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Two books dominate nowaday the numerical
scientific community of computational linear
algebra. The one is the book of Wolfeang
Hackbusch: [terative Solution of Large Sparse
Systems of Equations, Springer- Verlag, 1994
and the other is the book of Yousef Saad:
lterative Methods for Sparse Linear Systems,
PWS Publishing Company. Both of them deal
with the same subject: iterative methods for
solving large sparse systems of linear equations.
Both of them are full of theory, methods,
algorithms and numerical examples. Both of
them are supported by computer programs.

The subject of iterative methods in
computational linear algebra is not new. We can
also mention here the books of . Axelsson:
lierative  Solution  Methods, — Cambridge
University Press, 1994, and the excellent and
older ones by RS Varga: Marrix [terative
Analysis, Prentice -Hall, Englewood Cliffs,
1960, and D.M Young: lterative Solution of
Large Linear Systems, Academic Press, 1971,

Solving linear algebraic systems by iterative
methods dates back in time. In a letter of 26th
December 1823 dedicated to C.L. Gerling, Carl
Friedrich Gauss had described an alternative
method for solving systems of linear equations
of type ATAx = ATb, namely an iterative
method (called by Gauss an "indirect method").
This was the first iterative method for systems of
linear equations. [t was also described by Gauss
in "Supplementum  theoriae combinationis
observationum erroribus  minime obnoxiae"
(1828). A very similar method was described by
Carl Gustav Jacobi in his paper "Uber eine neue
Auflosungsart der bei der Methode der kleinsten
Quadrate vorkommenden linearen
Gleichungen", published in 1845. Later, in 1874
Philip Ludwig Seidel, an alumnus of Jacobi' s,
designed a method for solving linear algebraic
systems of equations. After 100 years of
stagnation in this field. especially since the time
that electronic computers became available for
solving large systems of equations, Southwell
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and Young experimented with variants of the
Gauss-Seidel method leading to important
acceleration of the convergence.

A very important computational innovation of
the early 1950 are the conjugate gradient and
Lanczos algorithms for solving linear systems of
equations and eigenproblems. These methods
came into wide use only in the mid-1970s, and
shortly thereafter vector computers and massive
computer memories made it possible to use this
iterative method to solve problems which could
not be solved in any other way. The original
development of this family of algorithms was
made by Cornelius Lanczos and Magnus
Hestens at the Institute for Numerical Analysis
in  the National Applied Mathematics
Laboratories at the US National Bureau of
Standards in Los Angeles, and by Eduard Steifel
from the Technische Hochschule Ziirich. Since
then, the algorithms have been further refined
and have become a basic tool for solving large
systems of equations. A contribution to the
understanding of these algorithms has been
brought inter alios by John Reid who drew
attention to the potential of the conjugate
gradient method as an iterative one for sparse
tinear systems. Other developments were made
by C. Paige and Michael Saunders who
provided the first stable extension of the
conjugate gradient algorithm to indefinite
matrices. Paul Concus and Gene Golub
considered a class of nonsymmetric matrices.
Axelsson suggested preconditioning conjugate
gradients by a scaled successive overrelaxation
operator. Other preconditionings were discussed
by D. Evans, Richard Bartels, James Daniel, R.
Chandra, Stanley Eisenstat, etc. The dissertation
of C. Paige (1971) provides, among other
things, the first step to an understanding of the
loss of orthogonality of the Lanczos vectors,
thus giving the key to the development of stable
algorithms -that did not require complete
reorthogonalization.

In the following we shall review the book of
Professor Saad, from University of Minnesota.
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From the very beginning the reader is intrigued
with the title, as the sparse linear systems are
always associated with direct methods. Here we
have a new perspective of iterative methods for
solving general, large sparse linear systems.
Until recently, direct methods were preferred to
iterative methods in real applications because of
their robustness and predictable behaviour.
However, the increased need for solving very
large linear systems triggered the efforts to rapid
developments of the iterative techniques. This
volume tries to provide up-to-date coverage of
iterative methods for solving large sparse linear
systems. The author focussed the book on
practical methods that work for general sparse
matrices rather than for any specific class of
problems. Two ideas are constantly followed
along the 13 chapters of the book. The first is
the consideration of sparsity for designing
efficient iterative methods, and the second is the
usage of preconditioners and accelerators to
improve the behaviour of the iterative
techniques.

The book is structured in four distinct parts. The
first part (Chapters 1 through 4) has an
introductory character, presenting the basic
tools. The second part (Chapters 5 through 8)
presents projections methods and the Krylov
subspace techniques. The third part (Chapters 9
and 10) discusses preconditioning techniques.
The last part (Chapters 11 through 13) discusses
modern parallel implementations and parallel
algorithms. The book is supported with
numerous numerical examples, some ot them
with large scale dimensions, and documents
computational  results  obtained with  the
SPARSKIT package: a basic tool kit for sparse
matrix computations.

Chapter 1, "Background in Linear Algebra™,
gives an overview of relevant concepts in linear
algebra which are used in later chapters. A
review of basic matrix theory and the
elementary notation used throughout the book is
provided.

Chapter 2, '"Discretization of PDES",
considers the techniques for solving partial
differential equations by discretization. The idea
is to approximate them by linear equations that
involve a finite (enough large) number of
unknowns. The matrices that arise from these
discretizations are generally large, sparse and
often present special  structures. Several
different ways of discretizing a PDE are
presented. The simplest method uses finite
difference approximations for the partial
differential operators. The Finite Element
Method replaces the original function by a
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function which has some degree of smoothness
over the global domain, but which is piecewise
polynomial on simple cells, such as small
triangles or rectangles. This method is the most
general, the oldest and understood discretization
technique available. In between these two
methods there are a few conservative schemes
called Finite Volume Methods, which attempt to
emulate the continuous conservation laws of
physics. The material of this Chapter is well
organized and constitutes a good introduction
into this subject matter.

Chapter 3, "Sparse Matrices", presents the
fundamental aspects and the most important
ideas concerning the sparse matrix technology.
The sparse matrix techniques begin with the
idea that the zero elements need not be stored.
The key issue is to define data structures for
these matrices that are well suited for efficient
implementation of iterative or direct standard
solution methods. The most important aspects
considered here refer to the graph representation
of sparse matrices, permutations and reordering,
irreducibility, storage schemes, basic sparse
matrix operations and sparse direct solution
methods. The Cuthill - McKee and the reversed
Cuthill-McKee orderings, which are important
ingredients for solving large sparse systems of
linear equations, are clearly presented and
illustrated by means of numerical examples. No
complexity aspects are considered here.

Chapter 4 is dedicated to presenting the "Basic
Iterative Methods". The first iterative methods
used for solving linear svstems were based on
relaxation of the coordinates principle. Given an
approximate solution, these methods modify the
components of this approximation, one or a Tew
of them at a time and in a certain order, until the
convergence is obtained. The purpose of these
modifications, called relaxation steps, is to
annihilate one or some components of the
residual vector. The chapter begins with the
methods  of Jacobi, Gauss-Seidel and the
Successive Over Relaxation (SOR) method.
These methods are then generalized to block
relaxation schemes, and some classical results
on general convergence of these schemes are
provided.  The iteration  matrices and
preconditioning are introduced. The word
preconditioning was firstly used by Turing and
since then seems to be standard terminology for
problem transformation in order to make
solution easier. This is a very important
innovation in computational linear algebra and
is reconsidered in Chapters 9 and 10 of this
book in the context of the iterative methods for
sparse linear systems.
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Chapter 5, "Projection Methods", considers
the so called Petrov-Galerkin framework for
extracting an approximation to the solution of a
linear system from a subspace. Firstly, these
techniques are described into a very general
frame, and later the one dimensional case is
covered in detail providing a good preview of
the more complex projection processes
considered in later chapters. For the case where
the matrix is symmetric and positive definite the
steepest descent, the minimal residual and the
residual norm steepest descent algorithms are
presented. No numerical comparisons, and
complexity analysis are provided.

Chapters 6 and 7 are dedicated to presenting
the "Krylov Subspace Methods". Currently
these methods are considered to be among the
most important techniques available for solving
large linear systems. These teciniques are based
on projection process onto Krylov subspaces,
which are subspaces spanned by vectors of the
form p(A)v, where p is a polynomial. The idea
of these techniques is to approximate A-1b by
p(A), where p is a good polynomial. These
Chapters cover a number of methods and
algorithms implementing this idea. Firstly the
Krylov subspaces are introduced. Then the basic
algorithm of Arnoldi is presented, as well as its
variants:  Arnoldi-Modified  Gram-Schmidt,
Householder-Areldi  are  discussed. A
complexity analysis of these algorithms is
presented. A very detailed description of
Aroldi's  method  for  linear systems
implemented as the Full Orthogonaiization
Method, the Incomplete Orthogonalization
Method  and  the  Direct Incemplete
Orthogonalization Method are considered next.
The Generalized Minimum Residual Method
and its variant: the Householder version is then
considered. To improve the behaviour of this
method a number of variations like restarting
and truncated techniques is also described, A
simplification of Arnoldi's method for the
particular case when the matrix is symmetric is
the Symmetric Lanczos algorithm. On the other
hand, for solving sparse symmetric positive
definite linear systems the best known iterative
method is the Conjugate Gradient Method. Both
these methods are very well presented at the
algorithmic and complexity analysis level. The
Faber-Manteuffel theorem and the convergence
analysis of different algorithms are the top
subjects of Chapter 6. Some extensions of the
above presented methods to nonsymmetric
matrices are described in Chapter 7 where the
Lanczos  biorthogonalization, the Lanczos
algorithm for linear systems, the Biconjugate
Gradient algorithm, the Quasi-Minimal Residual
algorithm, the Conjugate Gradient Squares
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algorithm, the Biconjugate Gradient Stabilized
algorithm, the Transpose-Free Quasi-Minimal
Residual algorithm are detailed. Numerical
examples and comparisons are provided. The
techniques and algorithms presented in these
Chapters, which form the heart of the book. are
under very intensive research activity, numerous
variations and innovations being in process of
elaboration.

Chapter 8, "Methods Related to the Normal
Equations”, is dedicated to present techniques
and algorithms for solving the so- called normal
equations: ATAx=ATb. This is a very important
subject especially due to the impact of these
methods on the interior point methods for large
scale optimization. Firstly the normal equations
are introduced, and then the Row Projection
Methods (Gauss-Seidel on the normal equations
and Cimmino's method), the Conjugate Gradient
Methods and some variants, as well as the
Saddle-Point problems (Uzawa's method and the
Arrow-Hurwicz  algorithm) are considered.
These algorithms are illustrated on some
numerical examples and comparisons are
provided.

Despite their intrinsic appeal to solving very
large linear systems, it is widely recognized that
the lack of robustness of iterative methods,
relative to direct solvers, is the main drawback
of acceptance of these methods in industrial
applications. Both the efficiency and robustness
of iterative techniques can be improved by using
preconditioning.  Chapters 9  and 10
"Preconditioned Iterations" and
"Preconditioning  Techniques" respectively
are for presenting this term which is the key
ingredient for the accelerating of the Krylov
subspace  methods. In Chapter 9 the
preconditioned versions of the iterative methods
already considered are presented. Thus, the
Preconditioned Conjugate Gradient algorithm,
the  Preconditioned Generalized Minimum
Residual algorithm and the Preconditioned
Conjugate Gradient for the Normal equations
are presented. Chapter 10 covers the standard
preconditioning techniques. The main purpose
of this Chapter is to present techniques for
constructing the preconditioning matrices. Thus,
the Jacobi, SOR and Symmetric SOR
preconditioners are firstly presented. Then the
[ncomplete LU factorization (ILU)
preconditioners  are  deeply  described,
emphasizing a number of aspects concerning the
filling, the numerical stability, preconditioners
for matrices with regular structure, as well as the
implementation  details, Simple  sample
FORTRAN codes for computing
preconditioners, as well as numerical experience



and comparison are provided. For the indefinite
matrices  the  standard incomplete LU
factorization may face several difficulties. To
cope with such a case some other techniques
like approximate inverse preconditioners,
factored approximate inverses are considered.
The last part of Chapter 10 considers
preconditioners for the normal equations. This is
a very important numerical innovation with a
great impact on the interior point algorithms for
large scale linear programming. The paper of
Kim and Nazareth: A primal null-space affine
scaling method, ACM-TOMS, 1994, is a good
starting research for implementing these
iterative methods.

The last three Chapters, 11 through 13,
"Parallel Implementations", "Parallel
Preconditioners", and "Domain
Decomposition Methods" consider the very
modern  parallel  approach  of  linear
computational algebra referring the iterative
techniques for solving large sparse linear
systems. Two approaches for developing
parallel iterative algorithms are known. The first
one extracts parallelism whenever possible from
standard sequential algorithms. The second
approach is to develop alternative algorithms
which have enhanced parallelism. Chapter 11
describes methods in the first category, giving
an introduction into the field of parallel
computing, and emphasizing some aspects on
the types of parallel architectures and matrix by
vector products. Chapter 12 reinforces the
preconditioning techniques into a parallel
environment by presenting methods for finding
preconditioners that have a high degree of
parallelism, as well as good intrinsic qualities.
Thus, the Block-Jacobi preconditioners,
Polynomial  preconditioners,  Multicoloring,
Multi-Elimination Incomplete LU factorization,

Distributed Incomplete LU factorization, as well
as some other techniques are described. Some of
the corresponding algorithms are illustrated by
means of numerical examples of large scale
dimensions. No complexity results are
considered. The last Chapter refers to a
collection of techniques which combine ideas
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from partial differential equations, linear
algebra, mathematical analysis, graph theory, to
solve large scale linear systems based on the
principle of "divide-and-conquer". Different
types of partitionings, the Schur complement
elimination, the Schwarz alternating procedures,
as well as graph partitioning are described at a
high theoretical level.

The book is well- organized, providing an
excellent text on the iterative methods in
computational linear algebra, proving a lot of
mathematical results, documenting numerous
numerical experiments (with SPARSKIT),
keeping an eye on the practical implementations
of these techniques. At the end of each chapter
numerous exercises are presented and 235
references are mentioned. Some other points
like: how the sparsity could be more deeply
speculated over in an iterative method, the
sensitivity analysis of iterative methods, the
complexity analysis of iterative methods,
combinations between the direct and iterative
methods, have not been considered. These
subjects and some others could be considered
into a new version of this book. All in all the
reviewer considers this as a valuable work. He
also recommends, to the extent possible, a
parallel reading of  this book and  of
Hackbush's book.
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