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Abstract: The aim of this paper 15 to develop a robust
method 1o identily and control a MIMO nonlinear process
m real ume Contrary (o some approaches like neural
networks techniques. the identification of the process is
performed by adjusting a hinear autoregressive muodel.
which is defined at each time around the operating point of
the process. This approach is an efficient way to find
quickly and at low computational cost. an approximale
model of the plant. It 1s necessary that a tast adaptation of
this model takes mto account the parameters changes and
the nonlinearitics of the process. This 1s also usetul to
reduce the effect ot disturbances. The control law s then
deduced from this model. such that errors between the
vutputs of the process and the desired outputs are reduced
with a specified dynamics This adaptive controller s
applied to a manipulator whose aim 1s to control a laser
beam.

Kevwords: Idenufication. Least squares. Conitrol Theory.
Prediction. Disturbance

1. Introduction

We consider that the system to control is
nonlinear and time varying. Furthermore we
suppose that the process cannot be known
exactly due to parameters incertitude. The
system behaviour is also subject to disturbances
and parameters changes. Under these conditions,
to obtain a robust control, the variations of the
process should be taken into account[1]. This
only could be done by on line identification.

To identify nonlinear svstems, dynamical neural
networks can be used successfully [2.4.3]. They
appear as powerful tools. Their complex
architecture obviously gives better results and a
more accurate model than the identification by
linear models. However because of their
complex architecture, huge calculations are
often necessary. A second drawback will be the
long training time required to obtain a good
adaptation of the weights, especially with
layered networks and backpropagation learning
algorithm.  This shortcoming is  generally
inappropriate to identify a time varying system.
Simplified architectures like flat functional-link
networks and fast learning algorithms based on
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the recursive least-square method have been
proposed to  improve neural networks
performances. Other algorithims based on the
Lyapunov stability theory have been widely
studied to guarantee stability of the weight
adaptive law [6, 7. 8]. However the main
difficulty is to design both a fast identification
method and a robust control law.

The method for getting the model of the process
in real time is explained in the first Section. In
the second part we develop a control law
derived from the linear model. The control law
is defined such as errors between the desired
and predicted trajectory of outputs are
minimised. The trajectory tracking is accurate
and errors decay towards zero in spite of some
important disturbances.

2. Identification

It is well-known the fact that many physical
systems may be considered linear about an
operating point for small changes of the system
state. Under this assumption, a continuous
nonlinear physical system can be described by a
linear model in the neighbourhood of the
considered operating point. A convenient way to
represent a linear dynamical system is to use an
autoregressive model AR(p). The period of
delay and the number of delays p are defined
with respect to the process dynamics.Thus, we
assume that the process can be described at an
operating point (Y., Xy Uy) by the multi-
input multi-output (MIMO) system of discrete
equations :

(Yo =1,

ap

l‘):J,\’(Xk 7X

ape

(1)

where,
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Y, ; denotes the outputs of the process at time
instant £+ 1/,

X, is a regression vector of Y at successive time
intervals &, k-1, k-nbry+1.

U, is a regression vector of the control input u at
discrete time &, k-1, k-nbru+1.

o 1 I u,
X, = : and U, = '

)’k —nhry+1 ukﬂu‘w'u” J

nbry denotes the order of regression for
vector X,

nbru is the order of regression of U,.

J. and J, are the matrices of the linearized
model.

The number of inputs is defined as nbu and the
number of outputs is nby.

Setting,
AY =%, - L.
AX =X, —-X,.
AU=U, - UW

the model can be rewritten as
AY = J.AX +J, AU (2)

The parameters J, and ./, of this model must be
computed such as the model gives a good
approximation of the plant behaviour. We
assume that the approximation is correct if the
measures (Y, ,, Xj, U,) verify the equations of
the model. To find suitable parameters J, and ./,
we define a set of measures (¥.,., X, U.) On a
moving window, where the most recent measure
replaces the oldest one. The size of the data
window is constant and is equal to nbm. We
have to determine the number of measures to
accumulate such that there are enough data for
an accurate identification. However to save
computational time and resources, a too large
data set is not advisable.

Moreover, to correctly  achieve  the

identification, persistent excitation of the
process is required. This condition means that
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the input-output signals must be sufficiently rich
in frequency. In our case, this assumption cannot
be imposed. because identification is achieved
on -line. To overcome this difficulty, and try to
keep sufficiently rich signals in matrices Y., X..,
and U,,, atest is executed before inserting a new
measure in the data set. A data set updating
takes place if the distance o/ between the
desired and actual outputs is greater than a
threshold d,,.. or if the distance 2 between the
outputs Y, and the last vector of the data set is
greater than d,,. This threshold o, is defined
according to the desired accuracy. In other
words, the data set is updated if the outputs vary
sufficiently or if the error is important, which
may occur for instance during initialisation or
because of large parameters variations.

The distances d/, d2 are defined as,

d, =’Yu’,k -1, (3)
d, = “YA g (4)

with Y, the desired outputs, ¥, the system’s
outputs at discrete time &, and Y, .. the last
measure added to the data set Y,,,.

Since we wish to identify a local model of the
process, we need to define the point where the
identification is performed. This point called
identification point (Y. Xuo Ue) is defined as
the mean vector of the data matrices (Y., X
Us). We deduce the centred data set

AY, .AX , and AU, which is computed as
follows :
72 5 5o
A}.\c,‘ = )\n‘ - }.'L."L' jnhm ( 5 )
i
AX.\W = Xm’ - Xru‘c' nhm ( 6 )

1, (7)

nhm

AU, =U,-U

e

with 7, a vector of nhm rows with ones. and T
the transpose operator.

The identification consists in minimising errors
between AY and J AX , +J AU, by
adapting the matrices J, and J, by
AJ  and AJ, respectively.

set

The adaptation for each row of .J, and J, can be
treated separately. Then, for the row i of the
model, we have the equation:
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AY =J AX+J, AU (8)

where the subscript / denotes the row / of the
matrices J. and J,, and the element / of the
vector AY.

The errors between the model and
measures are defined as :

~sel s ver

F = A‘Y - J.\'.:A‘X\w - ‘]u,lAUm‘ ( 9 )

The variations of the model modify the errors by

AE

AE o= BT AN e AT (10)

To minimise errors and to prevent too large
variations of J.;, and J,, . we define the
following quadratic criterion H.

I T
H= 3({ Eger i +AFEger j)+(Eset j +AEger () +

; T ; T
Ay iRxAy ; + &y, Ruﬁ\-fusj)

(11)

with R, and R,, two positive definite diagonal
matrices.

Then, we have to solve a familiar least-squares
problem for which the optimal solution is such
as :

2

OH 0 oH 0 O H o
aM\'l - ‘ aA']HJ - ’ aMl’J: > an
&' H

w7 O,

OAJ 7

.

These conditions lead to -

R.\+Axsctﬂxlﬂ AXS&IAU;I AJ-‘E—J =
AU AX!, R, +AUAUL AT

set set u,i
aAX sel E T
AU “set,l
set

To find the new matrices J,, and J,, . we have to
solve a linear system equation.

set

(12)

For convenience, we set :
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R ARAN AX
AU, AX]

AX AU

sef

R, +AU AU

0

Hence, the system can be rewritten as :

Ax, = b, with 4 a symmetric positive definite
matrix.

Since the input and output scales can be very
different and because of the roundoff errors and
the machine precision, we need improve the
accuracy of the solution x,, by scaling 4 and b,
The scaled system must be equivalent to the
former, and is defined such that the diagonal
elements of the scaled matrix A4, are equal
to 1.

The transformation of the system Ax, = b, in

DADD™'x, = Db,

with D =

AY) An 4|

yields to the following equivalent system

b (B, e (13)
with

A, =DAD

%, 5= D

b..=Db

seale — i

By definition of the matrix A4, the diagonal
elements are all greater than or equal to the
values R, or R,. These parameters allow us to
compute D and to avoid an ill-conditioning

problem. By solving the system
A\L’(H(‘x.\cu.fe = b\mfc with a ChOleSk}‘
factorisation, a forward elimination and a

backward substitution [3]. we deduce the least
square solution x, = Dx The Cholesky

scale



algorithm is time efficient and ensures numerical
robustness.

The new matrices J_ and J,, of the model

are

[Jx.iJu.i :[J x\i‘]u.i]+XiT (14)

new

The adaptation for the nby rows of J, and J, are
obtained by solving Ax, = b, for the nby
vectors x, and b,. .

Because of the noise on measure, the filtering of
data with a matrix F can significantly improve
the results by reducing the noise effect.

AY o= J AX ] AU . F (15)

zer

The simplest method consists in computing the
average of nhf measures to obtain the filtered
measures. In this case F is defined as a nbm by
nbm-nbf matrix :

nbf 1 1

The initialisation of J. and J, with
predetermined values improves the start-up and
provides better results at the beginning cf the
control. Furthermore, during the first nbm steps,
a small sinusoidal control is applied to the
system such that the data set is initialised with
non zero values. After this preliminary
identification, the control is switched on.

3. Control Law

The goal of the control law is to reduce errors
between the desired and actual responses to the
smallest possible value. The desired trajectory at
future instants (Y, ;. Yix >...) is assumed to be
unknown. Consequently we have to determine it
from the elapsed desired outputs. We must also
estimate the future outputs of the process from
the identified model and the past measures.

The future desired outputs are defined at

discrete time k+/7, k+2, k+h by an
extrapolation from the earlier desired outputs.
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To smooth the trajectory, we estimate the slope
AY, between Y, and Y,., . Thus, the desired
trajectory is computed as follows :

. }Zr I Kﬂ P
e (16)
n
Lo Tl iy TNE Horii=l tosfu (17

Therefore the future desired trajectory is

}’lf‘l‘\‘ +h

}:." fut

LY:LA--lJ

The prediction of the future trajectory of the
system is one of the key problems. It is
necessary to accurately predict the state of the
process. The prediction of the outputs derives
from the model. On the one hand, it depends on
the past values of outputs and inputs, and
obviously on the other hand on the future
control inputs, we want to optimise. Due to
modelling errors, we cannot forecast the system
outputs with reasonable errors on many steps
into the future. The optimisation is performed
with respect to only A predictions. with /7 a small
integer (from 4 up to 10 for instance).

From the model (1). we derive the equation

Y;H'I = ‘].l Xk + JnUf( + vn,uv (18)
which can also be written
Yk
Y+l :.VJX.I' "Jx_nbl'yé 5 |+
;Yk—llbl‘y+l (19)
Uk i

‘_Ju,l"'J u‘nbruj : +Vope

(Yk—nbru+] |
with vr},uc = }:;,uc.* - ‘].r ;\,u,w - ']u bru,uc‘ (20)

Yoper Xopew and U, are the operating points
readily obtained from measurements with a first
order filter :

Y kvt = a};),uuk + (j _a)y;

ope k+ ‘
2 4 4
Xupc kel 0‘/\ ope k T (] - CL))& k
7 _ 7
L upe k+1 T (X.[/ ope K * (j - a)UR
with a = 0.9
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Using A times the model (19), we deduce the
following prediction.

Ykﬂ'r
I Yth i 0 J.\:.’ Jx,nbry i
Yk-w‘z—.’ 0 ‘]x..f x.nbry i Y
. B . | k+2
- I Y,
Y.s 0 J, T "iif Ho-
L Yjﬁ,l K L 0 ! ‘]_r‘.’ Jx.nbi'_v_ '
_Yk—nbr_wf a
Upon-i
Jn.:‘ T J.\'.nbru i . vo,ue
'ju.;‘ o ‘],\'.nbrn [ Upir vo,ue
+ ' T Uy | +|
N | (PR
"]u,/ t x nbru U, vupe
L ; ‘]u.f ‘]x.nbru N : _vupe |
_uk-nbruw‘-l _ (2 1)
For convenience, the previous equation can be
rewritten :
it =Ixfit e iUt +J)Q]Cmylfﬁ +
Jupﬁt'bﬁ *prt (22) The subscripts fur and past denote respectively
the future and the past values.
with
) “k+h-11 | Uy Y, Vope
Y= ¢ [Up= DU = : . g— : Ve =l %
- e Up_nbru+ k=nbry+ ape
7 Wy - s 1 i 1
U Jty & - 0
b — o M— Sonbry 0
0 g S 0
] L ‘],\'_f ‘],\"nhr} ]
ol 5 Feire ] | i
Jo xrhri 0
J“‘W = ,JH‘WW = J“‘”M 0
g 0
L 0 B L J“ ! Jwa.\' J
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Setting
ST S U, . +V . and

st X, pasit ST . past ANt e
P ! ! !

solving for Y, we obtain :

YV, = (1 Y )_I(J!,.,U,UM + VM) (23)

For calculation ease, we set
-1
r fut (] Jr /m) o

The matrix K., is an upper triangular matrix,
which can be constructed with the following
formula :

] - Jx,ﬁtl =

The solution of the matrices K; are

Kl = ‘jx,l ?

K = Z I

nbry

K = ZK,_,(JX‘,( for i>nbry,
k=1

for i < nbry,

The expression of the predicted outputs
becomes :

Y,

Jut

=K

x. fut

(VoeU s + V) (24)

u, fut ™ fut pust

Since the optimisation of the nbu x A vector Uy,
leads to numerous calculations, we specify the
following constraint on Uy,

u, + hdu
= | 5
U’“’ u, +20u 22}

u, +ou

with u, the control at instant & and J&u the
variation of the control for the next control
inputs.
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x,nbry

_] Kl KZ Tl Kn
x,nbry ] Kl o Kn--l
’ K.\“ﬁlf =
Xl [ Kl
i | I ]

Then, instead of solving a large system to
evaluate the whole vector Uy, the problem is to
find the vector du.

With this assumption, the prediction is given
by :

Hl
: b
K St h‘fll 217 +K fit _r n il {26)
I H

To yield the desired response, we establish the
criterion G with a first term defined to minimise

the errors between Y, and Yj,. The second part
of G is defined such that errors decay
progressively. It improves the respense which
becomes smoother and less oscillatory. To
obtain full raik matrices and ensure numerical
robustness, a third term is added to G.

Then, the criterion G is

1 L -
G = ;( Ol * Aem Ae,, +ou R“Ou)
27)
where e;,, and 4,,, are
efut = Yd, fut - Yfut = Yd fut -
[hi]
( uk 1 . L
Kx, fut| Vpast *-'u,fut : Ky, futu, fut i 2]
L
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I_e fut,k+h — € fut.k+h—11

| {
| !
Ae : F
ultl
| Crutke2 T Crurker |
]
L €rutk+1 7 €y J
| F
f1-1 ! € fut.k+h
! i
1
|
[ _[: I er'ut.k+l
_____ SR | QA R
e O |

QO and R, are positive definite diagonal matrices,
which are respectively weighting factors on the
speed of convergence and the variation du. The
weighting factor R, must be small, but greater
than the machine precision. For single precision
numbers, R, is taken equal to /07 /. Q is defined
such that we obtain a good trade-off between the
precision of the trajectory tracking and the
robustness with respect to the noise effect, the
modelling errors and parameters changes.
Indeed for a small value of Q (O=0.01 1), the
transient response is long, but the sensitivity to
noise is small, whereas for 0=/ errors decrease
at a high rate. So the effect of disturbances is
quickly reduced and the time to reach a steady-
state is short. But the response is more
oscillatory and the magnitude and variations of
the control signal are higher, so it requires more
energy. We encounter a very common trade-off
situation. In Section 3, satisfactory results are
obtained with 9 = 0.3 1.

Setting,

G is rewritten as

I T pT T w7
G :E(EI'erﬂu +e5 PPy gy +ep Py Py —

T o T T T
ey Pyjey —eg Pyepy +egey +3u” R Ou)

For convenience, we rewrite e, and define the
matrix R, as follows :

Rc =0+ [)I.I[PII + szll‘PEI

e, =V — Mdu

Jfur
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with
fuk
V= }:f.fm - Kr,fw V.W‘\f + Ju‘_ful : and
L2ty
hl
M= Kx._,fm Ju.fuf 2]
b

The criterion G becomes

6= (VM) R (V- M) (v M) P

—ey Py (V—Mbu) +eje, +8u"R,du)

The optimal solution du is such that

Hence, the equation to solve is

(M'R,M+R,)6u= MRV - M"Ple,
(28)

By the definition of matrices M and P;,, we

have M] P;; =0

So the optimal S« is a solution of the linear
system

(MTRL_M+R“)SU=MTRCV (29)

As before in Section 1, the system is scaled to
improve the accuracy of results. Then the
Cholesky factorisation, the forward elimination
and the backward substitution are achieved to
find the solution &u.

Given the physical limits of actuators, and in
order to protect the process against damages due
to possibly huge values of control, it is
necessary to limit the control inputs between a
lower limit and an upper limit. The value of this
saturation depends on the characteristics of
actuators and the system under consideration.
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The noise on measurements can be neglected
either . To reduce its effect, one can filter output
and input signals. However filters generaily
introduce another dynamics and a delay which
often alters wrongly the control law and in the
worst case can determine a loss of stability. To
prevent such a drawback, we consider that the
filter can be used only when the variations of the
desired outputs and errors are lower than the
desired accuracy Y, Furthermore, instead of
filtering the output Y;, we have applied a filter
on the control variation ou. The filter has been
realized by multiplying du by a factor « defined
as follows :

] if v, - v |+Jar,] 2y,

ace

K
It

!
“YJ,A - Yx E+HAX1” ’

r

oo

!<Y

aoed

ir [¥,, - 1] +[a¥,

With this factor @, no undesirable effect is
introduced when errors or variations of the
desired trajectory are large. But, in a steady-
state, the effect of noise on the control will be
reduced. So, we obtain a control law which is
less sensitive to noise.

Then we deduce the control law :

U, = .m.f(uA + af)u) (30)

K

with saf the saturation function.

In case of such actuators as electric motors, we
also have to take into account the dead zone of
the device. Indeed, due to friction. motors
accelerate only if the control input is greater
than a threshold. To suppress the deadband
nonlinearity, the value of control must be at
least equal to the threshold. Consequently, we
introduced an offset in the control law (Eq 31).

Thus the input values applied to the process
actuators are .

u = sat(u, +odu)+

actuator K+ |
. 3 (31)
u 01-,-5L,\:.lgn(u . 5h OLOH)

4. Experimental Results

The proposed adaptive control law is applied to
a mechanical process called TALC. This
machine is designed to test the efficiency of
control laws. The goal is to control the angular
position of a mirror, such that a laser beam
reflected by the mirror points at a desired
location or trajectory on a screen.

Clearly, the function between the rotation angles
of the mirror and the coordinates of the spot on
the screen is nonlinear because of the reflection
and projection transformations. Furthermore, the

Screen

Figure 1. Overall Structure
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coordinates depend on the distance between the
mirror and the screen. which is considered as an
unknown parameter. A camera takes pictures of
the screen at more than 100 frames per second.
Then, an image processing algorithm gives the
measurement of the spot coordinates x,,, and
Voo (in pixel).The overall structure of the
process is shown in Figure 1.

The mirror is set on a platform articulated
around five axes as shown in Figure 2. The
control inputs are the tension of motors 4 and 3
which rotate the mirror around axes 4 and 5.
Motors 1. 2 and 3 cause disturbances on the
angular position of mirror.

Motor 4

Muotor 2

Motor |

Figure 2. Platform TALC

The first step of the proposed scheme is to
identify  the function between the spot
coordinates (outputs) and the control inputs.
This function gives an approximation of the
process behaviour, which is used to deduce the
control to apply on motors 4 and 5. The process
is assumed to be a second order system with a
sampling period taken equal to 0.0Is. It is
worth noting that the only other known
parameters of the process are the maximal value
of control and the dead zone of actuators. The
control offsets for motors 4 and 5 are
respectively 0.02 V and 0.08 V. The number of
measures in the data set is 50, and the threshold
;. used to test if a measure must be inserted
into the data set, is 8 pixels. The desired
accuracy of tracking is 4 pixels. The reference
trajectory is a cycle of 6 s, defined by two
sinusoidal functions :

Studies in Informatics and Control, Vol 6. No. 3, September 1997

2pi
xdu\n'ﬁd = 60 CO‘S(__J?_ I)

2pi
ydc.w'cd = 60 COS(TI)

The tracking error at instant k is defined as the
distance between the actual and desired position
of the spot.

[ 2 YA
e.( = \f(xm‘(t\m'u’ _xu.w?) + (,Vdumm.f _}/m’m) ("2-)

The desired and actual trajectories without any
disturbance are shown in Figure 3. The mean
and maximal values of the errors are only about
2 and 6 pixels. The plots of control inputs for
motors 3 and 4 are shown in Figure 3. The noise
effect on the control inputs can be reduced by
choosing in the criterion G a smaller value of Q.
but in this case the tracking is less accurate. A
good trade-off between the sensitivity to noise
and the accuracy is obtained with Q=0.3/.

60 80 100 120 140 160 180 200
X

Figure 3. Desired and Actual Trajectories
Without Any Disturbance

Control Values of motors 4 and 5 (in V)
025 -

0.2f

-

-0.05
-0.4r
-0.15 -
0 1 2 3 4 5 &
time

Figure 4. Control Inputs of Motors 4 and 5
Without Any Disturbance
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Disturbances are introduced on axes 1, 2 and 3.
Their effects on the spot, with the controller
switched off, are shown in Figure 5. The spot
describes a cycle in 3 seconds. The variations on
axes X and Y are about 90 and 60 pixels.

200

180

160 1

140 \

! 120 K /
_./—’J_/

100

80

60
80 80 100 120 140 160 180 200

X

Figure 5. Effect of Disturbances on the Spot
Position

The results with the controller switched on and
these disturbances are shown in Figure 6. In
spite of the disturbances, the tracking is
accurate. The mean value of errors is about 2.5
pixels and the maximal error is equal to 8 pixels.
The effect of disturbance signals is almost
completely eliminated. Only small deviations
and oscillations of the spot can be observed.

200

180

160

140

120

100

80r

80 " N n
60 80 100 120 140 160 180 200

X

Figure 6. Desired and Actual Trajectories
With Disturbances

Accuracy and rejection of perturbations are
satisfactory. This experiment highlights the
performances and robustness of the controller
and its ability to reduce the effect of
disturbances.

Control Values of moters 4 and 5 (in V)

time

Figure 7. Control Inputs of Motors 4 and 5
With Disturbances

5. Conclusion

In control system theory, robust and adaptive
methods are very attractive. With the proposed
method, there is no need for a perfect
knowledge of the system to deduce the control
law. Only basic information about the process
and the features of actuators is necessary to
define the controller parameters. On-line
identification with a least-squares approach
provides a linear mode! of the process about the
operating point. The adaptation law of the
model is fast, and consequently this method can
be effectively applied to a large class of
nonlinear and time varying processes.

The controller is established from the model and
defined to track a reference trajectory with the
desired accuracy and celerity. The control
criterion provides a robust control law, which
reduces the effect of disturbances and sensor
noise. Finally, experimental results emphasize
the efficiency of the proposed adaptive control.
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