On Modeling Genetic Algorithms for Flexible Job-shop
Scheduling Problems

Khaled Mesghouni , Slim Hammadi and Pierre Borne

Ecole Centrale de Lille
LAIL - URA CNRS D 1440
59651 Villeneuve d’Ascq Cedex

FRANCE

e-mails : mesghouni@ec-lille.fr, hammadi@ec-lille.fr, p.borne@ec-lille.fr

Abstract; Several problems in various industrial
environmenis are combinatorial problems. This is the case
tor numerous scheduling problems. Generally. there do not
exist efficient algorithms to solve these problems in their
general form. Generally. the combinations of goals and
resources have exponentially growing search space.
described in computer science terms as NP-complele.
Therefore, exact methods such as branch and bound
methods, dynamic programining methods, etc., take
considerable computing time and/or require complex
mathematical formulation. Recently stochastic search
techniques such as genetic algorithms have been
successfully applied to job -shop scheduling problems.
Genetic algorithms present some advantages. They are
robust in that they provide a good solution on a wide range
of problems. In addition. they can easily be modified with
respect to the objective function and constraints.

Our objective in this article is o improve performance of
the genetic algorithms based approach 1o job -shop
scheduling problems by developing effective genetic
operators. such as a parallel representation of the
chromosome. on the one hand. and genetic operators
associated with this original representation. on the other one

In this article we deal with the problem of flexible job-shop
scheduling which presents two ditficultes : the first one is
the assignment of each operation to a machine, and the
second one is scheduling this set of operations in order to
minimize our criterion (e.g. the makespan).

Keywords: Genetic Algorithms (GAs), Parallel
Representation, Initial Population, Priority rules,
Constraint Logic Programming

Dr. Khaled Mesghouni was born in Constantine, Algeria,
in 1968. He received the "Diplome d'Ingénieur en
Electronique” from the University of Constantine, Algeria.
and MSc. degree in Electrical Engineering from Ecole
Centrale de Lille. France, in 1993 and 1995. respectively.
Currently he prepares a Ph.D thesis in Automatic Control
at the University of Science and Technology of Lille,
France. His research interests include applications of
Artificial Intelligence in scheduling problems and
manufacturing systems. and regulation of automatic
transport systems using Fuzzy Logic. Dr Khaled
Mesghouni is a student member of IEEE.

Dr. Slim Hammadi is an Associate Professor of
production planning and control at the Ecole Centrale de
Lille. Born in Gafsa, Tunisia. in 1962, he obtained MSc.
degree in Computer Science from the University of Lille,
France, in 1988. In 1991 Dr. Hammadi obtained a Ph.D
degree in Job-shop Scheduling and Control from the Ecole
Centrale de Lille. He is a member of [EEE/SMC and a
lecturer for IEEE/SMC Journal. His teaching and research
interests focus on the areas of production control,

Studies in Informatics and Control. Vol. 7, No. 1. March 1998

production planning, computer science. discrete and
dynamnic programming and CIM.

He co-supervised two Ph.D theses: the first in the area of
the application of genetic algorithms to solve job-shop
scheduling: the second in the area of the application of
fuzzy logic to solve job-shop scheduling in uncertain
environment.

Professor Pierre Borne graduated from the University of
Lille in 1967 and obtained the Master degrees in Applied
Mathematics, Physics, Mechanics and Electronics in 1968.
In 1968 he also obtained the Diploma of Engineer of the
IDN (French "Grande Ecole” with the new name "FEcole
Centrale de Lille"). He obtained the Ph.D degree in
Automatic Control in 1970 and Dsc. of Physics in 1976.
He is now Professor of Automatic Control. head of the
Automatic Control Department and Scientific Director of
the Ecole Centrale de Lille.

He is involved in various international activities with
IEEE/SMC Society and with IMACS. In 1996 he became a
Fellow IEEE.

His research interests include stability analysis of non-
linear systems. and various aspects of robust control of
non-linear and complex systems.

1. Introduction

Scheduling and planning are difficult problems
with a long varied history in the areas of
operations research and artificial intelligence,
and they continue to be active areas of research
because a good scheduling algorithm can
enhance productivity in various fields such as
flexible manufacturing systems, production
planning, computer design, logistics,
communication, etc.

Scheduling can be defined as a problem of
finding the optimal sequence for executing a
finite set of operations under a certain set of
constraints which must be satisfied. A
scheduler usually attempts to maximize the
utilization of individuals and / or machinery
and minimize the time required to complete the
entire process being scheduled. Therefore the
scheduling problem is very hard to solve. It is
then quite difficult to obtain an optimal solution

37

for satisfying real time constraints using exact
methods such as branch and bound, and integer
programming techniques|[1] ‘require
considerable computing time and / or complex
mathematical formulations. Recently stochastic
search techniques such as simulated annealing,
tabu search, and Genetic Algorithms (GAs)
have been used to solve job-shop scheduling
problems and give good solution close to the
optimal one.

In this article we apply the GAs in order to
provide a flexible job -shop scheduling which is
to minimize the makespan of jobs. In simple
genetic algorithms, the chromosome (potential
solution) is encoded into a binary string; this
representation was used by Nakano and
Yamada [2, 3] to solve job-shop scheduling
problems, but it is not practical because some
correction process must be introduced. For this
reason some variations on standard genetic
operators must be tried.

. A specific genetic representation (or
encoding) depending on problems in
order to determine the feasible solutions
for job -shop optimization problems.

*. The initial population greatly influences
the results. That is why, finding a
method to help us produce those
solutions will probably improve the
solving quality. In the classical genetic
algorithms, we can create an initial
population randomly, but this is not
possible with scheduling problems
because a set of constraints (e.g.
precedence and resources
constraints)must be satisfied. For this
reason we should find an efficient
method able to generate the initial
population, in order to accelerate
convergence[4].

Section 2 describes the flexible job- shop
scheduling. In Section 3, a description of
genetic algorithms centred on scheduling
problems is made. The implementational
operators of the proposed methodology and the
experimental results are presented in Section 4.
Finally the discussion and conclusion are
presented in Section 5.

2. The Flexible Job -shop
Problem

The problem of flexible job -shop scheduling
presents two difficulties. The first one is the
assignment of each operation to a machine, and

38

the second one is the scheduling of this set of
operations in order to minimize our criterion.

The data and constraints of our problem are as
follows:

ks there are N jobs, indexed by j, and these
jobs are independent of one another;

each job) has an operating sequence
which is called Gj;

b each operating sequence G; is an
ordered series of x; operations O;; for i
= l... ;3

° the realization of each operation O,

requires a resource or a machine
selected from a set of machines, M;, =
tMij, . k= 1,2, ...,.M / M is the total
number of machines existing in the
shop! which implies that an assignment
problem exists;

. there is a predefined set of processing
times; for a given machine, and a given
operation, the processing time is defined
and called Py,

® a started operation runs to completion
(non preemption condition);

° each machine can perform operations
one after another (resource constraints).

Then, the aim of the search is to find a job
sequence for each machine, so that the
resulting schedule is feasible and the timespan
to complete all jobs (the makespan of schedule)
is minimized.

3. Genetic Algorithms in
Scheduling Problems

3.1 The Concept

Genetic Algorithms (GAs) are general- purpose
optimization algorithms with a probabilistic
component that provides a means for searching
poorly understood, and irregular spaces. The
first rigorous description of the genetic
algorithms process was given by Holland in
1960 [5]. Primarily the GAs have been used in
two major areas : optimization and machine
learning. For example in an optimization
application, GAs have been used in many
diverse fields such as function optimization,
image processing, the travelling salesman

Studies in Informatics and Control. Vol. 7. No. 1. March 1998

problem, scheduling
identification and control.

problem, system

Genetic algorithms are a group of global
optimization methods based on simulated
evolution, which simultaneously evaluates many
points in the search space, and it is more likely
to-converge toward the global solution. In GAs,
a set of variables for a given problem is encoded
into a string (or other coding structure) similar
to a chromosome in nature. Each string contains
a possible solution to the problem. The GAs
apply operators inspired by the mechanics of
natural selection to a population of binary
strings (or other structures) encoding the
parameter space on each generation, explore
different areas of the parameter space, and then
orientate the search to regions where there is
high probability of finding improved
performance. A major difference between GAs
and traditional optimization methods is that GAs
operate on a population of chromosomes,
searching the peaks in parallel. while traditional
methods will consider one solution at a time. By
working with a population of solutions. the
algorithm can effectively seek for many local
optima and thereby increase the likelihood of
finding the global optima.

Simple GAs begin with a population randomly
generated (or by other methods) and evolve
towards a better solution by applying the
principle of survival of the fittest to successively
produce better approximations to a solution. On
each generation of the GAs. a new set of
approximations is created by the process of
selecting individuals according to their level of
fimess in population and of breeding them
together using genetic operators such as
crossover and mutation [6].

The structure of simple GAs is described as
tollows:

Step 1 : Define a genetic representation of the
problem

Step 2 : Create a first population of chromosomes

Step 3 : Create a new chromosome by mating
current chromosomes; apply mutation
and crossover as the parent
chromosomes mate

Step 4 : Delete members of the population to
make room for new chromosomes

Step 5 : Evaluate the new chromosomes and
insert them into the population

Step 6: If time is up, stop and return the best
chromosome; else, go to Step 3

Studies in Informatics and Control. Vol. 7. No. 1. March 1998

Genetic algorithms have some components that
must be designed when the use of GAs to solve
a problem is contemplated. These components
make the syntax of the chromosomes. The
evaluation of these chromosomes has been made
by applying a set of genetic operators on these
chromosomes. Other decisions such as the
method for selecting parents must also be made,
but these considerations are usually dependent
on the particular problem to solve [6, 7].

To solve the NP-complete problem, the
traditional representation of the chromosome
{binary coding) and the manner how to generate
the first population (random generation) are not
convenient because we must observe the
ordering dependencies. On these grounds, we
should find a new chromosome syntax to fit the
problem and other methods for creating the
initial population.

3.2 Genetic Representation

Selection of a representational scheme of
solution is a basic and essential prerequisite for
a successful application of GAs. Traditionally,
chromosomes are simple vectors of the form
{ai.az,...,a,) where a; is called a gene or allele.
The values taken by a, are from a set of
symbols called the alphabet of the problem. A
set of variables for a given problem is
generally encoded into a binary string, in the
binary code the alphabet consisting of symbols
1" and **0’". But this simple representation
of the chromosome is not convenient in case of
representing complicated problems such as our
flexible job-shop scheduling problem, when a
certain order such as a precedence and
resource constraint [5, 6, 8, 9] should be
observed.

For this reason we suggest a new coding of the
chromosomes, called parallel representation,
which is a directly feasible scheduling and
gives all the necessary information to a
foreman, and also permits to conjointly treat
the assignment and scheduling problems. In the
case of our problem, the chromosome is
represented by a set of machines put in parallel
and each machine is a vector which contains its
assignment operations. These operations are
represented by three terms. The first one is the
order number of the operation in its operating
sequence, the second one is the number of the
job which this operation belongs to and the
third one is the starting time of the operation if
its assignment on the machine is definitive, This
starting time is calculated by taking into

39

account all the constraints. Indeed, the parallel
coding is presented as follows:

M1 (O,.)t.)
Mj (() - J:.t ;;_-‘L)
M3

M4

Figure 1. Parallel Coding

where:
O, represents the operation i of job J
t.;x is the starting time of the operation
O, performed on machine M,.

Example I:
We shall consider three jobs and five machines.

The operating sequences of these jobs are
presented as follows:

Job1: 0O1.1.02,1,03.1
Job2: 01.2,022,03.2
Job3: 01.3.023

O1.1 is the first operation of job 1 and O2.1 is
the second operation of job 1. etc.

In this example. where any operation can be
performed no matter of what machine with
different processing times, we have full
flexibility. The processing time of these
operations is shown in Table 1.

Table 1. Processing Time of the Operations

M1 M2 M3
Oy | 1 9 3
02,1 3 5 2
03,1 6 7 1
01,2 1 +)
02,2 2 8 4
05,2 9 5 1
01.3 1 5 9
02,3 5 9 2

One chromosome has a parallel representational
scheme indicated as below:

M1 (1. 100 1 6.2 1) | (2.2 203

M2 | L) | (1,3.6) | 3,1,10)

M3 | (3.2,4) | (2.3,11)

Figure 2. Parallel Representation of the
Chromosome

40

3.3 Initial Population

The choice of the first generation plays an
important part in the search for the good
solution. Generally, when we deal with an
optimization problem using a binary coding, the
initial population is usually chosen randomly.
But for the job -shop problem we must satisty a
set of constraints (precedence and resources
constraints); in this case it is not possible to use
a binary code and to generate a first population
randomly. For these reasons we have designed
the parallel representation of the chromosome,
and we should, in order to vary our first
population and to permit that our set of solutions
evolves in a very large domain, use a
combination of some methods. In this article we
generate an initial population using a
combination of these methods:

1. Use a set of solutions given by Constraints
Logic Programming (CLP) as a first
population [10].

2. Taking the solution of our problem solved
by other methods such as branch and
bound or temporal decomposition
approach, we will then apply genetic
operators, especially the mutation
operators, to extend the population.

3. Use a combination of the priority
rules[11]:

a) SPT: high priority for the operation
that has the Shortest Processing Time.

b) LPT: high priority for the operation
that has the Latest Processing Time.

¢) LM: high priority for the operation that
permits a balance of the load of the
machine.

This combination of rules gives a set of
populations used as a first population of our
genetic algorithms.

3.4 Selection

Selection is one of the most important elements
of all GAs. Selection determines which
individuals in the population will have all or
some of its genetic material passed on to the
next generation of individuals. The objective of
the selection method practiced in genetic

Studies in Informatics and Control, Vol. 7. No. 1, March 1998

algorithms is to give polynomial increasing
trials to the fittest individuals. Generally we
use for the selection the roulette wheel
technique.

3.5 Crossover

In nature, crossover occurs when two parents
exchange parts of their corresponding
chromosomes. In a genetic algorithm,
crossover recombines the genetic material in
two parents chromosomes to make two
children, in order to generate a better solution
[, 6, 9].

Child one is given by the following algorithm:

Step 1: Parent 1. Parent 2 and machine M, are
randomly selected.

Step 2: {O;;}« of Child | < {O;} of Parent |
[« 1
Step 3: While (I<M) do
It (I +# k)then

Copy the non- existing
operations of M, of
parent 2 into child 1

I« 1+1
End if
End while
Stepd: [« k

If (any operation of child 1 is missing)
then

Scan M, of parent 2 and copy the
missing operation

End if

To obtain child 2 go to Step 2 and invert the
role of parent 1 and parent 2.

Unfortunately when we have full flexibility (i.e.
any operation can be performed by any
machine), the sequence of operations defined by
a chromosome may be incompatible with the
precedence constraints of the operations, we
create a cycle in the precedence constraint
graph[12, 13]. Therefore some of the generated
chromosomes define nonfeasible schedules.
This problem is illustrated in the following
example:

Studies in Informatics and Control. Vol. 7. No. 1. March 1998

Let consider two jobs and two machines. The
operating sequences of these jobs are like:

Job I: OL1,021.

Job2: 01,2,02.2.
Suppose the chromosome is
M1 (2,2,9)
M2 (2,1,7)

(s 7
{1, 2. 7

Machine M1 should first execute operation 2 of
job 2, but it cannot do this until operation 1 of
job 2 has been completed; likewise M2 should
first execute operation 2 of job 1, but it cannot
do it until operation 1 of job 1 has been
completed. A deadlock situation has arisen,
therefore the chromosome does not define any
feasible solution (the starting time is represented
by symbol "?"). This case of illegal schedule is
produced by Step 4 of the crossover algorithm,
and we have a violation of the precedence
constraints.

There are two possible ways of dealing with this
problem:

1. To modify genetic operators so that they
can always produce (through suitable
manipulations) chromosomes which
feasible schedules correspond to.

2. To define a different encoding where all
chromosomes produce feasible schedules.

In this article, we use the first possibility. We
replace Step 4 of the crossover algorithm by the
following procedure:

New Step 4 of the crossover algorithm

We suppose that: O;; is the missing
operation. So we scan machine M, by applying
the following rules.

If(I=1)then

Put O;; at the beginning of
machine My

End if
If (I=x;)then
Put O;; at the end of machine M
End if
If(I €] 1. xj[)then

41

Find the row of O, and the row of
O+ inchild 1

Put O;; between the row of O, ; and the
row of Oy, j on machine My

End if

Example 2: We will use the same data as in Example 1.

Step 1: Suppose that : parent 1. parent 2 and machine M3 are randomly selected.

Parent 1
MI [(ILLO) | (1,2.D) | (2.2,2)
M2 | (2.1, 1) | (1,3,6) [(3,1, 11)
M3 | (3.2.4) [(2,3.1])

Parent 2

MI [(1.1.0) | (3.1.6) [(1,3. 12)
M2 | 2. L) [(1.2.6)
M3 [(2.2,10)[(3.2,14) | (2.3.15)

Step 2: Copy the operations assigned in M3 of parent | (respectively parent 2) in child 1

(respectively child 2) on machine M3

Child 1 in construction

MI
M2
M3 (.27

2,3.9)

Child 2 in construction

Step 3: Copy the non- existing operations of M1 and M2 of parent 2 (respectively parent 1)

into child 1 (respectively child 2)

Child 1 in construction

ML [(LLY) T 3.9] (1.3.7)
M2 | (2.1.9)] (1,2.9)
M3 | 3.2.9) | (2.3.9)

Step 4: If any operation is missing:
If any operation is missing
No for child 2 => New chromosome

Yes for child 1=> operation 2 of job 2 is
missing.

This operation is neither the first nor the last one
in the operating sequence of job 2, and in this

case we have 02,2 €] L3 [we find the row of

Child 1
MI | (LLO) [G 1.6) [(1.3,12)
M2 | (2.1, 1) | (1.2,4)
M3 | (2.2.10)[(3.2.14)] (2, 3. 15)

MI1

M2

M3 (2.2.7] (3.2.7 | (2,3,7)
Child 2 in construction

M1 (1.1.7) 1,2.7

M2 (2,1.7 | (1,3,7 | (3,1.7

M3 (220 | 5.2, | 12,3,

Oi,; (01.2) in child 1, this operation is placed
in row two on machine M2, and if the row of
041 (03.2) in child 1 is equal to 1, we should
put it before operation 03,2, In such a case we
move all the operations to the next row and put
02,2 in the first row on machine M3.

We shall calculate the starting time of each
operation through observing the precedence and
resources constraints according to the formula
indicated in Section 3.7. Finally we obtain:

Child 2
ML | (1,1,0) | (1,2, 1)
M2 | 2, LD | (1,3,6) | (3,1, 11)
M3 | (2,2,2) | (3,2,6) | (2,3.11)

42 Studies in Informatics and Control. Vol. 7. No. 1. March 1998

3.6 Mutation

Another important genetic operator is mutation.
Although mutation is important, it is secondary
to crossover. It introduces some extra
variability: it provides and maintains diversity in
a population, typically works with a single
chromosome, always creates another
chromosome [6]. We will consider here two
operators of mutation; the assigned mutation and
the swap mutation.

A/ Assigned mutation:

In this case, based on the flexibility of our
problem, the operation can be performed by one
or more machines. The algorithm of the
assigned mutation is as follows:

Step 1: One chromosome and one operation are
randomly selected.

Step 2: Reassign this selected operation to another
machine in the same position if
possible, sticking to the precedence and
resources constraints.

Example 3:

Step 1: Suppose that the following chromosome
and operation 3 of job 1 are randomly
selected (this operation is assigned on
machine M2 in the third position)

MI [(LLO) | (1.2 1) [(2.2.2)
M2 |2 L] (1.3, 6)
M3 | 3.2.4) |(2.3.1) | (3,1, 13)

Step 2: Reassign 03,1 or machine M3, and
obtain the following chromosome

ML [(LLO)y[(L) [(2.2.2)
M2 | LD | (1.3.6) [3,1, 10)
M3 | 3.2.4) [(2.3.11)

B/ Swap mutation:

The algorithim of the swap mutation is as
follows:

Step 1: We randomly select one chromosome,
one position, one direction and two
machines.

Step 2:

If (direction =0) then

Studies in Informatics and Control. Vol. 7. No. 1. March 1998

do a left swap.
Else If (direction = 1) then
do a right swap.
End if
Example 4:

Step 1: assume that the following chromosome
is randomly selected and machine M1,
machine M2, position two are
randomly selected.

ML (LLO) | (1,2,1)
M2 1222 1(,310]G1,1
M3 2L 13,2100 (2,31

wn
S

o
—

Step 2:

First case: direction = 0 —> Do left swap, we
obtain the following chromosome:

MI [(1.1,0) [(1.2. 1)
M2 | @2, 1,1) | (1.3.6) | (3, L, 11)
M3 | (2,2,2) | 3.2.6) | (2,3, 11)

Second case: direction = 1 — Do right swap,
we obtain the following chromosome.

MI [(L1Loy] (1.2
M2 | (2,2.2) [(1.3.10) [2,3, 15)
M3 | 2.1, | (3.2.10) 3, 1, 1)

3.7 Evaluation Function

The evaluation function (fitness function) is the
link between genetic algorithms and the problem
to solve. An evaluation function takes a
chromosome as input and returns a number or
list of numbers that is a measure of the
chromosome’s performance on the problem to
solve. Evaluation functions play the same role in
GAs as the environment in natural evolution.

The evaluation of the chromosomes is a critical
task of the system. Furthermore, the evaluation
function must indicate what about the schedules
that makes them seem good or bad to the
system’s users [14, 15]. In our case, the fitness
function is the minimizing of a makespan. For
each chromosome we have M machines, and we
calculate the time that it takes for this machine

43

to execute all the assigned operations and we
take the maximum time of M machines. This
time is calculated as follows:

Step 1: Take the starting time of the last
operation (O, ;) performed on Machine
k (called Ty).

Step 2: Add T, to the processing time of this last
operation (P, ;.). and obtain (Ty +P)

These two steps will be repeated for all
machines in the chromosome. The makespan of
this chromosome is calculated as follows:

MAX [(Ty + Pijx) « (Tio + Pijpa) vy (T +
+Pjkml)

4. Computational Results

This Section reports on the experiments made to
show the performance of the proposed genetic
algorithms. The implementation has been in a C-
language program.

Firstly, we propose a minimization of the
makespan of a small problem, 5 machines and 3
jobs using different methods, as previously
mentioned. to generate the initial population.
Operating sequences of these jobs are:

Job 1: 01,1, 02,1, 03.1.

Job2: 012,022,032

Job 3: 01,3, 02,3.

Table 2. Processing time of the operations

MI | M2 | M3 | M4 | M5
OL1] 1 9 3 7 5
021 3 5 2 6 | 4
031 o 7 1 EE
01,2 | 4 5 3 8
0,2] 2 8 4 | o 3
032 9 5 [2 | 4
L3 | | 5 9 3 2
03] 5 9 2 4] 3

Two methods have been used in order to
generate the first population:

44

1* case: Temporal decomposition method:
obtain 50 chromosomes through extending the
solution given by the temporal decomposition
method using our two types of mutations
(assigned and swap mutations) in the following
proportion:

- Swap mutation with probability = 0.75

- Assigned mutation with probability = 0.25
2™ case: Constraint logic programming: this
method gives 10 chromosomes, a succession of
our mutations will take place for extending the
first population and obtaining 50 chromosomes

with the same probability of mutation as
presented in the first case.

Our genetic algorithm is applied with the
following operators

- Size of Population (SP) =50
- Crossover Probability (CP) =0.65

- Assigned Mutation Probability = Swap
Mutation Probability = 0.05

- Number of Generation (NB GEN) = 20

/ L1 case
C
5 ? \
% ———————
26 N\
= 3 2 case
0
1 3 § b (2 | R T T A 1M
Generations

Figure 3. Comparison Between the 1’ Case
and the 2" Case

We can notice that: when our first population
contains some varied chromosomes, the results
can quickly be improved.

Secondly, the use of our method to another
problem, that has an important size, is proposed.
Here 10 jobs and 10 machines are considered
and the problem presents full flexibility (any
machine can perform any operation). Each job
has 3 operations in its operating sequence.

Processing times of these operations are shown
in Table 3.

Studies in Informatics and Control. Vol. 7. No. 1. March 1998

Table 3. Operating sequences of jobs and their processing times on all machines

Ops |Order[M1 M2 M3 [M4 M5 [Me [M7 [M8 [M9 [M10
01.1 L 4T el 9ol 3l s 28] 91]s
nmojozaz2 3l 2 s T i s5Tel ol s]io]s
03.1 a v {1 [3]ay8]iolalnng]4
01,2 sl s 7T 1ol el v a0l 711
2 o223 2ol al s 9ol 8] ali1s] s8] a
03.2 6 |11 | 2 7 s3] sfw]olz2
013 8 | s [8|9 a3l s{3]8]
Bjozhas{ 9l ale |l 1t [2Te6el a0 7712
03.3 71085 alo] 123714
01.4 s{1wlelalolsT 17116
J4 Jozalizal a2 3]sl 71 alel 9] 8] 4
03,4 73 {2l 1 e[s5]{8[3]s5]2
01,5 6 [1|4t Trola4]3Tuli3]09
s joassa 7ol al s T el 3 s5Tis] 216
03.5 56 3] o8l 2]8]6]| 1]7
01.6 8 | 9 10] 81 al2]7[8]3]1i0
Jo [02o23| 732543692115
03.6 a [7] 3] 6] 3] 4 s 1]
01.7 s 412121]8fii4]s]7
77 (0273203 sl v 2]3]6e6 |1t] 2]13]3
03.7 T | 78| 3fal9o]aj1i3]io]7
01.8 8§ | 3]10] 7[5 [1i3]4af6] 8] 4
18 02832l el 23] s T a3 sl 7195
03.8 s 7ol 321985]12]8
01.9 s ol v 1381 [el 7514
9 Jo2oliealaloeol 2t s 731]9)e6] 7
03.9 8 | 5| 486 | 1231012
01,10 g 2 d] B g s e T dael
nmolozadz2a [3 [o s il 9oa 1 [4]17
03.10 a1 3|1 el 71216207 6

This example makes a combination of some
methods for generating the initial population and
shows the advantage of using this method for
improving the problem results.

1" case: we take the solution yielded by the
temporal decomposition method (in this
example the best makespan given by this
method is equal to 16 units of time) as for the
first chromosome, and increase this population
using our mutations with the following rate:

- Assigned Mutation Probability = 0.5

- Swap Mutation Probability — =0.5

Studies in Informatics and Control. Vol. 7. No. 1. March 1998

We stop this process when 50 chromosomes are
obtained, and apply our genetic algorithms with
the following parameters

- Size of Population (SP) =50

- Crossover Probability (PC) = 0.75

- Assigned Mutation Probability (AMP) = 0.05

- Swap Mutation Probability (SMP) = 0.05

- Number of Generation (NB GEN) = 60

2™ case: we use the constraint logic
programming for generating a set of solutions,

this set contains 50 valid schedules representing
our first population. Then our genetic algorithm

is applied to improve this solution and obtain a
valid schedule with a makespan as nearest the
optimal one as possible, using the same rate of
genetic operators as presented in the first case.

3™ case: we use three methods to generate the
first population as follows:

1) Take the solution given by the temporal
decomposition method as the first chromosome
and apply different mutations to extend it and
obtain 10 chromosomes.

2) Generate 20 chromosonies using the SPT rule.
3) Generate 20 chromosomes using the LPT rule.

Then we take this set of 50 chromosomes and
introduce it into our GAs as an initial
population. and we apply the genetic operators
on improving the solution towards an optimal
one using a similar rate of genetic operators as
previously mentioned.

7% 2% case

\
it
g]
215 T I case
2 = - .
=l

5 3 ease

6 11 16 20 26 31 36 41 46 51 36

Generations

Figure 4. The Best Makespan of Different
Methods for Creating the First Population

In the first case, we created the initial population
using only a succession of mutations. We
obtained 13 units of time as a makespan, and
ameliorated the solution by over 18 %.

In the second case, the constraint logic
programming was used. The best makespan
found was equal to 22 units of time,

In the third case, we generated the first
population using two methods such as temporal
decomposition method and priority rules. The
makespan with this method was equal to 9 units
of time.

46

It is interesting to note that a good performance
of the proposed algorithm is also observed in a
large size problem. We can notice that the
makespan in the second case is the smaller one,
effectively in the first case. Between the first
population and the last one, the makespan is
improved by 18% and in the second case the
improvement is of over 26% but for the third
case, when we use some different methods to
generate the initial population, we have very
good results, the makespan given by the last
method is the smaller one and the improvement
between the first and the last population is
higher than 43%. Note further that if we run a
GAs based algorithm, with the possible greatest
diversified initial population by applying some
other different methods, the problem results will
be good. Indeed it is one of the reasons why the
performance of the algorithm is dependent on
the initial seed point.

5. Conclusion

The application of genetic algorithms to a
tlexible job-shop scheduling problem with real-
world constraints has been defined. New genetic
operators have been proposed using the original
idea of combining the assignment and
scheduling problems. In this paper we
demonstrated that choosing a suitable
representation of chromosomes (parallel
representation), genetic operators and the initial
population using a combination of some
optimization methods such as temporal
decomposition method, constraint logic
programming and the priority rules, was an
important step to getting better results.
Simulation results show that the results
presented in the second case are better than the
solution given by the other case. This confirms
the effectiveness of using a combination of
varied methods to create an initial population.

Proper selection of genetic parameters for an
application of GAs is still an open issue. These
parameters (crossover probability, mutation
probability, population size,...) are usually
selected heuristically. There are no guidelines
on the exact strategies to be adopted for
different problems. In this work we have looked
upon a fixed population size. Crossover
probability and mutation probability are kept
variable, having a high initial value, then
decreasing and finally increasing again.
Mutation could also have been used, which had
combined the merits of both genetic search and
gradient descent search for convergence

Studies in Informatics and Control, Vol. 7. No. 1, March 1998

acceleration.

Investigation is therefore

necessary for determining these controlling
parameters properly, in order to improve the
performance of the proposed method. Again, a
modification of the fitness function so as to
incorporate the information existing in job -
shop scheduling: will be part of a further
investigation.

REFERENCES

I

(o]

LS

N

6.

Studies in Informatics and Control, Vol. 7. No. 1. March 1998

CARLIER J. and CHRETIENNE. P..
Problémes d’ordonnancement: Modélisation

/' complexité / algorithmes, EDITIONS
MASSON. 1988,
NAKANO. R. and YAMADA. T.

Conventional Genetic Algorithm for Job
Shop Problems, Proceedings ot the fourth
International Conference on Genetic
Algorithms, MORGAN KAUFMANN; San
Mateo, CA. USA. 1991, pp. 477-479.

YAMADA, T. and NAKANO, R,
A Genetic Algorithm Applied To Large-
scale Job-shop Problems, in R. Minner et
al (Eds.) Parallel Problem Selving From
Nature, Amsterdam. 1992, pp. 281-290.

MESGHOUNL K. HAMMADI, S. and
BORNE. P.. Production Job-shop Scheduling
Using Genetic Algorithms, Proceedings of
[EEE /SMC. Vol. 2, Beijing. China. October
14-17, pp. 1519-1524.

GOLDBERG, D.E.. Genetic Algorithms in
Search, Optimization, and Machine
Learning. ADDISON- WESLEY. 1989,

SYSWERDA, G.. Schedule Optimization
Using Genetic Algorithm, in Handbook of
Genetic Algorithm. VAN NOSTRAND
REINHOLD, New York, 1990.

PARK. I. J. and PARK. C. H.. Application
of Genetic Algorithm to Job-shop
Scheduling Problems With Active
Schedule Constructive Crossover
Proceedings of IEEE/SMC. Vol. 1, October
22-25, 1995, pp. 530-535.

PORTMANN. M.C., Genetic Algorithms
and Scheduling: A State of the Art and
Some Propositions, Proceedings of the
Workshop on Production Planning and
Control, Mons, Belgium. September 9-12,
1996.

,_.
n

. MESGHOUNTI, K.,

. MESGHOUNI, K.,

TSUJIMURA. Y.. CHENG. R. and GEN,
M.. Improve Genetic Algorithms for Joh-
shop Scheduling Problems, ENGINEERING
DESIGN & AUTOMATION, Vol. 3, No. 2,
1997, pp. 133-144.

PESIN, P,
HAMMADI. S.. TAHON, C. and BORNE,
P.. Genetic Algorithms - Constraint
Logic Programming. Hybrid Method for
Job Shop Scheduling, OFE/[FIP/IEEE
[nternational Conference on Integrated and
Sustainable Industrial Production, Lisbon,
Portugal, May 14-16, 1997, pp. 151-160.

. MESGHOUNL K., HAMMADI, S. and

BORNE. P.. Hybrid Representation for
Genetic Algorithm To Solve Flexible Job
Shop Scheduling, Proceedings of [5th
IMACS. Vol.5, Berlin, Germany. August
24-29, 1997, pp. 433-438.

CROCE, F.. TADEL R. and VOLTA. G..
A Genetic Algorithm for the Job Shop
Problem, COMPUTER AND OPERATIONS
RESEARCH, Vol. 22, No.1, 1995, pp.15-24,

HAMMADI., S. and
BORNE. P., Parallel Genetic Operators
for Flexible Job-shop Scheduling,
Proceedings of st International Conference
on Engineering Design & Automation,
Bangkok. Thailand, March 18-21. 1997,
pp. 626-630.

. GEN, M., TSUIIMURA, Y. and KUBOTA, E.,

Solving Job-shop Scheduling Problems
By Genetic Algorithm, Proceedings of
IEEE International Conference on Systems,
Man and Cybernetics. Vol. 2, October 2-5,
1994, pp. 1577-1582.

CARLIER., J. and PINSON, E.,
An Algorithm for Solving the Job Shop
Problem, MANAGEMENT SCIENCE,
Vol. 35, No. 2, 1989, pp. 164-176.

47

