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Abstract: The main goal of the paper 1s to present and
advocate for the representation of the activity-centred
graphs (ACGs. derived mn our research from the classical
conceptual graphs) as linguistic. structured and logically
consistent semantic networks, We use these graphs within a
project on developing a multidatabase CASE environment
Some general benefits of the ACG representation. are
underlined: 1) to transcend from pure (complex) object
representation  to general concepts, meaning not qgnly
objects but also properties, events. states. points in time,
expressions, structures. abstract knowledge. etc. 2) to unily
the data. and the functional and control perspectives in
information  system modelling and processing 3) to
supervise the concept and process interoperability 4) to
increase the code and repository reusability. These benefits
are mainly due to the ACG ability of representing both the
role-like and operator-like dependencies among concepts
and of extrapolating such software engineering principles
as abstraction, structuring, modularity. connectivity and
encapsulation. The logical consistency and correctness of
the ACG representation derives from its natural mapping to
predicate caleulus and from the natural implementation of
the J-abstraction mechanism.
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1. Introduction

We have defined the activitv-centred graphs
(ACGs) in a project, under way, on developing a
multidatabase CASE environment. They are our
response to the following conclusions drawn
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during our research : 1) natural language is the
ideal model (or metamodel), able to express
any information and situation in the real world;
2) the need for transcending from  pure
(complex) objects to general concepts, meaning
not only objects but also properties, events,
states, points in time, expressions, structures,
abstract knowledge or types, etc.; 3) the need for
simultaneously representing role-like
dependencies and operator-like dependencies as
well. Operator-like dependencies help us unify
three perspectives: data perspective, functional
perspective, control perspective (see Section 5).
Role-like dependencies help us qualify active
concepts by one or more attributive concepts
(see Section 2); 4) a structured and logic-based
fanguage is necessary for mastering the
complexity — of  concept and  process
interoperability and helping in its automated
capturing and interpretation.

The first two conclusions above directed us to
the conceptual graph (CG) formalism (see
[Sowa 88], [Sowa2l], [IRDS95], [Catach85],
[Fargues86], [Chein92]), mainly dedicated to
natural language processing. The last two
conclusions made us 1) transform the classical
conceptual graphs (CGs, that represent only
role-like dependencies among concepts) into
activity-centred graphs (that define only
operator-like dependencies); 2) unify the ACGs
and the CGs in, what we called, activity-centred
graphs with qualified concepts; 3) extrapolate
the software engineering principles (abstraction,
structuring, modularity, connectivity,
encapsulation) to the ACG representation.

The paper is organized as follows: Section 2

presents the activity-centred graphs as linguistic

semantic networks with node and link

specialization; Section 3 analyses several ACG

structuring  techniques and makes some

considerations on ACGs; Section 4 is meant to

prove the logical consistency and correctness of

the ACG representation, and Section 5

synthetises the main benefits from the ACG
usage. Figures are placed at the end.
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2. Real World Abstraction
Using Linguistic Activity-centred
Graphs

Real world abstraction is the first step toward its
automation. Any new conceptual model,
language or representation formalism, including
the proposed activity-centred graphs, means a
new abstraction technique. In our acceptance,
activity-centred graphs, viewed as linguistic,
structured and logically consistent semantic
networks, are supposed to represent any
(existing or future) type of concepts and
dependencies among concepts.

2.1 Node Specialization in the
Activity-centred Graph
Representation

An activity-centred graph consists of two kinds
of nodes:

e an operation, that abstracts a declarative
or execution activity in a target process/
system, and

e one or more concepts, that define or
describe the operation. A concept may
be primitive (represented by a value) or
structured (with a structured definition,
represented by another activity-centred
graph). As concepts, we may represent:
objects, properties, abstract knowledge
or types, events, states, points in time,
structures, expressions, etc. A concept is
denoted by [CONCEPT _TYPE:
referent], where CONCEPT TYPE is
an abstraction (e.g. PERSON) of a real
world entity (e.g. ‘John’), called
‘referent” (or ‘individual’). In an
activity-centred graph, referent may be:
1) an individual concept; 2) a set of
concepts put into braces {c,, ..., ¢,} or
3) a generic concept denoted by its
absence.

In the activity-centred graph definition (see
Figure 2-1), the concepts are connected to the
operation by concept-operation links (see
Section 2.2). In Section 2.2.3 the active
concepts (direct participants in operations, i.e.
directly connected to the operation) are
separated from the attributive concepts (devoted
to qualify the active concepts).
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2.1.1 Constraints on Concept Nodes

Some of the constraints imposed on concepts in
the classical conceptual graph theory have been
adapted to the modelling requirements. They are
not exhaustive but, so far, they have been
sufficient for the multidatabase modelling. The
following constraints on the concept nodes have
been proposed:

e concept typing, which compels each
individual concept to comply with a
certain (usually domain specific) type.
In [IRDS95], higher-order types are
proposed for conceptual graphs. A
higher-order type has as referent
another concept type (usually at a lower
abstraction level), instead of an
individual  concept. For example,
[PERSON: TEACHER] and
[TEACHER:"John Smith']. PERSON is
a second order type, whose referent is
the first order type TEACHER.

o concept quantification. In the classical
conceptual graphs (and in predicate
calculus), the wniversal quantifier (V)
meaning ‘all’, ‘every’. ‘any’ and the
existential guantifier (3) meaning “there
exists” seem to be suificient for
narrowing  the  spectrum  of  the
individual concepts. An additional
specification  was needed for the
concepts involved in activity-centred
graphs, mainly dedicated to concept/
process modelling. It refers the
compulsory or optional existence (or
acquisition) of the referents which
instantiate “the existentially quantified
concept types. Consequently, we refined
the existential quantifier to represent: 1)
compulsory existence of the referent,
denoted by 3 and meaning ‘must exist’
and 2) optional existence of the referent,
denoted by 3? and meaning ‘may exist’.
In the ACG representation, the
quantifier precedes the concept type
(see Figure 2-1).

o fype of the concept plural. Each concept
may be singular (an instance) or plural
{more instances). From among the four
types of plural defined in the conceptual
graph formalism ([IRDS95]), we have
extracted and adapted the following two
plural types:
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o collective plural, whose elements
altogether define the respective
plural concept. We denote it by C{}.
In case of a finite number of
predefined instances composing the
plural concept, we may specify them
in braces C{r,, ....r,}

o distributive plural, whose elements
separately define the plural concept
and participate in the graph. We
denote it by D{} or D{r,. ....r,,}

e cardinality of the concept plural, that
limits the number of instances of a
plural concept, be it either collective by
C@n{} or distributive by D@n/!}.

e concept subtyping. that endows each
concept type with lower-level meanings
in the modelled domain, generally not
disjunctive and composing a lattice for
each concept type. In Section 3. all the
proposed  kinds of subtyping are
defined: 1) by concept restriction 1o
particular  values, 2) by concept
specialization to specific roles in a
certain domain, 3) by concept renaming
bv synonyms in other languages or
ontologies.

2.1.2 Constraints on Operation Nodes

Each operation is liable to the following
constraints:

e operation modality, denoted by the
‘modal’ verb that precedes the operation
name (see Figure 2-1). In the ACG
representation, it specifies a compulsory
(*must’) or optional (‘may’) activation
of the operation.

e operation sublyping, by replacing the
activation of an operation {possibly. a
virtual one) by the activation of one of
its specialized children, connected by
the interoperation connective SPEC to a
parent operation (see Section 2.2).

° operation duration, denoted by a
concept that has the role <<DUR>>
relative to that operation.

® operation starting point in  lime.
denoted by
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e a concept that has the role
<<TIME>>  relative to  that
operation; or by

e a ‘procedural time condition’
connected, by the interoperation
connective TIME., to the respective
operation.

e operation stimulating event, denoted by:

e a concept that has the role
<<EVNT=>>  relative to that
operation: or

e an ‘event operation’ connected, by
the interoperation connective EVNT,
to the stimulated operation.

s operation procedural goal. denoted by
a subsequent operation (connected by
the interoperation connective GOAL)
that  represents  the  procedural
motivation of the aperation.

2.2 Link Specialization in the Activity-
centred Graph Representation

2.2.1 Concept-Operation Link

This kind of a link connects a concept to the
operation it is involved in. In some previous
papers, we have called it conceptual connective,
meaning the rofe of the concept relative 1o the
respective  operation.  Each  conceptual
connective represents  a complementary
meaning of a concept and, also, a label to the
graphic conceptual link (arrow or line) between
the concept and the operation (see Figure 2-1).

As acronyms and meanings of these roles, we
propose: AGNT (an agent of the activity, i.e. the
person or the object that performs the activity),
PTNT (patient, i.e. the object the activity
operates on), RSLT ( the result of the activity),
INST (an instrument for achieving the activity),
RCPT (a recipient, i.e. the person or the object
benefiting the result of the activity), LOC
(location of the activity or of the involved
concept), CHRC (a characteristic of the activity
or of an involved concept). SRC (the source of
an activity or its initial state). DEST (the
destination of an activity or its final state),
PART (part of another concept meaning a
whole). TIME (the point in time when the
activity starts), DUR (the duration of the
activity), EVNT (an event that stimulates the
activity execution, represented as a concept),
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DSCR (the activity description, represented as a
concept), STAT (the state of the activity),
CAUS (the activity cause, represented as a
concept), GOAL (the activity goal, represented
as a concept). The list may be enlarged,
depending on the specific domain which they
are used for. These roles have linguistic
synonyms such as: by’ for AGNT, “of’, ‘upon’
for PTNT, ‘into’ for RSLT, *with’ or ‘through’
for INST, *at’ for TIME. ‘when’ for EVNT,
‘as’, ‘of” for CHRC, ‘in’, ‘on’ , ‘over’ for LOC,
‘from’ for SRC, ‘to’ for DEST, ‘of’, “out of” for
PART, ‘like’ for DSCR. ‘for’ for RCPT, ‘for’
for DUR, ‘in’, ‘as’ for STAT. ‘because’,
‘because of for CAUS, “to’, “in order to’ for
GOAL.

Figure 2-1 represents the concept-operation
links within an activity-centred graph in graphic,
linguistic and linear notations.

As an operation description generally takes two
or more concepts. a named tuple like
OPERATION(CONC _TYPE, ..... CONC TYPE,)
represents an operator-like relationship between
concepts and may at once be an operation
signature. A further abstraction of the operation
signature, with an impact on the operation
reusability, is the named tuple

OPERATION (role,, ..., role,).

The concepts roles in the operation description
are invariant, whereas the concept types
generally depend on the specific domain which
they are defined for.

2.2.2 Interoperation Link

[t connects two or more operation nodes. We
called such links interoperation connectives
(10C), meaning constraining or control rules/
statements on the operation activation. We
classified the interoperation  connectives
according to 1) control statements in the
structured programming (sequential, conditional
and iterative control), and 2) new constraints
required for multidatabase modelling or
foreseeable in the-multidatabase execution (see
also the execution model described in
[Galatescu97]). In summary, we propose several
interoperation connectives dedicated to:

e sequential activation of the operations,
refined into:

e activation timing, by THEN, BFOR,
AFTR between a parent operation
and its children, between brothers or
between operations belonging to
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different subtrees in the process
decomposition:

e explicit specification on compulsory
or optional activation of the child

operations, by MUST or MAY:

e semantic specialization of a parent
operation by  SPEC,  which
constrains one of the specialized
child operations to get activated
instead of a parent operation (which
might be a virtual operation);

e imperative subsequent activation, by
DO or RSLT, specifying compulsory
activation ~ of  an  operation,
immediately after the activation of
the operation it is connected with. by
the respective 10C;

e conditional activation of the operation by:

¢ [F-THEN-ELSE, when the execution
of an operation (preceded by THEN
or ELSE) depends on a continuation
procedural condition (preceded by
IF). A continuation procedural
condition is a predicate expression
whose components are operations
and logical operators. The true value
of this condition depends on the true
values of the component operations.
An operation is true if already
activated and false if not.

NOTE. Using only procedural conditions in the
conditional (as well as iterative, see further)
control of the operation activation sounds
restrictive. A continuation conceptual condition
(an expression whose components are concepts
and operators) is also needed in a completely
structured modelling. In [Galatescu97], the
continuation conceptual condition is viewed as a
decisional element for the operation activation,
part of an implicit (not explicitly represented) IF
statement. The true value of the conceptual
condition helps the modeller (or the modelling-
dedicated interpreter) continue the manual or
automated activation of the indicated operations.

In order to keep the representation uniform and
to separate the procedural conditions from the
conceptual ones, only the procedural conditions
will be preceded by I[F, which acts as a
conditional statement in our representation. The
conceptual  conditions represent  additional
information  attached to  the  existing
interoperation connectives.
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e CASE, that specifies an alternative
(but not necessarily disjunctive)
activation of the child operations.
This connective may be associated
with a conceptual condition, whose
true value orientates the modeller’s
decision on the appropriate child
operation. :

e jterative activation should be:

e conditional, by WHILE-DO, when
the execution of an operation
(preceded by DO) depends on a
continuation procedural condition
(preceded by WHILE):

° wunconditional, compulsory/ optional.
by MUST/MAY REPEAT applied
10 a repeatable operation;

e logical activation. which depends on
logical connections among operations
belonging to the same procedural
module (see Section 3). Logical
activation may be refined into:

s (exclusive) disjunctive activation, by
OR (XOR), when an operation
activation logically rejects  the
activation  of other  operations
connected with it bv OR or XOR.

e qctivation conjunction, by AND,
when two or more operations may all
be activated ;

e activation negation, by NOT, when
we have to represent an explicit
rejection of an operation,

e grouped activation, which constrains
more semantically related operations on
being the children of the same
operation, hence on belonging to the
same semantic group of operations. The
common parent operation and its
children are correlated by the
connective  GROUP.  The  parent
operation augments the meaning of each
child with its own meaning.

® purpose subjunctive activation, by
GOAL. GOAL is preceded by an
operation whose activation is motivated
by the execution of another operation
(called  subjunctive  operation  of
purpose) that follows GOAL.
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e operation description, by DSCR, which
introduces the description of an
operation, as one or more correlated
child operations;

e activation  stimulation, by EVNT,
which introduces an event operation
that stimulates another operation;

e activation starting, by TIME, which
introduces the starting point in time of
an operation as a ume condition (a
continuation  procedural  condition
whose true value is automatically
associated with a certain point in time).

2.2.3 Interconcept Link

Two Kkinds of interconcept links are
represented. meaning:

e role of an attributive concept in
qualifying an active concept. This
role-like relationship between two
concepts may simply be represented
by an atiributive graph like

|attributive_concept] role |active concept]
—_—

For procedural purposes. this kind of a link may

be simulated by means of a generic (SETTING)

operation:

[active_concept] <<PTNT=>_ (SETTING)
<<CHRC>> l

[attributive _concept]

e coreference link between two concepts
referring to the same individual in two
separate graphs (see Figure 2.2). Notice
that the coreferent concepts might have
different types (labels) in the two graphs
they belong to.

2.3 Linguistics in the Activity-centred
Graph Representation

Activity-centred graphs can represent: nouns (as
concepts), verhs (as operations), modal verbs
(preceding the operations, see Figure 2-1),
pronouns (as concepts coreferent to the related
nouns, see Figure 2-2), adjectives (as attributive
concepts introduced by interconcept qualifying
roles), adverbs (as concepts introduced by the
concept-operation  link  <<DSCR>>  or
<<CHRC==>), prepositions and conjunctions (as



concept-operation  links), the noun plural
(represented by the concept (collective or
distributive) plural, see Section 2.1.1).

The ACG linguistics and semantics is upgraded
by 1) concept subtyping (see Section 3.1), which
introduces the concepr polysemy ([Sowa88]): 2)
concept  homonymy (alternative  disjunctive
meanings of a concept) by means of, what we
call, a multiple concept (see Section 3.1); 3)
anaphoric sentences (by means of coreferent
graphs, see Figure 2-2), 4) active and passive
voice (by operation and role reversing upon the
same storing structure, see Section 5).

2.4 Accommodating the Classical
Conceptual Graphs

The definition of the activity-centred graph
includes:

e more elements inherited from the
classical conceptual graph
representation and accommodated to
our requirements such as:

e simultaneous representation of two
(or more) abstraction levels: the
concept type and its individual
(possibly another concept type), with
benefits in the representation of
higher-level concepts;

e notions of quantification and plural
type of the concepts (with a changed
position in our notation: we
represent them before the concept
label in order to keep the user
informed. In classical conceptual
graphs, they are represented instead
of the referent(s) that should replace
them).

e most of the predefined thematic
roles (AGNT, PTNT, etc.) that, in
classical conceptual graphs, usually
express the conceptual relations
(role-like  relationships  directly
connecting the concepts to each
other);

e general rules for graph expansion,
contraction and joining;

e graphic notation for concepts,
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e star graph notion (later introduced in
[Chein92]):

e concept subtyping by restricting the
concept types to certain values;

e coreference link between two
graphs.

s modifications  on  the  classical
conceptual graphs, mainly intended to
separate the declarative semantics from
the procedural one in our representation.
These maodifications consist of:

e representation of the operation as an
operator-like  relation  between
concepts, instead of the role-like
relations expressed by thematic roles
(PTNT, INST, etc.), prepositions,
conjunctions, etc. in the classical CGs.

e transformation of the thematic roles
(that compose the starter set of
conceptual relations in classical
conceptual graphs) into conceptual
connectives. In an activity-centred
graph, they denote the roles of the
concepts relative to an operation,
instead of the direct roles between
concepts, as in Sowa’s CGs.

e explicit representation of the
operation modality (by ‘must’ or
‘may’);

e definition of the concept orientation
(input,output, local) in the relation
(in our case, operation) signature;

e separation of generic (domain
independent) operations from the
domain dependent ones;

o the transformation of  the
intersentential relations and
metarelations among classical CGs
into  Inleroperation  conneclives,
denoting the procedural control over
activity-centred graphs (see Sections
2 and 3).
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3. Structuring Techniques and
Considerations on  Activity-
centred Graphs

Abstraction.  structuring and  encapsulation

(information hiding) are major principles of

software engineering. Modularity  and
connectivity (coupling and cohesion) are
important aspects of the structuring principle.
Section 2 dealt with the abstraction ability of the
activity-centred  graphs.  This  Section  will
analyse the structuring and encapsulation of the
activity-centred graphs.

3.1 Concept
Encapsulation

Structuring  and

As the data structuring 1s 1mportant for
structured programming, similarly. the concept
structuring is, in our opinion, a straightforward
way to simplifving the conceptual modelling.

3.1.1 Concepts With Structured Definition

A concept with structured definition {or simply
a structured concept) is the recipient (and at the
same time the result) of a definition operation
grouping all the concepts (called definition
concepts) that define the respective structured
concept. The abstraction capabilities of the
activity-centred  graphs allow the natural
definition  of the  structured  concepts,
independently of the domain specific type of
their definition concepts, but depending on the
invariant roles of the definition concepts relative
to the structured concept. This feature enhances
the reusabilitv of the structured concepts and
makes it possible to share them among more
domains/ ontologies/ processes. It is also a step
towards a higher-level data structuring, if
compared with the allowed structures of today’s
ordinary programming,.

The following kinds of structured concepts ave
proposed (see also [Galatescu95]):

Complex Concept, whose definition associates
other concepts (e.g. identification concepts,
properties, etc. needed for retrieving the
complex concept) related to the respective
structured concept in a definition graph like:
F[COMPLEX_CONCEPT]
<<RCPI>> 3ldelimition_concept, |
<<role;>>
INITION) a

(CPLXTYPE DIF
<<role,=> |
37 [definition_concept,]

Multiple Concept, that unifies the alternative
(disjunctive) meanings of a concept. Only one
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meaning is selected at a time during the
modelling (acquisition) process. The multiple
concept implements the concept
homonyvmy([Sowa88]). It was introduced in
[Fargue86] as a schematic cluster composed of
ordered disjunctive schemes. A multiple concept
may be defined by an activity-centred graph
like:

7[MC_muluple_concept]

<<RCPT>

3leoncept_typey)
I r/ﬂ]/m'»
(ALTERN_SELETTION) gt
<<PTNT=>]
4 feoneept type,)

Group Concept, that groups heterogeneous
concepts with common higher-level semantics
and identical (e.g. PART) or different roles in
the group (e.g. concepts that compose: “person’s
description’, object dimensions’, "government’,
‘family’, etc.). A group concept may be defined
by a graph like:
F[GC _group_concept]

<<RCPT>>J' J{concept type]

Mmle»
OSTTION)

3 [eoncept typey|

(GROUP_COMI
<<PART/ role>>

List Concept. representing the concatenation of
two or more concepts (including a NULL
concept, as list terminator). It may be defined by
a recursive operation represented by a graph
like:

V| LL'hsluTwcptj

<<RCPT>> 3[concept_typey]
/<PAR'I'>>
(LIST_CONLATIENATION
<<PARL <<PART>> SEPART=>>
FINULL]  32|LC _list_coneept] J[concept_type-}

Subtype, as a special kind of structured concept
defined by a classification operation. On
modelling multidatabase, subtypes by restriction
and specialization are needed. The restriction
of a concept means its instantiation with a
certain value (in the case of a primitive concept)
or the instantiation of one or more definition
concepts (in the case of a complex concept) with
certain values or subtypes. The specialization of
@ concept means its replacement (in at least one
of the graphs containing it) by one of its
specialization roles in the modelled domain.
Synonyms in other languages or ontologies
might be subtypes obtained by renaming the
concepts. The three subtyping operations might
be represented by a graph like:

¥ |subtype] J[supertype]

<RCPI>= / <<PTNT>>

({</<s/=n})

<<INST>>/—~—<<INST>>
3 [restricted_concept] ... 3 [restricted_concept]
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where <r/ <s/=n means subtyping by restriction/
specialization/ renaming. In order to distinguish
the subtype external representation, we prefix
the name of the subtvpe by restriction (or by
renaming) with *<* {(or *=*). In order to complete
the semantics of the subtyping operation by
restriction, the  concepts that should be
restricted (in the complex supertype definition)
can be specified.

NOTES

1. Concept subtyping by restriction was
introduced in the conceptual graph theory.

2. The definition graph of a subtype by
restriction is isomorphic to the definition graph
of the restricted concept (supertype). whereas
the definition graph of a subtype by
specialization or renaming is identical to that of
the specialized or renamed concept type. Also,
in the case of subtyping by restriction or
specialization, the subtype’s extension (set of
instances) is a subset of the extension of the
restricted or specialized supertype.

3. In the case of a complex concept type, the
extensions of its subtypes by restriction are
disjunctive, whereas in the case of the subtypes
by specialization, they may partly overlap.

4. In comparison with the class specialization
operation met in the O-O models, that entails a
new class definition, subtyping by restriction/
specialization/  renaming s, in  this
implementation, just a virtual operation, a
semantical restriction (or renaming) of an
existing concept type, without physically
creating a different one.

3.1.2 Structured Concept Encapsulation.
Contraction and Expansion of A Structured
Concept

Relying on its A-definition (see Section 4), the
contraction and expansion of a structured
concept can be defined as interactive tools for
implementing the structured concept
encapsulation (see Figure 3-1). Contraction of a
structured concept means the replacement of its
definition graph by its name (type). Expansion
of a structured concept means the replacement
of its name by its definition graph, in any of the
graphs containing the respective structured
concept.
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3.2  Operation Structuring and
Encapsulation

3.2.1 Operation Signature

The concepts describing an operation may be
input concepts, output concepts, input-output
concepts or local concepts. Graphically. the
concept direction relative to the operation is
represented by the direction of the arrow
connecting them. Local concepts are connected
by a line.

We mean an operation signature a named tuple
OPERATION(CONCEPT _TYPE,..... CONCEPT _TYPE,)

with “p’ the maximum number of concepts that
describes the operation and kK ( k = p ). the
number of input/ output/ input-output concepts.
The invariant counterpart of the operation
signature is the named tuple

OPERATION(roley,.. . roley)

When the concept roles differ from one another,
the operation signature may be an unordered list
of roles.

3.2.2 Operation Encapsulation. Contraction
and Expansion of the Operation

The A-definition of an operation (see Section 4)

“is the theoretical support for the contraction and

expansion of the domain specific operations,
and implicitly, of the graphs that describe these
operations. Contraction and expansion help the
operation encapsulation (see Figure 3-2).
Operation contraction means the replacement of
the graph that defines the operation by the
operation name. Operation expansion means the
replacement (in the diagram containing it) of the
operation name by the graph that describes that
operation.

3.3 Joining Two Activity-centred
Graphs

Nesting the graphs that define the structured
concepts involved in a domain specific
operation will be possible provided that the
eraph that describes that operation joins the
definition graphs, which expand the respective
structured concepts, Further, the definition
graph of a structured concept will join the
definition graph of each component structured
concept and so on. Hence, join is a technique
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necessary for structuring the activity-centred
graphs.

3.3.1 Join Definition

The join of two activity-centred graphs takes the
same steps as the join of the classical CGs:

» draw up a maximal common subgraph
(e.g. just a structured concept. in our
case):

e attach the remaining parts of the two
graphs to the maximal common
subgraph.

When one of the two activity-centred graphs is a
definition graph. the join operation will be as
shown in Figure 3-3.

When both graphs describe domain-specific
operations. they may join on a common concept
or subgraph. see Figure 3-4.

3.3.2 Joining Appropriateness

We will represent joint graphs when two
operations are semantically and chronologically
related (for knowledge acquisition or for their
execution) and when the following situations are
true:

e the common concept type is the same in
the two graphs;

e the two operations belong to the same
procedural module and have the same
parent (see Section 3.4);

e none of the operations is incompatible
with a previously activated operation.
This condition is a cautionary condition,
imposed by the grouped encapsulation
of the joint graphs (see Section 3.3.3).

Joining graphs is not incompatible with their
independent usage in other modelling or
execution contexts. [nternal sioring of the joint
graphs depends on the usage (stand-alone or
grouped) of the joint operations. The decision is
similar to storing joint tables in a cluster or only
in physically independent, but logically joint
tables in relational databases.
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3.3.3 Comparing Join With the Coreference
Link Between Two Activity-centred Graphs

It comparing the join of two graphs on a
common concept with a possible coreference of
the two graphs on two coreferent concepts, the
conclusion will be that joining graphs is more
restrictive because:

# the corresponding concepts must have
the same type:

e join is only justified provided that the
joint  operations are  encapsulated
together and. usually. stored together.
The coreferent graphs are usually
conceived to be stored independently
but, if necessary, they can be
encapsulated together.

Graphs (1), (II) and (II1) in Figure 3-5 are
coreferent  because the concept [BOY] is
coreferent with the concept [PERSON]. Graphs
(Iy and (11) join on the concept [HOME]. Graphs
(I1) and (I} join on the concept {SCHOOL].
Without the contextual correlation between
them, graphs (I), (I1), (II1) may be considered as
being independent of one another. Operation
(LEARN) may be considered as subjunctive
(motivation, goal) with respect to operation

(GO).

3.3.4 Encapsulation of Joint Operations

The same as with a stand-alone operation, the
contraction of two joint domain-specific
operations means replacing the corresponding
joint  graph by the name of the join:
OPERATION, @& OPERATION, The
expansion of two joint operations means
replacing the join name by the corresponding
joint graphs. The theoretical support for the
encapsulation of two joint graphs is the A-
definition of the respective join (see Section 4).

3.3.5 Encapsulation of Two Coreferent
Graphs

When necessary, coreference may be treated as
a special (less restrictive) join and encapsulated
accordingly. Otherwise, the coreferent graphs
may be treated as independent graphs and
correlated by other means (e.g. concept transfer
between the two operations). In the latter case,
the encapsulation of the coreferent graphs means
the  independent  encapsulation of the
corresponding operations.
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3.4 Modular and  Procedural
Modelling Using Activity-centred
Graphs. Module Encapsulation

In this Section, we focus on two aspects of the
conceptual modelling using activity-centred
graphs:

e how this representation observes the
properties of the modular design, and

e how this representation implements a
hybrid design method, with a procedural
method as skeleton, with a functional
decomposition  of the procedural
modules and with a concept-based flow
among operations and among
procedural modules.

As shown in Section 2, when using ACGs, two
abstraction types prevail: concept types and
operations. Each operation (including the
definition operation of a structured concept
type) acts as «a primitive executable and
uninterruptible  function. Module is a complex
abstraction type that combines concepts.
operations and their links.

3.4.1 Declarative Modules

We call declarative module, any combination of
concepts, operations. concept-operation links.
concept-concept links. Therefore, declarative
modules will be stand-alone, joint or coreferent
activity-centred graphs (possibly with qualified
concepts) that define or describe structured
concepts or domain specific operations.

3.4.2 Declarative Encapsulation

This is achieved by the contraction and
expansion of stand-alone, joint and coreferent
graphs. Consequently, the contraction and
expansion of a declarative module are based on
its A-definition, which is identical to the -
definition of the corresponding correlated
graphs (see Section 4).

3.4.3 Procedural Modules

We call procedural module. any combination of
operations (contracted activity-centred graphs)
and  interoperation  links  (interoperation
connectives, see Section 2) that, fully or partly,
describe a process.
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Functional decomposition of a modelling or
execution process. following various criteria,
entails a hierarchical structure of the procedural
modules that describes the respective process.
Practice proves that Jiogical or semantic
connections among operations, as well as the
execution control needed. are more complex to
represent than a simple hierarchy can do. On the
other hand. visual and on-line interpretation of
the executable or control statements is usually
required during a modelling/ execution process.
Domain specific operations stand for executable
statements and the interoperation connectives
stand for control statements. in any procedural
module composed of ACGs (see Figure 3-6).

3.4.4 Procedural Encapsulation

This enables a gradual understanding of the
modelling/ execution process. It is the result of a
unification, inside a procedural module. of all
operations executing or describing the same
general  task. In order to extend the
encapsulation to the procedural modules, we
differentiate among three kinds of operations:

s declarative  operations.  expanding  onto
activity-centred graphs only (e.g. Oy, in
Figure 3-0);

e procedural operations, expanding onto
procedural modules (operation hierarchies)
only (e.g. Oy in Figure 3-6);

s mived operations. expanding onto both
procedural modules and activity-centred
graphs (e.g. O in Figure 3-6).

This paper is mainly concerned with a modelling
process. That is why the dynamic aspects of the
operation execution, involving event operations,
starting points in time, transformed states or
execution actions, will not be addressed. These
aspects have been tackled in [Galatescu97].

Contraction and Expansion of A Procedural
Module. Contraction of a procedural module
means replacing the respective module by the
name (type) of its root operation. Theoretically,
the contraction of a procedural module is based
on the procedural A-definition of its root
operation. [f the root operation is a mixed
operation, it has both a declarative A-definition
and a procedural one (see Section 4).
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3.45 Accommodating the Properties of
Modular Design

ACG representation observes the following
properties of the modular design:

e representation may be fully decomposed
into  declarative  and  procedural
modules:

e ¢ach procedural module has a single
entry point {its root operation);

e cach declarative or procedural module
performs a single task. The declarative
module performs the task of the
corresponding operation and the
procedural module performs the task of
its root operation.

e cach module may be separately
executed :

e declarative and procedural modules are
encapsulated:

e declarative and procedural modules
share global knowledge:

e cach procedural module may have a
unique exit point if an exir operation is
added. as the child of all the leaf
operations in the respective module.

3.5 Module Connectivity Using
Activity-centred Graphs

Beside modularity. the module connectivity is
another aspect of the structuring principle.
Connectivity is closely related to the principles
of module coupling and cohesion. Module
coupling aims at minimizing the number and
strength of the interconnections between
modules. Module cohesion aims at strengthening
the relationships among the internal elements of
a module.

In this Section, we briefly analyse: 1) the
procedural connectivity (among procedural
medutes only): 2) the declarative connectivity
(among declarative modules only) and 3) a
mixed coupling (among the procedural modules
and the declarative ones).
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3.5.1 Procedural Connectivity

Role of the Root Operation. Using activity-
centred graphs. a low or high degree of the
procedural module coupling, that is of the
interconnections  between the called child
module and the caller (parent) module. is
reflected in the signature of the root operation
belonging 1o the called module (e.g. O,y or O
in Figure 3-6). Regardless its type, procedural or
mixed, the root operation of a called module
belongs to both the caller and the called module.
The concepts present in its signature are
supposed to be created in a parent (or an
ancestor) module and to be transmitted to all the
child operations inside the called module and to
all its child modules as well.

Coupling  Procedural Modules. Conceptual
Dependence. Decreasing the number of
concepts present in the signature of a root
operation means (o decrease the number of
concept  transfers between the two modules
(caller and called) and to minimize their
coupling.

An additional abstraction of the concepts,
materialized in their roles relative to operations,
contributes to /loosening the sirength of the
module  coupling. Instead of coupling the
transferred concepts by means of their domain-
specific names (types), we may couple them by
means of their invariant roles relative to the
coresponding operations (i.e. the operations
that define them in the parent module and the
operations that use them in the child module,
including the root operation). This feature of the
activity-centred graphs helps the independent
processing of each procedural module relative
to both the specific domain which it is defined
for and other procedural modules that use the
corresponding concepts.

The conceptual dependence (concept transfers)
of the procedural modules should be sequential
and. generally. top-down directed. Otherwise,
redundances or errors can occur in the concept
creation and transmission among procedural
modules,

Cohesion inside Procedural Modules. High
degree  cohesion among the operations
composing a procedural module is explained by
three kinds of possible dependences among
these operations:

e logical dependence, expressed by the

interoperation connectives, as
procedural  constraints  on  these
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operations. See their logical
representation in Section 4.

o conceptual dependence, consisting of
the concept transfers among the
operations of the procedural module;

o functional dependence. a consequence
of the common goal of all the operations
inside a procedural module: to perform
the function (task) of the root operation.

3.5.2 Declarative Connectivity

There are three kinds of connections between
the declarative modules, which use:

e joining the activity-centred graphs on a
common concept or subgraph;

s coreference between the activity-centred
graphs involving the same individual
concept :

e concept transfer among the activity-
centred graphs;

Coupling the Declarative Modules. Regardless
their type, the connections among the
declarative modules are intrinsic to the
definition of the activity-centred graphs and may
be represented in any logical language
(including predicate calculus. used in this
paper). Thereby, they may be considered as
logically coupled. On the other hand. the
coupled declarative modules contribute to
achieving the same function (task): either the
task of the domain-specific operation or the
definition task of a higher-level structured
concept. Hence, these graphs may be considered
as functionally dependent. Finally, concept
transfers among the declarative modules
contribute to their conceptual dependence.

To minimize these connections means (o
minimize the concept and operation structuring
which is, in our opinion, the clue to the ACG
representation and to a modelling/execution
process simplification. However, we can
minimize the common subgraph in a join, the
number of coreferent or transferred concepts.
We also need to prevent declarative cycles or
redundances.

Cohesion inside the Declarative Modules. The
strength of the functional cohesion of the
concepts defining or describing an operation
mainly stems from all the concepts participating
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in the same operation and playing certain roles
in that operation and, indirectly, with respect to
each other.

3.5.3 Declarative-Procedural (Mixed)
Coupling

This is achieved by the permitted interactive
expansion of the declarative and mixed
operations inside the procedural modules which
they belong to. This possibility makes our
representation differ from the rules in current
programming, that strictly separates the
declarative sections (including the definition of
the primitive functions and the definition of the
data structures) from the procedural ones.

Using the activity-centred graphs, the coupling
between these graphs (as declarative modules)
and the hierarchical diagrams ot operations (as
procedural modules) is directly and interactively
achieved. In our opinion, these direct
declarative-procedural dependences are
appropriate to the modelling/ knowledge
acquisition/ execution processes. However, a
disadvantage presents to the modeller who
wants to keep trace of the definition operations
of the structured concepts. This disadvantage
may be overcome with an appropriate and
complete guide to and/ or help in the process
execution.

4. Logical Consistency and
Correctness of the Activity-
centred Graph Representation

We mean by logical consistency  and
correctness of a representation formalism, the
consistency and correctness of the abstraction
and structuring means which that representation
offers with respect to a certain objective. The
heuristic nature of the knowledge acquisition
process pushes us to think of a (wo-step
evaluation of the representation consistency and
correctness: 1) an a priori evaluation of the
correctness and appropriateness ot the chosen
representation support relative to the intended
objective, 2) an a posteriori evaluation of the
consistency  and  correctness  of  the
representation result, if compared with the
intended objective.

These steps automation should rely on a
consistent and correct inference upon the chosen
representation means. Experience and software
engineering literature have already proved the
validity of the structured design and
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programming., both enforcing the software
engineering principles. That is the reason why
the correctness of these principles will be
implicitly considered when extrapolated to the
ACG representation. This Section mainly deals
with the consistency and correctness of the
logical inference inside both the declarative and
procedural modules representing ACGs and
their connections.

1.1 Logical  Consistency  and
Correctness of the Declarative
Modules

4.1.1 An Activity-centred Graph Is An
n-order Predicate

As shown in Section 2, an activitv-centred graph
describes an operation (a definition operation or
a domain specific one). The concepts that
describe the operation may be primitive or
structured ones. Each operation

OPERATION(CONCEPT _TYPE,..... CONCEPT_TYPE,)

{and. implicitly. the graph that describes it) is an
n-order predicate if’ there exists at least one
structured concept CONCEPT;, ¥i € 1:p, which
is an (n-1)-order predicate, because its A-
definition contains (n-2)-order predicates and so
on. ‘p’ denotes the maximum number of
concepts which define that operation.

4.1.2 The Role of Quantifiers in the
Declarative Inference

The explicit representation of quantifiers is
important because of their rofe in specifving the
inference direction:

e the universal quantifier preceding a
concept indicates the affiliation of the
respective concept to the premise (left
member) of the inference. In the case of
a plural concept. it means “for all’. For a
singular concept. it means ‘any’ or
every’.

e the existential quantifier. meaning ‘there

exists’. obviously indicates an element
of the conclusion of the inference.

4.1.3 Logical Inference inside Activity-
centred Graphs

Common sense leads us to the following rules:
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e the premise is a conjunction of concepts
preceded by a universal quantifier:

e the conclusion is a conjunction of
concepts preceded by a (compulsory or
optional, see Section 2) existential
quantifier;

e the same conclusion should be valid for
each component of the plural concept in
the premise of the inference:

e an operation uniquely associates a
concept (or a component of a plural
concept) in the premise with each
concept in the conclusion.

These rules suggest such a paitition of an
activity-centred graph as:

<<role,>>

(operation) £<role: == J[eoncepta: C}]

<<role:>>

d[concept;]

() Vlcmlccpld

into its premise and the two components of its
conclusion, as follows:

(I | ¥ [concept;:x]]
[[x] <grole>=_ (operation)

<<role,>>
[concept:C{}]]
[[x] <<role; >> (opgration)
— j <<roles ==

Flconcept;] ]

After a further transformation of the plural, the
inference inside graph (1) becomes:

(1) (¥x) ((concepty(x) A role(x)) = (3S) (3z
(set(S) A (¥yeS) (conceptz(y) A rolex(y) A
concepts(z) A roles(z) A operation (x,y,z))))

NOTES
1. The above rules can be applied to complex

declarative modules (joint or coreferent
graphs) as well.

&)

In formula (111). the conceptual connectives
and the plural notations have been
transformed  into monadic  predicates.
Variables *x’, 'y’ and "z’ have a double
semantics: that of the concept types they
instantiate and that of their roles in
‘operation’. This second meaning of the
concepts helps represent the graph by a
non-positional and domain independent
predicate: operation (role,, ..., role;)

(]
-
[



-

3. In the case of an n-order graph, with n>1,
the (n-1)-order concept it comprises (e.g.
‘z) will be an (n-1) order predicate.

4.1.4 Logic of the Attributive Graphs

An attributive graph like

[attributive_concept] _xale ,[active_concept]

that qualifics an active concept will be represented as
a dyadic predicate role (attributive_concept.
active_concept). as in the case of the classical
conceptual graphs. [t is a positional. domain
dependent and. possibly, an n-order predicate.

The logic inside an attributive graph may be
decomposed as follows:

| attributive_concept:al] [la] role Zlactive_concept ¢
—_—
and represented in predicate calculus by:

(Va) {attributive_concept (a))
() (active concept (¢)) role (a. ¢)

Hence, each attributive concept must be
associated with at least one active concept.

4.2 Logical Consistency of the
Procedural Modules

The two-step evaluation of the procedural
consistency and correctness consists of: 1)
evaluating the correctness of the theoretical
support dedicated to the logical control inside
the procedural module. In our case, that means
to evaluate the correctness of the proposed
interoperation connectives as well as their
correct combination inside a procedural module;
2) evaluating the correctness of the represented
process and the degree to which it is free of
logical incompatibilities. That means, to prevent
and check the modeller's or the user’s actions
inside any procedural module. In this Section,
we are concerned with the first step of the
evaluation.

4.2.1 Correctness of the Interoperation
Connectives

This is, in our opinion, a consequence of their
mapping to  predicate  calculus.  Each
interoperation connective may be considered a
constraining inference rule, whose premise is the
last activated operation (denoted by PO) and,
implicitly, —all  the previously activated
operations for a given subject and whose
conclusion is the conjunction (or disjunction) of
the operations (denoted by O, O,..., Oi)
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proposed for  the
continuation.

modelling/execution

In order to represent the mapping rules of the
interoperation  connectives onto  predicate
calculus. we also denote 1) by x. » two different
output concepts of PO operation transferred 1o
its child operations: 2) by > the compulsory
activation of an operation implied by a former
operation; 3) by ~ the conjunction of the
operations with compulsory activation in the
process, by v the disjunctive (not exclusive)
activation of two or more operations, by == >
the transformation into predicate calculus of an
interoperation connective and by NULL. a null
(ineffective) operation.

In the hereinafter proposed inference. we
implicitly suppose a transfer of at least an output
concept (denoted by “x™ or “y") of the operation
in the premise to the operations that appear in
the conclusion of the inference rule. The
concept transfer justifies the logical correlation
between those operations, aiming at modelling/
acquiring/ operating on the same concept.

Sequential Activation of the Operation

¢« PO THEN /BFOR O ==> (V¥x)
(PO (x) D0 (x)})A=(0(x)>
PO (x)))

o PO AFTR O ==>(¥Yx)(—(PO(x)>
Ox))A(OX)IDPO(x)))

e PO MUST Oi. .. 0i,==>(¥x)
((POX) 20, (x)A..A (PO(x)D
Oi, (x)))

e PO MAY Oi, ..., Oi,==> (¥x)
( (PO (x) 2 ( Oi, (x) v NULL)) A ...A
(PO (x) 2 (01, (x) v NULL) })

e PO SPEC Oi ... 0l ==>(=PO)n
{(¥x) (Oi)(x) XOR ... XOR Oiy(x)), xa
common individual concept for Oiy, ...,
O,

e PO DO/RSLT O ==> (¥x)(PO (x) >
0(x))

Conditional Activation

[F PO (or procedural condition)
THEN O, /ELSE O, ==>(¥X)

(POX) 20, (x))A(EBy) (= PO(x) D

O- (y)) ), y an individual concept of O,
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e PO CASE Oty ....01, ==> (¥x}
(PO(X) = O (x) v Ols(x) v...v Oi, (x))

Iterative Activation

e WHILE PO (or procedural condition )
DO O ==> (V) ((POX)D20(x))
A {—= PO (x)> NULL))

e PO MUSTREPEAT ==>
(vx) (3v) (PO (x) o PO (v) ). To avoid
the infinite loops, we consider NULL
instead of "y’ when the repetition ends.
We have a declarative end of the
repetition, that stops after the PO
expansion. upon user’s request.

o PO MAY REPEAT ==>
(Yx) (Fy) ( PO (x) (PO (y) v NULL )).
We have. in this case. a procedural end
of the repetition that stops before the PO
expansion.

Logical Activation

¢ PO AND O ==> (Vx)((POX)>
O)AOXEIDPO(X)))

s PO OR O => (V){(POXN)D
(O (x) v NULL)) A (O (x) D (PO (x)v
NULLY))

e PO YOR O === (¥x)((PO(x)>—
O X)) A(O(X)D=PO(X)))

e NOT Q==>(¥x)(-0(x)).xan
input concept of O .

Grouped Activation

PO GROUP Oiy, ... O1, ., (with compulsory
Oiy, .... Oi and optional Oiy.,, ..., Qi) ==>
(FX)(PO(x) 2 (01, (x) A.A Qi (A (O (%)
v NULL) A, A (O1,{x) v NULL)))

Operation Description

PO DSCR O ==>

(7x) (PO (x) o(3d) DSCR(d) ). where DSCR(d)
= (Ad) A-graph(O)[d]. *d" is an instance of the
PO description and *A-graph(Q)’ is the A-
expansion of the description operation O.
Operation Motivation

PO GOAL O ==> (¥x) (PO (x) 20 (x))

Operation Stinuilation

EO EVNTO ==> (¥x)((Je) EVNT (e) >
O (x)). where EVNT(e) = (ke) A-graph(EO)[e].
‘e’ is a particular event and “A-graph (EO)" is
the 2-expansion of the event operation EO.
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Operation Starting

O  TIME time condition ==>

(¥x) ( (3t) (time_condition (1) > O(x) ) ), "t'is
a certain point in time when the time_condition
becomes true.

4.2.2 Operation Modality

It introduces the deontic logic on the operation
activation. In the present ACG representation, it
is reduced to the operation obligation (by ‘must’
and “may” verbs preceding the operation type).
It may be extended to verbs expressing
possibility, intention, wish, belief, etc., relative
to the operation execution.

4.3 Logical Support for the
Declarative and Procedural
Encapsulation

=

Section 3 presented the declarative and
procedural encapsulation. as relying on the A-
definition of the declarative modules (stand-
alone, joint or coreferent graphs) and of the
procedural ones, to be presented in this Section.

4.3.1 A-definition of A Structured Concept

Each structured concept has a corresponding A-
expression that defines it. Using the linear
notation of a generic definition graph, its A-
expression {or the corresponding A-graph) can
be:

STRUCTURED _CONCEPT =

{#x) (DEFINITION OPERATION)-
<<RCPT=> Y[STRUCTURED CONCEPT:x]
<<role;>> I [CONCEPT,]
<<role,>> 37 [CONCEPT,]

and. in predicate calculus, the respective A-

expression will have x as a bound variable:

STRUCTURED CONCEPT= (AX) (X},-...Xp)
(VX)STRUCTURED CONCEPT(x) A
RCPT(x) ) 2 (3 x}) ... (3x,) (CONCEPT (x;) A
roley(xy) A ... A (CONCEPT, (x,) v NULL) »
(role, (x,)v NULL))

DEFINITION OPERATION (X, X|,....X,)

NULL helps represent the concept optional
existence (indicated by 3? in a graphic or linear
notation).



4.3.2 L-definition of A Stand-alone Operation

Similar to a structured concept, each operation
has a corresponding A-expression that defines it.
For example. the operation represented in a
linear notation:

(OPERATION) -
<<role;>> WV |[CONCEPT, |

<<role,>> 37 [CONCEPT,]
has the A-definition (in linear notation):
OPERATION =
A (Ko X)Xy ) (OPERATION)-
<<role;>> WV |[CONCEPT,: xy)

<<roley>> 37 [CONCEPT: ;]

where x;,.....x;, are the concepts (parameters)
that are present in the operation signature and
{Xits- - Xik} © {X1,...,Xp}. In a predicate calculus.
the respective A-expression will have x;,.....x;
as bound variables:

OPERATION = A(Xi1h. - Xu) (Xj1a - Xjgpeky )
(Vx)( CONCEPT,(x)) nrole (x)) ) D

(3 x2) ... (3x,) (CONCEPT,(x2) A rolea(xa) ~ ..
A (CONCEPT, (x,) v NULL) A (role, (x,)v
NULL)) OPERATION (x;.....x,)

4.3.3 A-definition of Two Joint Operations

Suppose we join on a common concept
[CONCEPT] two graphs with the linear
notations:

(OPERATION )-
<<role,.;>>V[CONCEPT.]

(OPERATION)-

<<role;>> 3 [CONCEPT] <<role>> 3 [CONCEPT]

<<roley, >> 37 [CONCEPT 1] <<role 15>> 37 [CONCEPT

The A-definition of their join will have "X’
representing the common concept, as a bound
variable:

OPERATION, ® OPERATION, =

ACX) (X1, %) (Y 1se05Ys)

((x,) (CONCEPT,( x;) A role; ( x;)) D

(3 x2) ...(3x)... (3xp) (CONCEPT 1a(x2) A

role |.(xs) A ... A CONCEPT(X) ~ role, (x) ~ ...
~ (CONCEPT |, (x,) v NULL) A (role , (xp)v
NULL) ) OPERATION, (X),... X....X;) )) A

((7y)) (CONCEPT 5, () arole s (yi)) D

(@ y2) ..(3x)... (3ys) (CONCEPT ,.5(y2) A

role y.2(y2) A ... A CONCEPT(X) A role, {(x) A ...
... A (CONCEPT .y ) v NULL) A (role o
(yov NULL) ) OPERATION, (y ... X....¥:) )

where X....xp # x and y,,... .y # x.
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<<r0ler. > V|CONCEPT-.]

4.3.4 ).-definition of A Procedural Module

Suppose that a procedural module is a
controlled hierarchical diagram composed of
OPERATION,, OPERATION,, with
OPERATION, the root of the module. And
0, (OPERATION,, 10C. OPERATION;) are the
luples representing direct connections (by means
of interoperation connectives) between two
component  operations:  OPERATION;  and
OPERATION,. Each tuple may be represented
in the predicate calculus following the mapping
rule for the corresponding 10C. presented in
Section 4.2.

A-definition of the procedural module. with
OPERATION, as root, may be expressed by the
conjunction of O, tuples (and implicitly of the
predicate  cxpressions  they represent):
OPERATION, = A(x,. ... xi) (~Oy) ;. with
the root operation parameters as bound
variables. We call procedural A-definition of «
root  operation,  the  A-definition  of  the
procedural module whose root it is.

5. Conclusions: Benefits from
Linguistics, Structure and Logic
of the Activity-centred Graphs

A Step Towards a Unifying Representation of
the Concepts, Processes and Data/Knowledge
Flows.

In [Galatescu97], we advocated the unifying
ability of the ‘operation’, and implicitly of the
ACGs describing the operations. The main
advantage is that we use a single representation
for three perspectives: 1} data perspective. that
aims at modelling the essential information that
one needs.to represent in a system; 2) functional
perspective, that aims at modelling the functions
and data/knowledge flow between functions and
3) control perspective. that aims at modelling
the dynamic, time-dependent behaviour of a
system. Other solutions (the most important
ones will be OMT [Rumbaugh91] and KADS
[Schreiber93]) use a distinct representation for
each perspective.

In short, the data perspective defines, by means
of general or domain specific declarative
operations, any type of primitive or structured
concept, the concept behaviour (operations upon
concepts) and the concept interoperability
(dependencies among concepts). The functional
perspective decomposes the process into domain
specific dynamic operations. During the process
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execution (see |Galatescu97]), these operations
are correlated by  knowledge flows (input
‘output concepts) and control flows
(continuation  conceptual  conditions).  The
control perspective views the operation as an
uninterruptible unit of execution of the process.
Fach process is a sequence of  dynamic
operations. controlled by events, by a procedural
strategy  (interoperation links) and/or by a
(human or automated) decision strategy. The
operation may determine the transition of the
state (extension) of certain concepts, its own
state (active, stopped, waiting. etc.) or the state
of the whole process. Finally. the conditions
whose true values may also determine the state
transition. are defined as list concepts obtained
bv a concatenation operation, see Section 3.1.

A Natural Framework for Supervising the
Concept and Process Interoperability

Concept Interoperability manifests 1) when a
structured concept is defined by means of other
concepts, correlated by a definition operation.
2) when some source concepts influence the
destination  concepts,  correlated by a
dependency operation: 3) when the execution of
a functional operation interconnects more
concepts, previously defined for the respective
process. After its declarative supervision during
the modelling step. the concept interoperability
becomes effective during the process execution.

Process Interoperability is a consequence of: 1)
interprocess events, when an eveni operation in
a process stimulates an operation executed in
another process: 2} imterprocess conceplual
dependency, when the source and destination
concepts in a dependency operation are defined
in distinct processes: 3) interprocess concepluial
transfers. when two operations in distinct
processes transfer concepts (as parameters) from
one another: 4) interprocess conceptual and
logical sharing. when two processes share
concepts/ graphs/ rules/procedures in a common
knowledge base. Interprocess transfer and
sharing are possible due to the code and
repository reusability enabled by activity-
centred graphs (see below in this Section).

Data/Knowledge Acquisition, Storing,
Interrogation and Interpretation

Acquiisition and Interrogation. Activity-centred
graphs can be used as sh/ized acquisition and
interrogation  sentences. whose logic and
semantics are universal, flexible and extensible
because of: 1) their approach to natural
language, and 2) their inferential capabilities.
close to human reasoning and comprehension.

&
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Their declarative and procedural structuring
contributes to their gradual knowledge and
understanding,.

Storing. Natural mapping of the activity-centred
graphs onto frames makes it natural to store
them in widespread relational databases. We
have used ORACLE7Y Server to store ACGs ina
knowledge base of the multidatabase CASE
environment and ORACLE Developer 2000 to
acquire and interrogate this base. The distinction
between the input, output, input-output and local
concepts participating in operations allows an
integral or partial storing of ACG (e.g. storing
local concepts only).

Interpretation.  Beside the interpretation of
(inference on) a single graph, as in natural
language. we use a complex thematic and
mudticriterial interrogation and interpretation
of the graphs. involving one or more target
subjects. We use a theme-oriented reasoning for
checking the modelling correctness and for
comparing the distributed schemas. Both
checking and comparing are based on
predefined  themes  (structure,  semantics,
behaviour, dependencies, etc.) on predefined
subjects (schemas, classes, attributes, etc.).

Procedural Guiding and Control of the
Process  Execution.  Control  statements
{interoperation links) and their mapping rules to
predicate calculus help 1) guide (predict) a
process execution by a forward inference along
the predefined procedural modules composing
that process. and 2) control (by a backward
inference) the correctness of each operation
execution. We have already implemented the
procedural guiding and control for a
multidatabase modelling process, based on a
theme-oriented and event-driven reasoning,.

Code and Repository Reusability. The
invariant nature of the concept-operation links
(the roles of the concepts relative to the
operation) and, hence, the invariant (and also
non-positional) signature of the operation
OPERATION (role,,...,role,) (a named and
unordered tuple of roles) has an important
impact on:

Code Reusability, specifically in:

e operation processing (acquisition, storing,
interrogation, interpretation. update, etc.),
independent of the domain specific concept
types. but only dependent on their invariant
roles in the operation description;



s concepl transfer between operations (inside
a process or among processes). by
correlating the invariant roles of the
correspondent parameters, but not their
domain specific types:

o thematic interrogation, only dependent on
the invariant signature of the operations
composing the predefined themes.

Repository Reusability granted by:

o direct and reverse interpretation of the
same storing frame, for an initially stored
operation and for its reverse operation as
well (similar to active and passive voice in
natural language):

o concepl/graph  sharing inside/among
processes because of their invariant
definitions.
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(a) quant[CONC_TYPE,[: C | D {}]]

<< rolc!>>l
quant[CONC _TYPE[:CID {}]] <<AGNT>>modal do (IOPE ATION) <<role;>> quant[CONC_TYPE,[:C | D {}]
<<roley>> "o

quant[ CONC_TYPE;[:C|D {}]]
(b) [<agent>| | must | may} do OPERATION
<connective_ling_synonym=> { oblig | optional} [{Collective | Distrib} Set_of] <CONCEPT_TYPE>
(a similar line for each connected concept type)
(¢) (OPERATION)
<<AGNT>> quantit [CONCEPT TYPE]
<<role;>> quantif [CONCEPT_TYPE,]

<<role,>> quantif [CONCEPT _TYPE,|

Figure 2-1. An Activity-centred Graph in the Graphic (a), Linguistic (b) and Linear (¢) Notations

V[PERSON:John] <<AGNT>> may do (GO) <<DEST>> 3J[CITY:Boston]
{ TP <aNST>> | T
3?[BUS)
3 [HEJohn] <<AGNT>>  (TEACH) <<PINT>> 3 [STUDENT: C{}]
e —_—

Figure 2-2. Coreference Link between Two Activity-centred Graphs Representing the Situation:

“John goes to Boston by bus. He teaches students.”

[ JSTRUCTIRED CONCEPRT I

Expansion Contraction

| [Structured_Concept] (=<RCPT>> (DEFINITION_OPERATION) ~ g<role,>> [CONCEPT,] |
<<role,>> — i
1

! [CONCEPT,]

Figure 3-1. Expansion and Contraction of A Structured Concept

lioperaTION) |

Expansion ¢ ontraction

I
: [Concept)]  <<role,>> (OPERATION)  <<roley>> {Con_cept;l
I
1

<<role,>3 A
[Concept, ).

Figure 3-2. Expansion and Contraction of A Domain-specific Operation
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i

(DEFINITION _OPERATION)
: <<role;>3/ + \
]
i

[definition_concept,] .. .. !

i o) T _ ~ ~ " :
i (OPERATION,) <<role,>> N [Common_Concept]/ | =<role.>¢ (OPERATION,) i
I <<role;>> \‘ subgraph <<mien>> \‘ E
i [Concept;] - | e——— i [Concept, !

Figure 3-4. Join of Two Domain-specific Graphs

(I) [PI— RSON John] _<<AGNT>> (HAVE)

<<PTNT>>
3 [HOME] I[DISTANCE: "near’|]

<<SRC>> ] /:L‘HRL'»
(IT) ¥ [BOY:John] <<AGNF>> (GO) <-’DES]>» %CH()()L]

(I11) H[PERSONJohn (LEARN EI}',\_JI ,H[SUBMI “algebra’)

Figure 3-5. Join and Coreference Links (dashed lines) Representing the Situation:

” The boy John goes to school to learn algebra. School is near his home.”

m o) 12 T
T ;/ T (O a1 WO ({a)
ol 1} lf}l 13 G0 {131 4 _-T!? role |
Q2 13 ul: 5y (2 (2 /) u’i‘ Sy 02y 02 1 f {('{4
role
(0L 0F 9 (CE8] rode (K02 9% ke {CTH0)
© Gol'— | ) ST
I ¥ o, ’ ¥y |
{3 1} (03 im E:\ y{.i“ 124 t R %
TO4 1 fo)
(£ 1) ((,M__E} : -

()
Figure 3-6. Declarative (a), Procedural (b) and Mixed (c¢) Operation Expansion

O, - execution statement, IOC - control statement
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