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Abstract: This paper reports on recent developments of a
research on nonlinear methods in speech analysis and on
flexible modelling of speech production. The final aim of
our research is to bring together speech analysis and
synthesis, in order to better understand the underlying
processes of speech and to address specific applications.
Several techniques used in the analysis of dynamic
nonlinear systems, are applied in order to investigate
some of the short-term nonlinear characteristics of speech
signal production. The research starts from the
physiological evidence that the phonatory system is a
time-varying nonlinear system, moreover that nonlinear
processes are present in speech production, such as
turbulent flow.

Before the main analysis, the speech signal is
decomposed into two parts: a low-dimensionai, almost
linear part and a high -dimensional nonlinear part,
respectively. For the latter, the largest Lyapunov exponent
and fractal dimensions (capacity, correlation and
information) are computed.

The synthesis tool is based on a fuzzy model of speech
signal production, that implements knowledge about the
speech production apparatus.
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1. Introduction

The understanding of how humans produce, hear
and recognise speech signals is important in
computer science, communication and medicine.
But several mechanisms in speech production,
perception and  understanding are  still
insufficiently understood.

The concern for involving nonlinear techniques in
analysing intricate aspects of speech production
has become significant [1- 11]. Also, there are
reported researches on nonlinear processes in
sounds production by several musical instruments,
mainly those with reeds [12]. These processes are
known to undergo a dynamics similar to speech
generation (at the level of vocal cords, as well as
at the level of the velum).

The present research has started four years ago, with a
view at verifying the underlying hypotheses:

I. to analyse nonlinear characteristics of speech
sounds;

II. to determine the possibility of recognising
phonemes by their nonlinear features
(parameters), or to improve the phonetic
recognition and speech synthesis by using such
features;

I[II. to determine the possibility of identifying
subjects' voices by using nonlinear parameters of
some specified utterances;

IV. to determine how nonlinear parameters are
influenced by the (health) state of the subject
(neurological disorders related to speech and
hearing, health state of vocal cords, larynx and of
other parts of the vocal tract); based on these
potential findings, to derive new diagnosis tools.

The first aim (I) is based on the rather natural
hypothesis that nonlinear processes occur in
speech production due to the following reasons:

* Turbulent air flow produced in the vocal tract,
when either vowels are pronounced, or consonants
are generated; at least for siflant and plosive
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consonants, this hypothesis looks to be rather a
datum.

» Nonlinear neuro-muscular processes should
occur at the level of vocal cords and of

larynx.

» Nonlinear couplings could be produced,
during speech generation, between different
parts of the vocal tract, due to (synchronous)
neuro-muscular commands.

+ As the neuro-muscular response to stimuli is
known to be (highly) nonlinear (by
physiological evidence, i.e. by directly testing
the response to electrical stimuli), the
nonlinear character of vocal production can be
considered, from the beginning, as a nonlinear
process. This way, the essential question asked
by researches based only on output data from
the system: "is the system nonlinear?" will be
answered.

+ As with physiological evidence for
(nonlinear) coupling between nonlinear
elements in the phonatory system, i.e. there is
a feedback over a nonlinear system, one is
motivated to expect some chaotic behaviour
during speech production.

The next aims (II, III, IV) are related to the
first hypothesis, complemented by the
hypotheses that nonlinear processes play a
great part in speech production, such that their
relevance is high enough.

This research is intended to apply nonlinear
analysis methods to speech signal. At present
we deal only with simple phonemes
(individual vowels). The phonemes are
denoted: /a/, /e/, i/, lo/, /u/. Further work
should be done to get the research extended to
larger statistics, on the one hand, and to extend
the work to semi-vowels and consonants, on
the other hand.

2. The Speech Production
Mechanism

Speech production (see [13], [14], [21]) is
accomplished by the human vocal /
articulatory apparatus. Speech sounds are
produced either by the quasi-periodic
vibration of vocal cords (for voiced sounds),
or by turbulence at some constriction point on
the vocal tract (that is larynx, pharynx, oral
and nasal cavities). For the voiced sounds, the
pitch (i.e. the base frequency) is controlled by
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the vocal cords tension and from the lungs air
pressure.

The vocal tract is delimited by hard and soft tissue
structures, that may be considered "fixed" (the
hard palate and teeth) or "movable" (referred as
articulators). Most of the variation in the vocal
upper tract shape is due to the primary
articulators, namely tongue, lips, lower jaw and
velum.

It is essential to stress the indirect coupling that
exists between various articulators, by means of
muscles connecting them. The couplings are
realised by muscles connected at various points on
larynx, hyoid and other anatomic elements (see
Figure 1).

digastric
sternocleido
mastoidian 14
omohioidian 7~ Rk §

sternolioidian 4

Figure 1. Muscular Coupling Between the
Parts of the Vocal Tract

The specific resonance characteristics of the vocal
tract are mainly dependent on the length of the
vocal tract and its shape, i.e. the cross sectional
area profile from vocal cords to lips. The shape of
the vocal tract is controlled by neuro-muscular
mechanisms involving some 20 muscles.

The source sound energy is reinforced through the
vocal tract resonators, at some particular
frequencies. These frequencies are commonly
called resonant frequencies, poles, or formant
frequencies.

Spectral Fourier analysis, applied to the acquired
speech signal, reveals the underlying contribution
of the excitation (as a harmonic structure of the
pitch frequency) and of the filtering characteristic
of the upper vocal tract (a slowly varying
frequency function). The phenomena involved in
speech production are studied with the help of
non-invasive techniques and/or by matching a
presumed model, in order to obtain a good
perceptual quality of the synthesised speech.

The main trends in speech modelling are:
articulatory, acoustic, stochastic (Hidden Markov
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Models), and nonlinear (Neural Networks,
wavelets, etc.) modelling.

Some of the most relevant models of the
speech production mechanism belong to
acoustic modelling, that is based on the
acoustic theory of speech production [3].
According to this theory, speech waveform is
considered to be the output of a resonant
network (namely the vocal tract filter) that is
excited by sound sources placed at the glottis.
The main sections of the speech production
mechanism, namely the voice source, vocal
tract and radiation effects, are likely to be
linearly modelled in a non-coupled manner
following a source - filter arrangement. The
assumption that the source and the filter can be
separately modelled probably holds for most
of the cases. However, this assumption is
questionable for low frequencies, because the
nonlinear coupling may produce damping of
the first formant. It is also disputable for
unvoiced speech (excitation is due to
turbulence originating at constrictions on the
vocal tract itself) [3, p. 14].

There are two main techniques emerging from
the acoustic modelling framework: time-
domain techniques (e.g. linear prediction) and
frequency-domain techniques (cascade and
parallel formant synthesisers).

The usual, linear model of the vocal tract has a
frequency characteristic with peaks at
frequencies corresponding to the resonant
frequencies of the vocal tract.

It is known (see for instance [21]) that the
vocal tract filter can be approximated by an
all-pole filter, i.e. its transfer function can be
represented as a rational function, whose
parameters vary "relatively slowly" in time,
for a given speech sound. Thus, samples of the
speech signal over relatively short time
intervals are formed when an excitation (a
series of glottal pulses) is applied to that all-
pole filter,

The effect of radiation on the lips can be
linearly modelled by a polynomial function in
= variable.

All the systems in such models should be time-
varying, with their parameters changing in
accordance to the sound to be produced.

For voiced speech, the excitation can be
approximated by a pulse train in which the
pulses appear according to the instantaneous

pitch rate. If a single pitch period is analysed at a
time, an analysis known as "pitch synchronous
analysis", only one pulse occurs somewhere in the
period.

The classic linear model is satisfactory only as a
first approximation of the overall nonlinear
process of speech production, and only for short
time frames, on which the signal is quasi-
stationary.

3. Variability and Nonlinearity in
Speech Signal

The variability of the speech signal originates in
the specific dynamics of the articulatory
apparatus. We emphasise the well -known fact
that the phonatory system is a time-varying
system, and consequently speech signal is
nonstationary (not only second order, but higher
orders too). A large class of nonstationary - and,
as pointed out below - nonlinear processes are
involved in speech production.

Globally, the speech signal is a nonstationary
signal. Below, we discuss the "variability" at the
level of a single vocalic phoneme, in the central
part of it, that could be supposed "repeatable" on
a frame translation basis. A long-time variability
(nonstationarity), due to the change of the spoken
phonemes, is beyond the scope of this discussion.
Neither is of interest here the variability in
pronunciation of the same utterance or of
phonemes, at different moments of time, or the
variability in the frame of a single phoneme at the
level of the starting and terminal parts of it (its
connection to the previous and subsequent
phonemes).

Taking the source -filter model as a basis, the
variability of voiced speech can be roughly
explained by considering the time variation of:

° glottal pulse train (shape and pitch, both
being nonlinear functions in the natural
case);

° central frequencies, bandwidths and
relative amplitudes of the formants;

® couplings between the "source" and the
"filter" parts, if accurately modelled.

As a consequence, we assert that, for the case of
vocalic phonemes, the nonstationarity can be
produced:
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i) as a consequence of the time-dependent
nature of the system which generates speech
(the phonatory system), or

ii) as a consequence of the nonlinear and
dynamic nature of the speech source (glottis),

or

iii) as a consequence of both time-varying and
nonlinear nature of the phonatory system: the
glottal generator has a nonlinear dynamics and
the upper tract is continuously changing in
time.

To differentiate between these cases on short
time series, such as those from the middle part
of vowels, is a challenging task. Besides, to
our knowledge, a fundamental theory of time-
dependent nonlinear systems is missing almost
completely, as a methodology does. It is also
likely that one cannot discriminate between
cases (i) and (ii). So, the results in this
research are limited by such restrictions of
validity. If the nonlinearity can still be
determined in such a case, by using classic
methods from the theory of nonlinear systems,
then this research hopefully proves (see
below) that there are nonlinear processes in
speech production. The main justification for
using the nonlinear analysis lies in the physical
and physiological evidence for nonlinear
processes in speech production. However, it
seems to be impossible now to trace a
boundary between the role played by nonlinear
processes and that played by nonstationarity
processes in speech production (iii).

It turns out that generally. only for simplifying
purposes the speech signal is considered to be
a locally stationary signal {frames of 5-40 ms,
depending on some prerequisites).

The natural vocal signal never repeats itself,
even in the case of constantly uttered vowels.
The variability is easily noted by monitoring:
the zero crossing rate, the pitch, the shape of
time domain signal, time domain envelope,
variation of the central frequencies and of the
bandwidths of formants etc. Statistical tests for
nonstationarity can also be used to the same
end. In our opinion, the speech signal may be
regarded as a concatenation of nonlinear
regimes, i.e. a mixture of nonlinear and
nonstationary processes.

4. Portraying the Dynamics of
Speech Signal

Drawing attractors of the acquired speech signal
gives an intuitive picture of its dynamics. The
phoneme attractors were constructed with the help
of phase- space reconstruction of the time series.
Commonly used maps for graphic representations
in the phase -space are:

x=x[k]; y = fix[k-1])) (1)
x=x[k]; y = x{k-1]; z=x[k-2] (2)

The above mentioned maps work well in the case
of systems of difference equations of relatively
low order (lower than 3). Given the fact that the
speech signal is the projection of a dynamic
process with several degrees of freedom, we
preferred to define the phase-space in the
following manner:

x=x[k]
y =x[k+1] - x[k-1] (3)
z = x[k+1] - x[k]

where x[k], k=1, ..., N, denotes the samples of the
vocal signal.

Figures 2 through 7 illustrate the plots of y(x),
y(z), z(x) corresponding to vowels, as mentioned
above. In these Figures. signals from two speakers
(denoted by I and II) are exemplified.

The diagrams are composed of large windings,
corresponding to lower spectral components
(larger amplitude), as well as of small windings,
corresponding to higher spectral components
(smaller amplitude).

B 66,000

Figure 2. /e/ Vowel Attractor, 1000 Samples
(80 msecs.)

Figure 2 represents the /e/ vowel attractor, built-
up using 1000 samples (80 msecs., @12
Ksamp/sec). Using a larger time window, one can
see that the attractor's tube has a larger section,
filling the phase space and tending to cover the
small windings (Figure 3: the /e/ vowel attractor,
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drawn using 5000 samples, i.e. 400 msecs.).
Overall shape is still distinguishable.

TE 510,000

Figure 3. /e/ Vowel Attractor, 5000 Samples
(400 msecs)

A comparison between two speakers uttering
the /a/ vowel (500 samples, 40 msecs.) is
presented in Figure 4 and a comparison
between /a/ attractors drawn for different
segments of the same voice file, 2000 samples
apart (160 msecs.) is illustrated in Figure 5.
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Figure 4. A Comparison Between Two
Speakers Uttering the /a/ Vowel (500
Samples, 40 msecs.) Plots for x,y,z
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Figure 5. A Comparison Between /a/
Attractors Drawn for Different Segments of
the Same Voice File, 2000 Samples Apart
(160 msecs.) Showing Variability

Two phonemes uttered by the same speaker
may be compared, as in Figure 6 {/a/ and /o/),
as well as phonemes produced by two speakers
(Figure 7, /a/ and /e/).

2000 |

|
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Figure 6. A Comparison Between Two
Phonemes (/a/ and /o/) Uttered by the Same
Speaker

Figure 7. A Comparison Between Twa
Different Phonemes, Uttered by Two Speakers
(/al and /e/)

The following comments result directly from the
Figures:

a) The existence of relative stationarity periods is
visually  confirmed: attractors are  well
individualised for a time series length
corresponding to 20-40 ms; although the utterance
was intended to be stationary, significant
variability does exist: larger time periods result in
a diffuse-like aspect of the attractor (Figure 3),
but still preserving a global aspect. Local
variability, for very short time periods, say one or
two quasi-periods, can be easily noted. For
instance, in Figure 7, lower row: the signal has a
rather noise-like pattern for certain speakers,
affected by some disfunctions (e.g. inducing
involuntary tremolo).

b) This approach is not enough to perform a
phoneme or speaker classification / recognition
only by looking at the attractor, but may be seen
as a part of a virtually more complex analytic
method. As to be shown, drawing the attractors
generated the suggestion for a new method of
nonlinear speech signal processing: an original
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technique for decomposing and analysing the
speech signal.

c) Drawing the attractors is a better way to
figure out the dynamics of the system. The
existence of large and small windings, of
some local irregularities, suggests the idea of
decomposing the speech signal into two parts:

° a "smooth variant" that follows roughly
the significant windings, accounting for
a so -called "main" part of the signal,
keeping its "salient" properties that
carry basic information contained in the
speech signal; an intuitive example is
low rate speech coding.

® the difference resulting from extracting
the "smooth variant" from the acquired
signal; we grant this derived signal to
contain most of the "local", short-term
variability of the speech signal.

Other techniques for obtaining the attractors
are also known: time delay (Takens) [26] and
SVD (singular value decomposition [27])
embedding. Our method is quite similar to the
first one, while the second has the
disadvantage of eliminating high order
relevant dynamic features (namely the ones
that we are looking for).

5. The Nonlinear Analysis
Method

Testing the relevance of various complexity
parameters as descriptors for nonlinear
processes in speech production was one of the
purposes of our research. According to the
dynamics at hand, different measures of
complexity show different sensitivities in
contrasting processes from the same class. The
maximal Lyapunov exponent is found to serve
well as a descriptor for nonlinear processes in
speech production.

According to our analysis method, short
successive frames of speech signal are
explored, in order to substantiate a nonlinear
measure for the locally quasi-stationary
regimes. Simple phonemes (namely vowels),
uttered in some specific way ("constant”
amplitude and pitch on long enough periods),
were analysed.

The acquired signal is considered to be a
monodimensional projection of a nonlinear
dynamics. The projection carries information
from the originating dynamics. Although this
information is not expected to be exhaustive
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(i.e. to fully describe the phenomena involved),
applying several nonlinear techniques may
substantiate specific features of the speech signal.

Our study introduces, for the speech signal, the
computation of a relative divergence rate for
specifically derived time series, previously
reconstructed in a high dimensional state space.
The resulting measure leads to a new description
of some varying nonlinear phenomena present in
the speech signal.

5.1 The Principles

For complex systems that are difficult to describe
by governing equations, the phase- space
reconstruction technique has become widespread.
Consequently, some geometric parameters that
characterise the phase -space may be computed:
dimension (several different definitions are
known) and Lyapunov exponents [15-20]. These
measures globally characterise the underlying
dynamics, making it possible to obtain some basic
information about the analysed system.

The phase ~(or state) space is the set of variables
that (hopefully, when no analytic form is
available) adequately describes the evolution of
the system. The attractor of the dynamics in the
state -space is a geometrical object, the limit set
which the dynamics converges to after transient
extinction.

The Lyapunov spectrum is defined by:

1 v
Ap = lim —log[ eig [T1(s) ] (4)

v—sm VY 5=0
i=1 ../ (I=Lyapunov dimension)

where J is the Jacobian of the system as the
generic point s moves around the attractor.
Lyapunov exponents describe the average rate of
exponential divergence / convergence of the
(adjacent) trajectories, in a set of orthonormal
directions within the embedding space. For the
calculus based on time series, one uses some
successive neighbourhoods, comprising neighbour
points of the current point on the trajectory, in
order to compute tangent maps Ts of the
application associated with the dynamics. The
divergence / convergence rate is computed using
pairs of points on the trajectory, and iteratively
(after n steps) the current pair is replaced by
another one. Using a recurrence relation:

TeokQi 1= QpRy (5)
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(with k = 2,3,...,m, m = working embedding
dimension, m < / ), the Lyapunov spectrum
follows from a QR decomposition:

A= lim — % log(R;), (6)

v o V=1 "

As it is well -known, the attractor of a dynamic
system may be: a fixed point, a limit cycle, an
i-torus or a chaotic attractor. A simple
circumstance is that when the parameters of
the system do not change with time. This does
not occur for the vocal production system, so
we have strong reasons to believe that the
attractors (in fact a whole set of "local"
attractors, that we attempt to reveal) change
correspondingly.

In the classical models for speech production
and analysis / recognition, the nonlinearity
aspects of the vocal signal are dealt with either
using various noise models, or referring to
turbulence phenomena or even to the
variability of vocalic phonemes [13], [14]. As
at least turbulence is a nonlinear process, it is
appropriate (and desirable) to apply principles
and methods specific to dynamic nonlinear
systems. According to the technique
developed by us and described below, one
computes the maximal Lyapunov exponent for
some nonlinear time series originating in the
acquired vocal signal.

5.2 The Method

The vocal signal was acquired using a 16 bit
resolution A/D interface, at a sampling rate of
22050 samples/sec. The resulting time series
{x[k], k=1..N}, representing the acquired vocal
signal, are stored as PCM files (pulse coded
modulation format). As introduced in Section
4, the shapes of the attractors for the acquired
speech suggests further analysis by performing
a certain signal decomposition, as we describe
in this Chapter.

Other  methods for  speech  signal
decomposition are known to be effective.
Mainly, they aim to evidence a deterministic
part and a stochastic one. One approach (see
[6]) is a version of the Harmonic + Noise
Model [Stylianou, Laroche, Moulines, 1995]
that implements the deterministic part as a sum
of harmonically related sinusoids with time-
varying harmonic amplitudes and linear phase.
Although the HNM is granted to improve
speech synthesis, we state its lack of natural
basis. There is no proof that pure noise may

arise from the dynamics of the speech production
apparatus, although low level random components
may be present in the acquired speech signal.
More likely, the "nonperiodic" part is the result of
the turbulence of the air flow and of the nonlinear,
nonstationary dynamics in speech production
apparatus. Theory and practice of the nonlinear
dynamic systems show that the "output" of such
systems is a highly irregular signal, eventually
containing harmonic and random components too.
In our method we prefer not to extract the
"maximum" of the periodic part, but to separate a
basic part (easily linear - modelable, carrying the
minimum amount of perceptually relevant
information), and a residue containing nonlinear
dynamics that is subject to in -depth analysis. In
our approach, we choose to define the
decomposition of the speech signal on a
perceptual basis. This is because we try to identify
and describe the phenomena that add perceptual
specificity to a basic, nonspecific voice signal
(e.g. band-limited, or low order LPC - linear
predictive coding).

We take into consideration the hypothesis that the
speech production apparatus evolves in a
nonlinear manner during the production of
phonemes. Consequently, this should induce a
specific pattern on the acquired speech signal,
viewed as a monodimensional projection of the
overall dynamics. Short -time nonlinear processes
should be identified with typical methods of
nonlinear dynamics analysis. Moreover, the
results obtained should be in good concordance
with the established results in the classical theory
of speech. Therefore, we compare our results with
some classical characteristics of the analysed
speech signal. Since we try to emphasize some
aspects also related to the nonstationarity of
speech, it is most advisable to consider the
characteristics of pitch as a reference carrying
information about the vocal tract dynamics.

In our view, an approach to signal decomposition
that deserves consideration is computing
(followed by its extraction) of a synchronous
mean of the signal or a low order LPC model:

1

i(k) = _3_()((}( _ [) + (k) + X(k + 1))1

k=1.N.1eN

(7)

The time series to be analysed is obtained by
subtracting from the primary voice signal x[k] its
own "smoothed variant" %[k]. There results the
difference signal, obtained by a synchronous
(sample by sample) extraction:

d(k) = x(k) - ®(k), k=1.N (8)
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Estimates of the correlation dimension [18],
[19], [20], [25] for such time series are centred
around 5.5, on a scale between 1 and 10,
which reflects a high dimensional underlying
process.

The final processing of the signal was done by
using various length frames (p = 128 .. 2048
samples) from the initial time series: {X;}j-q1q
c ix[k].k=1<ql..q2 <..N}.p=q, - q;. The
subseries were used as input for the maximal
Lyapunov exponent computing algorithm.
Finally, time characteristics are drawn for the
whole file, making a parallel with pitch period

characteristic T, (expressed in the number of
samples) of the voice signal.

The algorithm for the calculus of a Lyapunov
exponent has two parameters: embedding
dimension D and the number of steps » until a new
pair of points is taken. Another parameter for the
overall method is the length of the time subseries, p
(number of samples). The lower limit of D
parameter is forced by the estimated embedding
dimension and is taken to be D = 6. The influence
of the other two parameters is fully explained in the
next Section.

We used three ditferent implementations of
the known algorithms for computing
Lyapunov exponent [23], [24], [25]. The
source code in [23] was recompiled to allow a
larger number of occupied boxes. Comments
about computational outputs corresponding to
the use of different implementations follow in
Section 6.

Figures 8 through 13 (time diagrams) illustrate
the most typical cases of all those analysed.
The lower and upper bounds of the parameter
Ty and of the computed value for L are on the

same vertical with the corresponding symbol; ¢
stands for time.

0.090 126 t

Figure 8. Phoneme /a/, Characteristics of
Pitch Period 1; and of Maximal Lyapunov

Exponent L (D=6, n=3, p=2048), Time
Length of Series: T=3 sec.

We have considered 3 sec. speech waveforms,
save for Figure 10 that presents the case p = 512
(1.5 msecs. length of the waveform). Run tests for
n =23, 5, 7 are carried out (n = number of steps, as
previously introduced).

Figure 9. Phoneme /a/, Characteristics of Pitch
Period T; and of Maximal Lyapunov

Exponent L (D=6, p=2048, n=3 -Upper and n=5
-Lower Characteristic of L, Slightly
Downwards Translated); Only the Time
Evolution Is Illustrated

v %"x,
\f

Figure 10. Phoneme /a/, for p=5 12 (Adjacent
Series Are Taken With A Superposition of 128

Points and Finally Both T, and L Are Three

Times Averaged Using Relation (7), Each Time
Starting From Both Ends); T=1.5 ms.

it

| .
{ & d
‘ Xw"g X

Figure 11. Phoneme /e/, T; and L, n=3,
p=2048, T=3 sec
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Figure 12. Phoneme /a/;: An Example of
Inappropriate Setting of n Parameter; n=7
(Too High)

0,124 170 )

Figure 13. Phoneme /i/, T; and L, n=3,
p=2048, T=3 sec

The pitch characteristic was computed by an
interactive algorithm that is, for this type of
signal, completely error free (no simplifying
hypotheses are made), resulting in the "true"
value of the pitch period measured in a
number of samples. The algorithm is based on

the fact that every quasi-period (T ) of the

time-domain speech signal has a major peak
that can be detected by a threshold routine. It
picks the largest peak within a time window of
length equal to some presumed mean pitch
period. In order to validate the calculus, the
results are carefully inspected visually, for the
whole length of the time series. The method is
quite cumbersome, but it is effective, since we
are interested in the "true" pitch characteristic,
not in a long term average. Anyway, this
calculus is intended to be done only at the
stage of understanding the contribution of
pitch variation to natural speech production.

6. Discussion

As there is strong medical (physiological)
evidence that the system which generates
speech (the phonatory system) is a nonlinear
system, moreover as there is physical evidence

that sound waves are produced - partly - by
turbulence, our opinion is that the question: "does
the speech signal include chaotic components?"
has an a priori answer (Yes). To conclude, the
problem is to analyse whether this component is
strong enough (with respect to noise and to the
harmonic model), and to derive its characteristics.

The results shown in the above Figures confirm,
based on Lyapunov exponents, that nonlinear
processes are present in speech production, as
expected.

The behaviour of both parameters p and » shows a
good match of our method with the classical
theory, namely speech and dynamic nonlinear
systems domains. When suitable parameters are
chosen, the analysis of the local attractor for the
quasi-stationary nonlinear regime is successfully
done. As a consequence, the L characteristic for
the whole x[k] series has a coherent evolution in
comparison with other features of the analysed
signal (here, pitch period). When the parameters
do not conform to the classical theory, bad results
are obtained, as one may anticipate.

The evidence that arises from the analysed cases
is that there exists a significant correlation

between the pitch period T; and the maximal

Lyapunov exponent L (see Figures 8 through 10).
The computed value of the maximal Lyapunov
exponent L, for the derived time series, follows in
the same manner the altering (growth or decay) of

Ty . The dependency relation is not expressed by

a multiplying constant, because, as we suppose,
the computed value for L is also influenced by
other phenomena, for instance the formantic
structure altering. It is easy to note (Figure 10)

that L better follows 1;; when relative variation

of Ty may be considered significant (large
slopes); we suppose that noise affects L value in
the case of smaller T; variations, but a rough

tracing may still be noted. For our future work, we
intend to preprocess the analysed series by a
suitable filter, in order to cancel the noise and still
preserve high order components we try to
characterise. Another error source is the specific
algorithm implementation [15 - 17], based on
ergodic and computational hypotheses, that do not
unconditionally fit every particular case studied .

The optimum value for the p parameter is within
the range of 256 to 512 samples (a time interval of
11-20 ms), as in Figure 10. This certifies the
coherence of the method (as to the lengths of the
analysed frames), and assesses its reliability. It
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shows that best results appear for a duration of
the subseries equal to the classical stationarity
period for the speech signal.

We may conclude that the best embedding of
nonlinear phenomena (that is the optimum
modelling of the nonlinear system) is done
when the length of the time series, as fed into
the maximal Lyapunov exponent computation
algorithm, is close to the stationarity period
tor the analysed signal.

When applying series averaging (as in Figure
10)  the  resemblance  between  the
characteristics of T, and those of L becomes

even more obvious. Our method, at the present
stage, makes only a rough computation by
taking adjacent or half-overlapped series. As a
consequence, there still results a small
divergence of the nearby values. The
averaging of the resulting L series reveals the
almost "true" characteristic, as expected for a
speech signal (that is basically slowly
variable).

The optimum value for » is n = 3 (see Figure
9: for n = 5 the L series only roughly follows

the T, characteristic, and for n = 7 the

relevance (i.e. convergence) of the calculus is
completely lost, as in Figure 12). This
behaviour is as expected. The computation
algorithm for the Lyapunov exponent is also
based on the assumption that a small value for
n(n=1 n=2) does not allow a proper
evaluation of the exponent (the system has not
really evolved). A high value for n (here, n >
5) implies that the divergence / convergence of
the trajectory is lost.

We do not attempt to make a direct and
uncertain connection between the computed
values for L. in the cases described in this
paper. and the computed values of Lyapunov
exponents tor chaotic systems. We only state
the adequacy of the introduced measure for
analysing continuously varying nonlinear
systems like human vocal apparatus.

Our previous studies showed that a mean value
of L roughly defined a weak clustering of
vowels [9] (see Figure 14), but the spelling
context deeply influenced the quality of the
clustering. A similar remark is made in [1],
concerning computed values for the fractal
dimension of speech: absolute estimated
values are not so important as their average
ranges and relative differences in the context
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of time scale, specific discrete algorithm, speaking
state.

It is also worth mentioning that we used several
implementations of different algorithms and we
concluded that (partially) distinct results might
appear. Some values in the L time series may
differ for the same x[k] series. We suspect
algorithm's lack of capacity to cope with the entire
specific feature set of the time series to be the
source of error. A careful analysis of time series'
compliance with algorithm's parameters is needed
in order to obtain significant results.

Furthermore, notice that L is not a weak measure
for the pitch. Tests were made using low-pass
filtered (0..300 Hz) speech signal and synthetic
"chirp" signal. The computed values for L were
{as expected with respect to the theoretical basis
of the algorithm) very close to zero and had very
low dispersion, testifying an almost periodic
signal. We had also tested the sensitivity of the
present method to vocal signal amplitude
variation and found no significant influence for a
variation of 75%.

The analysis was done using signal acquired from
tive speakers. Here we have shown only the most
representative cases.
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Figure 14. Mean Value for L Defines A Weak
and Context - Sensitive Clustering of Vowels
(the Case of Three Different Pitches)

More details on the nonlinear analysis of speech
signal, according to the method described above,
can be found in [28] and [29]. where the first part
of the paper is directly derived from.
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7. The Fuzzy Model of Speech
Production

7.1 General Considerations

Fuzzy modelling is a continuously growing
field due to its capability of dealing with both
high nonlinearities and (partial) uncertainty in
the knowledge about the system.

Generally., when starting with modelling
simple processes (here, vowels), the
prospected model has to be flexible enough to
take over the next stages of development
(consonants, co-articulations). Fuzzy systems
fit well in this strategy of building a final
model.

A plethora of nonlinear models for the speech
production mechanism is known. Some of
them have major drawbacks.

The model we propose is based on the
acoustical theory of speech production, and
implements a set of rules that is derived from
knowledge on the process of phonation.

7.2 The Model

The glottal wave is considered as a succession
of pulses, each one described by some
parameters that may vary from one pulse to
another:  amplitude (vertex); "adduct",
"abduct" and "closed" phases of the pulse.
This parametric representation allows good
adaptation of the speaker style by changing the
corresponding pulse shape. It is implemented
by computing samples with the following
function (To = opening, Tc = closing, Tp =
pitch durations, Figure 16):

'1 (1 s[mﬂ 0O<t<T,
—lt=cos:=—— ==
2| To 0

\

Rlip)e= CO{L(‘_:EQ)“J Tog<t<Tp+Te O

0 To+Te <t<Tp

The spectrum of the glottal pulse is a
continuously falling characteristic.

s . . . . |
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Figure 15. The Spectral Characteristic of
Excitation

The upper vocal tract is considered as a resonant
filter that is excited by the sound sources on the
glottis. The resonant frequencies (formants) are
denoted by F1 to F5.

We interpreted the source-filter theory in the
sense of exploiting some specific properties of the
Fourier transform F(x): convolution and linearity
(superposition of the effects). Based on the fact
that the output (i.e. speech) signal spectrum is
obtained by multiplying the source and the filter
spectrums (that is convolution in time domain),
we chose to consider a “local spectrum’. So, the
output spectrum is being computed step by step.
for every difference of samples in the glottal
pulse, finally summing up all these “local effects’.
For our purpose, a good indicative of the *local
spectrum’ is the discrete derivative of the sampled
glottal pulse, namely the difference between two
successive samples. This may characterise the
‘local” contribution, corresponding to a reduced
segment / portion of the glottal excitation, to the
final output spectrum, computed as a sum of all
successive contributions of this kind.

Figure 16. The Local Slope of the Glottal Pulse

The frequency bandwidth of the synthetic voice
signal spectrum is closely related to the overall
shape of the glottal pulse: a high derivative
implies a wide bandwidth, that is wide output
spectrum, while a small derivative implies a small
bandwidth. Implementing this mechanism makes
production of natural-like variability possible,
along the same (voiced) phoneme by modifying
the parameters of the glottal pulse train.
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The upper formants are excited at lower levels
of energy, due to rapidly falling edge of the
excitation spectrum. Therefore we assume that
the presence of various spectral subbands
should be weighted correspondingly.

>

K
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Figure 17. Formants (resonators) Spectres
and Overall Phase Diagram for the Case of
Five Formants

A fuzzy model is completely defined when the
following are specified:

- the rule system

- the input membership functions:
IMF and the fuzzitication operation

- the output membership functions:
OMF and the defuzzification
procedure

- the inference method

The model is divided into two parts: the model
for the excitation (glottal system) and the one
for the upper tract. The input membership
functions are defined as in Figure 18:

tu(s)
small  Bf

medium

Figure 18. Input Membership Functions
Definitions
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Denoting the local slope of the glottal pulse by s
and the output frequency bandwidth by By, the rule
system for the excitation is:

IF 5 issmall THEN Bf issmall

IF s ismedium THEN Bf  is medium

IF s islarge = THEN Bf is large

By ‘small’ Bf we mean three formants, four for
*medium’, and five formants for ‘large’ Bf.

For the upper vocal tract, the rule system
implements rules like:

IF Bf is small, THEN OMF is Os

IF Bf is medium, THEN OMF is Ome

IF Bf is large, THEN OMF is Olg
Os, Ome and Olg are output membership
functions that graphically describe the amplitude
spectral characteristic of the desired vocal signal.
They are piece-wise functions and are tuned in
order to give a good perceptual quality of the
synthesised signal.
The inference rules are:

IF s is medium,

THEN O is small with the
degree of trust o

and is medium with
the degree of trust B

and is large with
the degree of trust y
the effective slope is s’
THEN: O is

| I ¢ 1) _
P-O(S -f) = He' Ssmalt (8-1) + l"'s"—-nned(s‘ *1) =
(10)

5 fa..
o (1) BB 1)+ v B

where o > B > v; f denotes the frequency. These
parameters result from the fuzzification of the
input (the current slope value, s'). They are
influenced by the way the IMF are designed. In
fact, o. , B, y implement the contribution of the
low, medium and high frequency components in
the final output voice signal.
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The reasoning type is FITA (“first infer then
aggregate™).

The defuzzification operation (obtaining crisp
output, i.e. the desired signal) is done by
building a discrete spectrum. according to the
formula:

Y=Ysmall " ¥Yme T Ylg T
3 small me
S dauy ) BN + (11)

=1

"{I.L{%;(f): * Cos(aniFO Qi)

The relation is a time domain convolution.
The operation * is a vector product, with index
i (denoting the harmonics of the fundamental
frequency F. that is the “pitch frequency™). N
is the number of harmonics taken into account
in the synthesis process. We take N =Fs/ F,
with Fs denoting the sampling frequency. The
phase characteristic is obtained from a
classical model and is illustrated in Figure 17.
It illustrates the phase variation along a series
of coupled resonances.

The synthesis tool includes a GUI (Graphic
User Interface) that allows manual tuning of
spectral characteristic (amplitude and phase)
or importing from preprocessed acquired
vocal signal.

In contrast to the frequent practice to use noise
in voice synthesisers, we prefer to use chaotic
signals. Recent research assesses the presence
of chaotic processes in speech production. so
it is obviously a good choice to use chaotic
modulation signal to give naturalness to
synthesised speech (see Figure 19).

MODEL |
F|F | B | 4 J

Fj Fz Fj F4

CHAOTIC SYSTEM

Figure 19. The Chaotic Modulation
Principle

The parameters that may be modulated are:
pitch frequency F,, central frequencies and

bandwidths of the formants, and the amplitude
envelope of the time - domain signal.

8. Conclusions

In this paper we described a nonlinear analysis
method for speech analysis that made use of
Lyapunov maximal exponent computation and,
finally, we introduced a new framework for
speech production modelling, proved to be
flexible, and able to accommodate the recent trend
in nonlinear speech analysis. The knowledge
acquired by analytic techniques is transferred to
the production model and perceptual analysis is
consequently done.

This research is starting from the physiological
evidence that nonlinear processes occur in the
mechanisms of speech production. So, the
classical problem of researches starting from the
output data of a system, namely: "is the system
producing the data nonlinearly, or not?" is
avoided. In contrast, one can say that speech is a
process of controlling a (highly) nonlinear system
to produce data with some specific coherence.
What is needed in this case is to determine

. how the nonlinear "incoherence" is
mastered,
° how large is the part of remaining

incoherence, and

° how the nonlinear part of the speech signal
can be used to assess the state of the
subject and to identify the subject, taking
into account that "mastering the
incoherence" is dependent on the subject,
and on her/his (health, emotional, etc.)
state.

The analysis proved that, even in the case of
constantly uttered vowels, coherent high order
nonlinear processes might be outlined using
specific techniques. The new introduced measure
L is found to be in a close relation with other
classical measures able to describe vocal signal, e.
g. pitch period.

The following conclusions may be drawn.

1) Nonlinear processeé are present in speech
production.

2) As nonlinearity and nonstationarity coexist in
the process of speech production, the speech
process should be considered as a sequence of
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nonlinear  regimes that compose a
nonstationary signal.

For the next stage of research, we intend to:
° improve the method by refining the

analysis (adaptive length of the series,
adding new parameters to the L

estimation algorithm);
) increase the voice database;
° analyse other significant signals; other

case studies are pending: vowels
uttered with  different “constant”
pitches; “constant" amplitude and
varying pitch, continuously or in three
or four distinct steps of height;

° apply an algorithm for analysing the
contribution of formants; a reliable
elicitation of formant information is
rather difficult, but the use of effective
interactive algorithms is reported (see

(2]).

The usefulness of this research is two-fold: the
introduction of a new method for the
characterisation of nonlinear phenomena in
speech, and knowledge acquisition by this
method may be used towards a more natural-
like speech synthesis.

One of the direct applications of the nonlinear
analysis of speech signals is in speech
synthesis. It is generally accepted that
synthetic voice suffers of unnaturalness. The
reasons reside for a great part in the lack of
variability of the synthetic speech, and various
solutions have been proposed (e.g. [10], [11]).
However, other causes of unnaturalness may
also exist. We suppose that the lack of natural
- like nonlinear processes in synthetic speech
production is one major deficiency of the
present speech synthesisers.

Also a large area of interest for the
investigation of speech is medicine (see for
instance [22]). We believe such methods could
be used in assessing the state of the vocal tract
and the related pathology. For instance,
studies on the nonlinear aspects in
Parkinsonian voice, as reported in [21], could
benefit from applying the above methodology .

The subject identification based on subjects'

voices by using nonlinear parameters for
specified utterances is another application that
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calls for a minute investigation of the reported
phenomena.
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