring a trend that has increased 

pace in the last 5 years in the private sector 
worldwide, the adoption of AI within public 
administration processes has the potential to 
provide enormous benefits. It improves the 
efficiency and effectiveness of policy making 
and service delivery to businesses and citizens, 
ultimately enhancing their level of satisfaction and 
trust in the quality of public service (Kuziemski 
& Misuraca, 2020).

The award price estimator is a regression problem. 
The tender has x known input features (e.g., 
date, tender price, type of contract, and public 
procurement agency) and a y unknown output 
feature (award price). The tender price, which 
is calculated by the public procurement agency, 
is the key input parameter to the award price 
estimator. The tender price is the theoretical price 
and the estimator adjusts it regarding the real and 
changing market conditions to predict the award 
price by the winning bidder. 

The aim of this article is to improve the accuracy 
of the award price estimator studied previously 
in (García Rodríguez et al., 2019a). That article 
applied only one algorithm (random forest) to 
predict the award price, and it was validated 
over two tender datasets from Spain and Europe. 
Further, this article increases the prediction 
accuracy, and it compares four algorithms: linear 
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regression, isotonic regression, random forest and 
artificial neural network. The last two algorithms 
are ML methods, particularly supervised learning. 

An award price estimator would produce 
significant benefits. It would be an excellent tool 
for the cost planning of public tendering agencies 
by allowing them to have more realistic budgets. 
Additionally, such a price estimator would provide 
support to small- and medium-sized enterprises 
(SMEs) that play a crucial role in most economies. 
For example, SMEs represent 50% of the GDP in 
the EU (European Commission, 2020). However, 
they have difficulty when competing on equal 
terms with big suppliers in the public procurement 
space. Other benefits could be the reduction of 
fraud between bidders, which would improve 
the transparency of the process and lead to better 
quantification of the product quality.

The paper begins with reviewing the literature 
and identifying the research gap to be examined 
(Section 2). Then, the dataset of public 
procurement auctions, the ML algorithms being 
compared (random forest, linear regression, 
isotonic regression and artificial neural networks 
(ANNs)) and the error metrics that are used 
are described (Section 3). Next, the major 
quantitative results of the experimental analysis 
are summarized for identifying the best ML 
algorithm to predict the award price (Section 4). 
Finally, some concluding remarks, limitations, 
and avenues for future research are presented 
(Section 5).

2. Literature Review 

While an increasing number of studies in public 
procurement is being published every year, an 
overview of the field is missing. In the literature 
on public procurement, an ambiguous wording is 
usually used, and a consensus on the terminology 
and concepts involved has not been reached yet 
(Obwegeser & Müller, 2018). Technological and 
organizational challenges faced during public 
electronic procurement processes are not well 
understood despite past studies focusing on 
these topics (Mohungoo, Brown & Kabanda, 
2020). The data analysis of public tenders can 
provide valuable information for different 
stakeholders: public tendering agencies, public 

procurement managers, project managers, 
executives, politicians and, indirectly, citizens. 
In the particular case of Spain, an initial analysis 
published in (García Rodríguez et al., 2019b)
explains the Spanish public tendering system 
and the potential applications and benefits of 
employing massive data processing. 

The past decades have seen the rapid 
development of the computer hardware, 
communication technologies and computer 
sciences (artificial intelligence and big data). 
These new technologies make it possible to 
implement the informatization of conventional 
public procurement tendering processes. Public 
procurement has the typical objectives of the 
private sector: to acquire the right goods or 
services from the right supplier, at the right price, 
at the highest service level, and considering 
laws and norms requirements. But it also 
requires strict compliance with the principles 
of non-discrimination, free competition, and 
transparency of the awarding procedures (Dotoli, 
Epicoco & Falagario, 2020). 

There is extensive literature about prediction 
techniques (forecasting) and data analysis in public 
tendering. There are mainly two approaches: 
statistical models (e.g., mathematical algorithms) 
and statistical learning (e.g., ML algorithms). 
There is not a clear demarcation or boundary 
between both approaches because research on 
ML also covers the conception of mathematical 
algorithms. Thus, statistics and ML are closely 
related fields in terms of methods, but distinct 
with regard to their principal goal: statistics draws 
population inferences from a sample, while ML 
finds generalizable predictive patterns (Bzdok, 
Altman & Krzywinski, 2018).

Statistical models are the traditional or 
conventional approach used to analyse and 
validate hypotheses. For example, there are 
models for statistical relationships for tender 
forecasting in capped tender (Ballesteros-Pérez, 
González-Cruz & Cañavate-Grimal, 2012), 
scoring probability graphs (Ballesteros-Pérez, 
González-Cruz & Cañavate-Grimal, 2013), 
multicriteria decision making (Dotoli, Epicoco 
& Falagario, 2020), the probability of bidder 
participation (Ballesteros-Pérez et al., 2015; 
Ballesteros-Pérez et al., 2016), and the optimal 
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bidder participation to achieve the lowest 
procurement prices (Onur & Tas, 2019). There 
is also a mathematical model where the bidders 
are evaluated on the basis of price and quality 
through a score function (Lorentziadis, 2020), 
the detection of groups of bidders in collusive 
auctions (also called not competitive tenders or 
bid-rigging cartels) (Conley & Decarolis, 2016) 
or discriminatory competitive procedures in public 
procurement with unverifiable quality (Albano, 
Cesi & Iozzi, 2017).

On the other hand, a variety of ML techniques 
has also been successfully applied to public 
procurement and created empirical models. For 
example, among the particular problems addressed 
by this type of algorithm are those related to the 
behaviour of bidders: the estimation of the number 
of bidders in tenders (KNN) (Gorgun, Kutlu & 
Onur Tas, 2020), the identification of the optimal 
bidder (fuzzy logic) (Wang et al., 2014), creating a 
search engine of suppliers to recommend potential 
bidders for a characterized tender (random forest) 
(García Rodríguez et al., 2020) the detection of 
collusive auctions (ensemble method) (Huber 
& Imhof, 2019), or the proposal of an objective 
system (key performance indicators) for 
supporting the estimators (benchmarking) during 
the tender evaluation process (ANNs) (Bilal & 
Oyedele, 2020). 

However, there are almost no studies about award 
price forecasting, so there is a research gap. The 
first holistic approach that considers all kinds 
of tenders (multi-sectorial) and a large volume 
of tenders is (García Rodríguez et al., 2019a)
whose dataset is used in this article. Previously, 
two articles created award price estimators with 
ML algorithms, but they were applied only to 
construction auctions: bridge projects (Chou et 
al., 2015) and highway procurement (Kim & 
Jung, 2019). It is typical to find literature focused 
only on public procurement for construction or 
civil engineering projects; this is mainly because 
they are the biggest and most important projects 
in public procurement (García Rodríguez et al., 
2019a). This paper is the first attempt to compare 
different algorithms in order to improve the 
accuracy of award price forecasting in multi-
sectorial tenders.

In conclusion, this article is a true reflection of the 
applicability of ML in public procurement. The 
fundamental insight behind this breakthrough is 
as much statistical as computational. Artificial 
intelligence became possible once researchers 
stopped approaching intelligence tasks 
procedurally and began tackling them empirically 
(Mullainathan & Spiess, 2017). ML algorithms 
produce a powerful, flexible way of making 
quality predictions, but they have a weakness: they 
do not contain strong assumptions and instead 
contain mostly unverifiable assumptions due to the 
fact that ML approaches do not generally produce 
stable estimates of the underlying parameters 
(Mullainathan & Spiess, 2017).

3. Experimental Procedures

The main objective of this work is to analyze 
different ML paradigms for predicting the award 
(winning) price of Spanish public tenders. In this 
section, the dataset and the learning models are 
presented, and details about the error metrics and 
validation method are given.

3.1 Dataset

The original data were extracted from the 
information files published by the Spanish 
Ministry of Finance (see Data Availability). It 
contained information about tenders published 
between 2012 and 2018. The data were 
preprocessed for a preliminary study published 
in (García Rodríguez et al., 2019a) and a dataset 
of 58,337 Spanish tenders was obtained. To 
compare the results, the same dataset was used in 
the experiments presented in this article. 

Tenders in the dataset were defined by 14 
input variables that provided the following 
information: the name of the public procurement 
agency that made the tender, geographical 
information about the agency (municipality, 
province, region, and wider region code), the 
tender price (the amount of budgeted bidding), 
the duration (days to execute the contract), 
the type of work according to the common 
procurement vocabulary (CPV) in two levels of 
detail, the type of contract defined by legislation 
(in two levels of detail), the procedure by which 
the contract was awarded, the urgency level 
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and the date of agreement in the award of the 
contract. Note that during preprocessing, all this 
information was converted to integer values to 
make it suitable for the learning methods being 
evaluated. The output variable was the award 
price, which is the amount offered by the winning 
bidder of the contract.

3.2 Machine Learning Algorithms

The random forest for regression ML model 
was selected to create an award price predictor 
in the preliminary study (García Rodríguez et 
al., 2019b). The research presented here aimed 
to investigate a wider range of ML paradigms, 
compare them and select the most suitable one 
for the task. Models for regression need to be 
selected, since the output variable to predict is 
the award price. Very widely used supervised ML 
algorithms were considered: random forest, linear 
regression, isotonic regression and artificial neural 
networks (ANNs). A brief description of them is 
presented here.

A random forest algorithm (Breiman, 2001) 
is a combination of tree predictors, where 
each tree depends on the values of a random 
vector independently sampled and with the 
same distribution for all the trees in the forest. 
The prediction of the ensemble is computed 
by averaging the predictions of the individual 
models. It is a typical example of an ensemble 
method that reduces the bias of individual models 
and provides a more flexible predictor that is less 
prone to overfitting.

While the random forest model is robust, there are 
situations where simpler algorithms, like linear 
regression, could produce better results. This explains 
the convenience of evaluating the performance of 
linear regression for award price estimation.

Linear regression (equation 1) is a machine 
learning technique used to model the linear 
relationship between the input variables xi and 
the output variable y:

1
( )

n

i i
i

y xβ ε
=

= +∑
                                        

(1)

where βi are the parameters that measure the 
influence of the input variables, and ε is a 
constant value.

Another technique that is increasingly applied 
to regression problems is isotonic regression 
(equation 2). This method tries to find a line as 
close to the observations as possible:

2
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where xi are the input variables, g is the isotonic 
estimator, f is a function, wi are the weights and 
m is the number of observations. This method 
produced a series of predictions for the training 
data that were the closest to the targets in terms of 
the mean square error (MSE). These predictions 
were interpolated to predict unseen data. The 
predictions from the isotonic regression thus 
formed a function that was piecewise linear 
(Chakravarti, 1989).

For the three ML algorithms presented in this 
section, the implementations available in WEKA 
(Hall et al., 2009; Witten et al., 2011) were used 
in the experiments. WEKA is a machine learning 
platform developed by Waikako University, that 
supports a large number of learning algorithms 
(Waikako University, 2021).

3.3 ANNs

Recently, ANNs have re-emerged as a powerful 
tool to deal with a variety of ML problems. In 
particular, they have been applied to regression 
problems where the input data can be noisy or not 
fully observed. An ANN is a computational model 
inspired by biological neural networks. It consists 
of a collection of units or nodes (artificial neurons) 
organized in connected layers. The parameters of 
the model are the weights and biases associated 
to the connections. Information is processed from 
the input layer to the output layer. 

The learning process is based on minimizing a 
cost function (also known as loss function) that 
evaluates the performance of the network for 
the given task. Backpropagation is used to learn 
the weights associated to the connections. One 
of the ANNs used in this work is a multi-layer 
perceptron (MLP) (Hastie, Tibshirani & Friedman, 
2009) implemented in WEKA (Hall et al., 2009; 
Witten et al., 2011). 
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3.4 ANN Optimization (Deep Learning)

In addition to using the MLP implementation 
in WEKA, a set of ANN architectures that 
represented a different number of layers (to 
evaluate the impact of the depth) and a different 
number of neurons in each layer was selected. 
The particular choice of the number of neurons 
is arbitrary and was intended to keep a balance 
between the goals of increasing the capacity of 
the model and keeping a manageable complexity.

The selected ANN architectures were the 
following: two architectures of one hidden layer 
with 16 nodes and 32 nodes; five architectures of 
three hidden layers of 16 nodes in each (16-16-
16), 32 nodes in each (32-32-32), and a different 
number of nodes in each (16-8-16, 32-8-32, 32-
16-32); and an architecture of five hidden layers 
with 32-16-8-16-32 nodes (see Figure 1). For 
each of these ANN designs, different activation 
functions, loss functions and gradient descent 
optimization algorithms were evaluated.

The activation function determines the type of 
non-linear transformation made to the linear 
combination of the weights and input neurons. 
In most cases, the rectified linear unit (ReLU) 
general activation function is used. Recently, the 
scaled exponential linear unit (SeLU) activation 
function (Klambauer et al., 2017) has been reported 
to produce promising results. This is an activation 
function that induces self-normalizing properties.

Regarding the choice of ReLU and SeLU, 
preliminary experiments were made with other 

activation functions including a sigmoid. Due 
to the page number restrictions and the poor 
results achieved with these functions, it was 
decided to include only the results for the ReLU 
and SeLU. It is emphasized that both functions 
are theoretically more sound since they address 
the vanishing and exploding gradient problems 
experienced by the sigmoid and hyperbolic 
tangent functions. They can be used for all the 
main neural network paradigms (i.e., MLPs, 
CNNs, and RNNs). In particular, SeLU, one 
of the newest activation functions proposed in 
the literature, was introduced with an eye on 
standard feed-forward neural networks and not 
envisioning CNNs.

Regarding the selection of the regression loss-
functions, the common ones were used: MSE 
or the sum of squared distances, mean absolute 
error (MAE) or the sum of absolute differences 
(see subsection 3.5). Among the available gradient 
descent optimization algorithms commonly used, 
Adagrad (Duchi, Bartlett & Wainwright, 2012) 
and Adam and Adamax (Kingma & Ba, 2014) 
were selected for the experiments (Keras, 2021). 
For the optimization process, the maximum 
number of epochs (times the learning algorithm 
iterated through the training dataset) was set  
to 50,000.

The eight ANN structures combined with two 
activation functions, two loss functions and three 
optimizers provided 96 different ANN designs. 
Only the training dataset (46,670 tenders) was 
used for the optimization process. Two different 
validation frameworks were evaluated: a train/test  

Figure 1. ANN structures
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division (Hold-out 80/20) and a K-fold cross-
validation with K=10. Figure 2 and Figure 3 
show the results obtained for the four error metrics 
(MAE, root mean square error (RMSE), relative 
absolute error (RAE) and root relative square error 
(RRSE)). The rows of the tables correspond to 
the eight different ANN architectures, the columns 
correspond to the two activation functions (RELU, 
SELU), two loss functions (MAE, MSE) and three 
optimizers (Adam, Adamax, Adagrad). The best 
results (minimum error) are coloured in green, the 
intermediate ones are in orange and the worst are 
in red.

A set of ANN configurations that performed well 
during the optimization phase was selected for the 
final test: 

	- ANN1:  Three hidden layers with 16-8-16 
nodes, SeLU activation function, MAE loss 
function and Adam optimizer (see Figure 2);

	- ANN2: Three hidden layers with 32-8-32 
nodes, SeLU activation function, MAE loss 
function and Adagrad optimizer (see Figure 3);

	- ANN3: Three hidden layers with 16-8-16 
nodes, ReLU activation function, MAE loss 
function and Adagrad optimizer (see Figure 2);

	- ANN4: Three hidden layers with 16 nodes 
in each, ReLU activation function, MSE loss 
function and Adam optimizer (see Figure 3). 

The optimization for the ANN architectures 
was performed using Tensorflow (Abadi et 
al., 2016; Tensorflow, 2021), which is an open 
source software library for ML. It is a very 
appropriate platform to evaluate with different 
ANN architectures. Keras is an API designed to 
simplify the use of Tensorflow.

3.5 Error Metrics

In this subsection, the error metrics used to 
measure the deviation of the predicted values 
compared to the real ones are presented.

The MAE (equation 3) and RMSE (equation 
4) are two of the most common metrics used to 
measure accuracy in absolute terms for continuous 
variables. The MAE measures the average 
magnitude of the errors in a set of predictions 
without considering their direction. It was also 
used as the loss function for the ANNs in the 
present experiments. The RMSE is a quadratic 

scoring rule that also measures the average 
magnitude of the error:

1

1 m

i i
i

MAE r p
m =

= −∑
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where ri are the actual observations (the true 
values), Pi are the predicted values and m is the 
number of observations.

In relative terms, the RAE (equation 5) and 
RRSE (equation 6) calculate the error values as 
a ratio (percentage):
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where r  is the mean of the actual observations. 
Values over 100% appear when the absolute or 
quadratic difference between the predicted values 
and the actual observations are bigger than the 
differences between the actual observations and 
their means.

Finally, the MSE (equation 7) is used as a loss 
function in the present experiments with the ANNs:

2

1

1 ( )
m

i i
i

MSE r p
m =

= −∑
                               

(7)

3.6 Validation

To evaluate the performance of the different 
ML paradigms, models were trained with 80% 
of the tenders (46,670). The remaining 20% 
(11,667) were used as a test. The same validation 
framework and train/test division of the dataset 
were used in the preliminary study.

4. Experimental Results

The validation was performed for the 11,667 
tenders in the test dataset. The random forest 
model was considered to be the baseline because 
it was used in the preliminary study and therefore 
enabled the comparison of the behaviour of 
different ML paradigms.
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ANN configuration

Activation function

Regression loss function

                         Optimizer 
Layer structure Adam Adamax Adagrad Adam Adamax Adagrad Adam Adamax Adagrad Adam Adamax Adagrad

Percentile 
value

Percentile

16x1 0.94M€ 0.77M€ 0.88M€ 1.04M€ 0.89M€ 0.73M€ 0.80M€ 0.75M€ 0.86M€ 0.89M€ 0.83M€ 0.75M€ 1.27M€ 100
32x1 0.91M€ 0.76M€ 0.94M€ 0.92M€ 0.86M€ 0.75M€ 0.82M€ 0.75M€ 1.03M€ 0.94M€ 0.88M€ 0.74M€ 0.87M€ 75
16x3 0.78M€ 0.75M€ 0.76M€ 0.73M€ 0.80M€ 0.80M€ 0.77M€ 0.75M€ 0.79M€ 0.80M€ 0.86M€ 0.80M€ 0.82M€ 59
32x3 0.78M€ 0.74M€ 0.76M€ 0.94M€ 0.77M€ 0.74M€ 0.78M€ 0.74M€ 0.79M€ 0.80M€ 0.82M€ 0.73M€ 0.79M€ 41

16-8-16 0.78M€ 0.76M€ 0.67M€ 0.73M€ 0.79M€ 0.75M€ 0.55M€ 0.76M€ 0.80M€ 0.81M€ 0.77M€ 0.73M€ 0.76M€ 25
32-8-32 1.11M€ 1.03M€ 0.86M€ 0.80M€ 0.79M€ 0.74M€ 0.95M€ 1.25M€ 0.86M€ 0.77M€ 0.77M€ 0.85M€ 0.75M€ 16
32-16-32 0.90M€ 1.01M€ 0.82M€ 0.79M€ 0.85M€ 0.73M€ 1.06M€ 1.27M€ 0.80M€ 0.83M€ 0.83M€ 0.82M€ 0.73M€ 8

32-16-8-16-32 1.00M€ 1.23M€ 0.84M€ 0.83M€ 0.83M€ 0.78M€ 0.98M€ 1.22M€ 0.81M€ 0.76M€ 0.78M€ 0.76M€ 0.55M€ 0
16x1 10.80M€ 10.86M€ 10.78M€ 10.62M€ 10.62M€ 10.74M€ 10.84M€ 10.68M€ 10.45M€ 10.59M€ 10.63M€ 10.64M€ 10.99M€ 100
32x1 10.68M€ 10.76M€ 10.63M€ 10.69M€ 10.61M€ 10.65M€ 10.71M€ 10.71M€ 10.68M€ 10.70M€ 10.62M€ 10.56M€ 10.78M€ 75
16x3 10.72M€ 10.73M€ 10.61M€ 10.68M€ 10.66M€ 10.57M€ 10.81M€ 10.47M€ 10.54M€ 10.66M€ 10.71M€ 10.56M€ 10.71M€ 59
32x3 10.95M€ 10.53M€ 10.60M€ 10.60M€ 10.51M€ 10.66M€ 10.82M€ 10.50M€ 10.63M€ 10.62M€ 10.62M€ 10.62M€ 10.66M€ 41

16-8-16 10.77M€ 10.59M€ 10.36M€ 10.64M€ 10.57M€ 10.58M€ 10.11M€ 10.68M€ 10.60M€ 10.68M€ 10.56M€ 10.58M€ 10.62M€ 25
32-8-32 10.91M€ 10.79M€ 10.86M€ 10.70M€ 10.71M€ 10.67M€ 10.86M€ 10.86M€ 10.93M€ 10.73M€ 10.64M€ 10.64M€ 10.58M€ 16
32-16-32 10.91M€ 10.99M€ 10.92M€ 10.70M€ 10.65M€ 10.58M€ 10.89M€ 10.92M€ 10.91M€ 10.71M€ 10.71M€ 10.71M€ 10.55M€ 8

32-16-8-16-32 10.95M€ 10.84M€ 10.86M€ 10.70M€ 10.73M€ 10.68M€ 10.92M€ 10.84M€ 10.83M€ 10.71M€ 10.72M€ 10.71M€ 10.11M€ 0
16x1 145% 119% 137% 160% 137% 112% 123% 116% 133% 137% 127% 115% 195% 100
32x1 140% 118% 145% 142% 133% 115% 127% 116% 159% 145% 136% 114% 134% 75
16x3 120% 116% 118% 113% 123% 123% 119% 115% 122% 123% 132% 124% 127% 59
32x3 121% 115% 118% 145% 118% 114% 120% 114% 122% 124% 127% 112% 121% 41

16-8-16 120% 117% 104% 113% 121% 115% 85% 117% 123% 125% 119% 113% 118% 25
32-8-32 171% 159% 133% 124% 122% 115% 147% 192% 133% 119% 118% 131% 115% 16
32-16-32 139% 156% 126% 122% 131% 112% 164% 195% 124% 128% 128% 127% 113% 8

32-16-8-16-32 155% 189% 129% 128% 129% 120% 151% 188% 125% 117% 120% 117% 85% 0
16x1 109.4% 110.0% 109.2% 107.5% 107.6% 108.8% 109.8% 108.2% 105.8% 107.2% 107.6% 107.8% 111.3% 100
32x1 108.2% 109.0% 107.7% 108.3% 107.5% 107.8% 108.5% 108.5% 108.1% 108.4% 107.5% 107.0% 109.2% 75
16x3 108.5% 108.6% 107.5% 108.2% 108.0% 107.1% 109.5% 106.1% 106.7% 108.0% 108.5% 107.0% 108.5% 59
32x3 110.9% 106.7% 107.4% 107.4% 106.5% 107.9% 109.6% 106.3% 107.6% 107.5% 107.5% 107.6% 108.0% 41

16-8-16 109.1% 107.3% 104.9% 107.8% 107.0% 107.1% 102.4% 108.2% 107.4% 108.2% 106.9% 107.2% 107.5% 25
32-8-32 110.5% 109.2% 110.0% 108.4% 108.5% 108.1% 110.0% 110.0% 110.7% 108.6% 107.7% 107.8% 107.2% 16
32-16-32 110.5% 111.3% 110.6% 108.4% 107.9% 107.2% 110.3% 110.6% 110.5% 108.5% 108.5% 108.4% 106.8% 8

32-16-8-16-32 110.9% 109.8% 110.0% 108.3% 108.6% 108.2% 110.6% 109.8% 109.7% 108.4% 108.5% 108.5% 102.4% 0

Error 
metrics

Mean Absolute Error Mean Squared Error Mean Absolute Error Mean Squared Error Colour legend

MAE 
(M€)

RMSE 
(M€)

RAE 
(%)

RRSE 
(%)

Experimental results

 RELU SELU

Figure 2. Error metrics (MAE, RMSE, RAE and RRSE) for different ANN configurations with validation 
framework train/test division (hold-out 80/20)

ANN configuration

Activation function

Regression loss function

                         Optimizer 
Layer structure Adam Adamax Adagrad Adam Adamax Adagrad Adam Adamax Adagrad Adam Adamax Adagrad

Percentile 
value

Percentile

16x1 0.99M€ 0.90M€ 0.96M€ 0.97M€ 1.01M€ 0.89M€ 0.97M€ 0.89M€ 0.94M€ 1.08M€ 1.02M€ 0.88M€ 1.25M€ 100
32x1 1.15M€ 0.91M€ 0.95M€ 1.01M€ 1.14M€ 0.92M€ 1.01M€ 0.90M€ 1.02M€ 0.97M€ 1.01M€ 0.91M€ 0.97M€ 75
16x3 0.89M€ 0.89M€ 0.88M€ 0.81M€ 0.88M€ 0.89M€ 0.90M€ 0.87M€ 0.91M€ 0.91M€ 0.99M€ 0.89M€ 0.91M€ 59
32x3 0.89M€ 0.88M€ 0.86M€ 0.91M€ 0.83M€ 0.98M€ 0.90M€ 0.90M€ 0.86M€ 0.82M€ 0.83M€ 0.98M€ 0.89M€ 41

16-8-16 0.84M€ 0.90M€ 0.91M€ 0.95M€ 1.04M€ 0.89M€ 0.81M€ 0.90M€ 0.91M€ 0.87M€ 1.02M€ 0.91M€ 0.88M€ 25
32-8-32 0.89M€ 0.91M€ 0.85M€ 0.86M€ 0.90M€ 0.84M€ 0.82M€ 0.83M€ 0.77M€ 0.92M€ 0.95M€ 0.87M€ 0.86M€ 16
32-16-32 0.89M€ 0.90M€ 0.89M€ 0.88M€ 0.99M€ 1.09M€ 0.88M€ 0.89M€ 0.89M€ 0.96M€ 1.15M€ 1.01M€ 0.83M€ 8

32-16-8-16-32 0.83M€ 0.87M€ 0.87M€ 0.98M€ 0.91M€ 0.88M€ 0.85M€ 0.89M€ 0.80M€ 0.86M€ 1.25M€ 0.87M€ 0.77M€ 0
16x1 14.30M€ 14.29M€ 14.25M€ 14.26M€ 14.29M€ 14.24M€ 14.26M€ 14.26M€ 14.26M€ 14.30M€ 14.27M€ 14.25M€ 14.32M€ 100
32x1 14.30M€ 14.31M€ 14.26M€ 14.25M€ 14.29M€ 14.23M€ 14.31M€ 14.28M€ 14.24M€ 14.32M€ 14.24M€ 14.27M€ 14.27M€ 75
16x3 14.26M€ 14.29M€ 14.27M€ 14.18M€ 14.22M€ 14.23M€ 14.32M€ 14.24M€ 14.27M€ 14.19M€ 14.21M€ 14.23M€ 14.26M€ 59
32x3 14.30M€ 14.28M€ 14.26M€ 14.25M€ 14.21M€ 14.28M€ 14.32M€ 14.28M€ 14.27M€ 14.25M€ 14.19M€ 14.22M€ 14.24M€ 41

16-8-16 14.24M€ 14.24M€ 14.25M€ 14.23M€ 14.24M€ 14.23M€ 14.21M€ 14.27M€ 14.27M€ 14.18M€ 14.23M€ 14.22M€ 14.23M€ 25
32-8-32 14.27M€ 14.29M€ 14.18M€ 14.27M€ 14.25M€ 14.18M€ 14.30M€ 14.19M€ 14.08M€ 14.24M€ 14.25M€ 14.25M€ 14.22M€ 16
32-16-32 14.25M€ 14.28M€ 14.24M€ 14.29M€ 14.21M€ 14.25M€ 14.25M€ 14.23M€ 14.24M€ 14.23M€ 14.21M€ 14.23M€ 14.19M€ 8

32-16-8-16-32 14.21M€ 14.26M€ 14.23M€ 14.26M€ 14.26M€ 14.23M€ 14.25M€ 14.25M€ 14.16M€ 14.23M€ 14.30M€ 14.23M€ 14.08M€ 0
16x1 124% 112% 121% 121% 127% 112% 122% 112% 118% 136% 128% 110% 156% 100
32x1 144% 114% 119% 127% 143% 115% 127% 113% 128% 122% 126% 114% 121% 75
16x3 112% 111% 110% 102% 111% 112% 113% 109% 113% 115% 124% 112% 114% 59
32x3 112% 111% 108% 114% 104% 123% 112% 113% 108% 103% 103% 123% 112% 41

16-8-16 106% 113% 114% 119% 130% 112% 102% 112% 114% 109% 128% 115% 110% 25
32-8-32 111% 114% 107% 108% 113% 105% 103% 104% 96% 116% 119% 109% 108% 16
32-16-32 111% 112% 112% 110% 124% 137% 111% 112% 111% 121% 144% 127% 104% 8

32-16-8-16-32 104% 109% 108% 123% 115% 110% 107% 112% 101% 108% 156% 110% 96% 0
16x1 103.0% 102.9% 102.6% 102.7% 103.0% 102.6% 102.7% 102.7% 102.7% 103.0% 102.8% 102.7% 103.2% 100
32x1 103.0% 103.1% 102.7% 102.6% 103.0% 102.5% 103.1% 102.9% 102.6% 103.2% 102.6% 102.8% 102.8% 75
16x3 102.7% 102.9% 102.8% 102.1% 102.4% 102.5% 103.1% 102.6% 102.8% 102.3% 102.4% 102.5% 102.7% 59
32x3 103.0% 102.8% 102.8% 102.6% 102.4% 102.8% 103.1% 102.9% 102.8% 102.7% 102.2% 102.4% 102.6% 41

16-8-16 102.6% 102.6% 102.7% 102.5% 102.6% 102.5% 102.3% 102.8% 102.8% 102.1% 102.5% 102.5% 102.5% 25
32-8-32 102.8% 103.0% 102.1% 102.8% 102.6% 102.2% 103.0% 102.2% 101.4% 102.6% 102.7% 102.6% 102.4% 16
32-16-32 102.6% 102.9% 102.6% 102.9% 102.4% 102.6% 102.7% 102.5% 102.6% 102.5% 102.3% 102.5% 102.2% 8

32-16-8-16-32 102.4% 102.7% 102.5% 102.8% 102.8% 102.5% 102.6% 102.7% 102.0% 102.5% 103.0% 102.5% 101.4% 0
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Figure 3. Error metrics (MAE, RMSE, RAE and RRSE) for different ANN configurations with validation 
framework K-fold cross-validation (K=10)
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Table 1 shows that the results obtained for the 
random forest model were improved for all the 
error metrics (the lowest errors are in bold). The 
linear regression model did not perform well 
because the results obtained are worse than the 
ones obtained with the random forest model for 
all the error metrics. Therefore, it was concluded 
that the model is not appropriate for the problem 
at hand. Isotonic regression and MLP performed 
better. In fact, both improved the results obtained 
with the random forest model for some of the error 
metrics. Isotonic regression improved all the error 
metrics. MLP substantially improved the results 
for the RMSE and RRSE error metrics (the values 
in bold) and are the best compared to the results 
obtained from the other models.

For all the error metrics, the ANNs are the models 
that obtained the best results (values in bold). The 
ANN2 architecture improved the simple MLP and 
had the best MAE and RAE errors. This comprised 
a network structure of only 3 hidden layers with 
32-8-32 nodes, SeLU activation function, MAE 
loss function. It was trained using the Adagrad 
optimizer and appears to be a very promising 
configuration in terms of the MAE. The simplicity 
of this network design makes it very suitable in 
terms of generalization to other data. 

Similarly, when considering the RMSE metrics, 
the MLP with parameters by default outperformed 
all the other configurations. Relative errors for the 
previous two ANN configurations were also very 
good. The ANN2 model had the best RAE, and 
the MLP model had the best RRSE. These results 
confirmed that these are the best ANN designs 
among the ones evaluated herein. Experts may 
select ANN or ANN2 depending on the risk they 
are taking: ANN2 minimizes the absolute error 
value, while ANN (MLP) obtains the minimum 
value for the square of the errors, which could be 
considered as a riskier bidding. 

Summarizing, ANNs are very promising models 
for award price prediction. The quality of the final 
predictions is very good considering that only 96 
ANN designs were tested.

5. Conclusion and Future Work

While the importance of using public datasets 
to make a more efficient use of public resources 
is generally acknowledged, the choice of the 
particular type of ML technique to apply to each 
problem is not straightforward. For award price 
prediction in public procurement auctions, it 
was previously reported that the random forest 
model is an efficient algorithm. The present paper 
investigates this question considering a larger 
set of ML models. Extensive experiments were 
conducted aiming to predict the award price of 
Spanish tenders.

The contributions of this study are the following. 
Using different metrics, it was demonstrated that 
ANNs and isotonic regression can improve the 
performance of random forests for the award 
price estimation of public procurement auctions. 
Furthermore, the influence of the neural network 
hyperparameters and gradient optimizers on 
the performance of the ANN was evaluated in 
detail and it was concluded that a careful choice 
of hyperparameters can further improve the 
predictions of the model.

These experiments used different error metrics, 
and the performance of different ML paradigms 
was evaluated. Upon analysing the obtained 
results, it was concluded that among the methods 
that are not based on ANNs, isotonic regression 
is the model that gives the best results. Using its 
implementation in WEKA, it was corroborated 
that it is a fast and efficient method for training 
and testing. However, according to all the 
error metrics considered, the ANN models can 

Table 1. Results compared with the baseline model (random forest)

MAE RMSE RAE RRSE
Random Forest (baseline model) 179,247.80€   6,621,784.24€ 31.11%   74.86%
Linear regression 228,491.36€ 15,535,231.61€ 39.66% 175.63%
Isotonic regression 136,971.39€   5,648,693.54€ 23.76%   63.86%
ANN (MLP) 270,953.50€   1,974,981.24€ 47.03%   22.33%
ANN1 140,763.27€   7,416,004.50€ 23.03%   83.84%
ANN2 123,570.91€   5,110,687.50€ 20.22%   57.78%
ANN3 157,181.00€   9,543,883.00€ 25.71% 107.90%
ANN4 124,035.82€   3,304,259.20€ 20.29%   37.36%
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outperform the results from isotonic regression. 
It was proved that a hyperparameter optimization 
phase can contribute to improving the predictions 
made by the ANNs.

There are a number of ways in which this work 
could be extended. Procurement datasets are 
updated daily, so we can increase the size of the 
dataset. An update of the dataset in order to include 
tender information up to 2021 and a revaluation 
of the performance of the ML algorithms are 
planned. On the other hand, three interesting input 
variables that have not yet been used and that 
could improve the award price estimator in terms 
of accuracy were discovered during the analysis. 
These variables include the price criteria weighing 
variable and the number of bidders for each tender 

and their economic offers. Unfortunately, this 
information has not been consistently collected 
in the Spanish public procurement datasets until 
now. When these values become available, they 
will be added to the input variables of this study.

Data Availability

The processed data used to support the findings 
of this study are available from the corresponding 
author upon request. The raw data from Spain are 
available from the Ministry of Finance, Spain. 
Open data of Spanish tenders are hosted in:

https://www.hacienda.gob.es/es-ES/GobiernoAbierto/
Datos%20Abiertos/Paginas/licitaciones_plataforma_
contratacion.aspx
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