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1. Introduction

New econemic markets, under the impacts of
international  competitions, ask for more
performant procedures in industry to solve
scheduling problems and optimal layout of
production [1], [2], [5]. In general. a workshop
can be characterized by either Jobshop or
Flowshop structure [3], [4], [6], [7]. In a Jobshop
structure, the processing order of each item on
machines is well defined and it may be different
for different items. But in a Flowshop structure,
this order is identical for all items.

A great number of successful algorithms have
been proposed to solve scheduling problems in
Flowshop structures [8]. Jobshop scheduling
problems, which are considered more complex,
can be solved using the existing Flowshop
scheduling algorithms. In [17], a general
algorithm was proposed for decomposing the
original complex Jobshop problem into simpler
Flowshop  scheduling  subproblems.  This
decomposition permits to bring about a double
classification of machines and products in order to
define homogeneous production subsystems. The
combination of the solutions to these subproblems

leads to a general
scheduling problem.

solution to the original

Each Flowshop structure corresponds to a linear
production family (an ordered subset of
machines) where the scheduling of all items
belonging to this family is realized without any
backward move of flow of products. Such a
structure, which has been studied in our previous
papers [9] [13], has the sequence of the range of
production of each item in this family included in
the sequence of the corresponding layout of
production.

To determine the minimal number of machines in
the layout of production, we have built a tree
structure which is conditioned at each of its nodes
by applying two rules to reduce the expansion of
the searching space. This tree structure has been
presented in literature for the detection of order-
consistency on a set of syntactic patterns [6], [10].
Similar structure was also defined in [11] to solve
the string correction problem.

The general scheme of the decomposition of
Jobshop into Flowshop structures is shown in
Figure 1. It starts from creating an initial partition
of items of production. The algorithm which we
proposed in [13] permits to define an hierarchical
classification by minimizing an internal index
which is defined as linear combination of the
compactness inside each class and the separability
between different classes [12]. This procedure
makes us obtain the initial partitions for both
items of production and machines.

After performing the procedure of layout of
production (Figure 1), each class of items should
correspond to a minimal number of machines,
whose combination constitutes a solution of layout
of production. If no layout solution is found. our
algorithm will try to extend the space of layout
solutions by integrating a minimal number of
additional machines. The fail of the layout
extension leads to exchanging items between
classes or to eliminating some items so that the
new partition of the remaining items leads to
successful solutions of layout for each class.

Once several solutions of layout of production are
found together, we select one solution according
to an evaluation criterion, and start the scheduling
procedure in order to find admissible solutions.
The fail of the scheduling makes the algorithm
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return to the layout procedure and repeat the
previous three operations: adding a minimal
number of machines, exchanging items between
classes and eliminating some items.

The operations shown in Figure | are performed
in uncertain environments and they often deal with
imprecise data. The uncertainties of these
operations can be summarized as follows:. 1)
Layout procedure: we do not know the best
method to obtain the optimal layout solutions with
a minimal number of calculations. 2) Layout
solution: we do not know what is the layout
solution leading to admissible scheduling
solutions. 3) Classification: we do not know what
is the best partition of items so that each class
corresponds to a Flowshop structure with a
minimal number of machines.

Set of items I

— classification

Set of machines

partition partition
of items of machines
A
adding
—r—layout of production —T—anew
for each class machine
es

free
machines
exist?

layout
solutions
found?

yes

no

selecting a
solution

gxchange
between
classes

layout
solutions

eliminating
items

stop

Figure 1. General Scheme of the
Decomposition

Under these uncertainties, the operations of the
decomposition risk heavy calculations or even no
solution. To overcome this inconveniency, we
propose an adaptive heuristic strategy in order to
control the alternation between the scheduling
procedure and the optimal layout of production.
According to this adaptive strategy, at least one
admissible scheduling solution is delivered to the
workshop planning maker.

In this paper, we present only the procedure of
construction and  evaluation of Flowshop
structures for a given family of items of
production. Two operations of the general
algorithm will be processed: a) Optimal layout
procedure of production, which permits to
generate  solutions of layout. This operation
improves the idea presented in [12] by introducing
a new procedure of adding a minimal number of
machines. b) Evaluation of solutions of layout,
which permits to select one solution of layout so
that the corresponding scheduling can be
successful with maximal- probability. This
operation utilizes a learning automaton in order to
evaluate the scheduling behaviors of each solution
of layout and to generate the corresponding
probability (action probability) for the current
period. In the next period, a solution of layout will
be selected at random according to the distribution
of all the action probabilities. This operation
permits to converge to the best solution of layout
in the sense of scheduling admissibility.

2. Problem Modelling

Each of the items to be produced is defined by the
ordered set of the machines required for its
manufacturing (repeat of machines is possible). It
can be described by a word as follows:

W= af“‘ a’;“l ...... o = (a""' Y, i=1, ... .m

where o, is a letter representing a machine for the
manufacturing of the item W and we have
o, eALPHA, a set containing all the letters. ne; is
the multiplicity of the machine «,.

The total multiplicity of a given machine « in the
word W is then

Na(W) = Zchi

a; =a
The set H(W)={(a, Ne)} is the minimal alphabet
on which the word W can be constructed.

For example, let W be the word describing the
following working process: W=a'bcac’d, the
corresponding H{(W)={(a, 35, (b, 1), (c, 4), (d, 1)}.
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We can see from this example that each item or
word can be composed of several machines of the
same type. [n this paper, we are interested in the
possibility of building a set of Flowshop
production structures where each of them is served
by a linear conveyor. In this way, the statement of
the problem is the following:

Searching for the possibility of grouping, within
the same production structure, the machines’
succession (words) relative to different items. The
chosen type of conveyor then imposes a condition
of compatibility between the words grouped
together: the order of the machines laid out along
the conveyor must necessarily correspond to the
order imposed by each of the machines’
succession.

According to [9], for a given class C, the items
(words) are manufactured by the minimal set of
the machines corresponding to C, defined by:
HiC)={(e, Nea)} where ae{LM, ieC} and Na
=max{Na, ieC}. ‘

For example. let C={W, W, W; W, with
W,=abd’c, Wy=bdcba, Wi=adabc, W,=cbac. We
have H(C)={{a, 3), (b, 2), (¢, 2), (d, 1)} and those
four items are order -consistent. The following
layout of the machines allows the production of
each of them without any backward move:
W(C)=abdachac.

3. Searching for Layout of
Production ’

In order to search for the layout of production for
the set C={W, W, ... W,}, we adopt the
algorithm for the detection of order consistency
published in [9]. This algorithm is briefly
presented below:

For each word W, an expansion is progressively
constructed by setting at the k™ position either the
first character of W, which has not been used vet,
or a joker. Our objective is to build a
generalization which is common to all the words
of . The set is order-consistent iff all the
characters have been located for each W,eC and
the obtained generalization uses only characters
from H(C). Our algorithm uses a searching
procedure based on a tree of layout permitting, at
each step, the elimination of useless nodes by
applying two rules R, and R,. If class C is order-
consistent, on the terminal useful nodes can be
found all the possible layouts associated with C. 1f
(" is not order-consistent, all the terminal nodes on
the tree of layout are useless and there does not
exist any layout solution associated with C.

The two rules R, and R, are given as follows:

R,: Let s, be a node such that: 3(a, W))eALPHAx
C st NafC/sy)<Na(Wi/s,). The success condition
cannot be satisfied by any terminal node of the
tree having s, as a predecessor; s, will be labelled
as useless and its successors will not be explored

[9].

R, The node s, 1s useless if there exist two words
W, W,eC and two letters a, fedALPHA s.t. (a,1),
(6,1)eH(W/s,) and H(W/s,) with a<f in W/s,
and f<a in Wj/s, ("<" is the order between two
letters in a sequence).

ajbaac  abp aac abd aac  abda|ac abdaa ¢
bdcba__,| dcba cba 5 fba __,) cha
dabc dabc abc le be
chac cb cbac bac chac
fail of
R-type
abajac abc |aac abdc|aac (o=a)
dcba dcba ba
dabc dabc be abdab |ac
chac bac bac cha
fail of fail of o
R,-type R,-type cbac
(a=a,p=b) (a=a,f=c) fail of
R-type
/ v (0=b)
abdac [ac
abdca |ac abdcb| aac ba
ba a be
be abc bac
bac ac :

' fail of ;

v R;-type y
i

Figure 2. The Exploration Tree of Layout

According to R, one couple of subsequences (a
B)and (B ) belonging to W, and W, respectively
leads to a fail or a backward move.

Remark: In the rules R, and R,, s, is the common
generalization of the expansions of the first
sequences of the words in C. C/s, represents the
set of machines in the remaining resources of
H(C) and W5, represents the set of machines in
the remaining needs of ¥,

One example of searching for layout of production
is given as follows:

Assuming that we have 4 words: W,=abaac,
W,=bdcba, Wi=adabc, W,=cbac, the
corresponding minimal set of machines and its
total multiplicity can be calculated

H(C)={(a,3)(b,2) (c.2).(d 1)} and
N(C)=3+2+2+1=8
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Two solutions of layout (abdcabac and abdacbac)
can be found in Figure 2. Each of them
corresponds to a Flowshop structure. For the
solution abdcabac, we get the following
Flowshop: M,=a, M;=b M;=d M,=c, M;=aq,
My=b, M-=a, M=c. The corresponding four items
of production can be rewritten as: J,=(0,;, O;, O,
O Og)y Jr=(02; Oz Oz Oy O3), J3=(03; Oy
Oss OM OM)- J=(0,; 045 Oy- OM)

If no solution of layout is obtained for a given set
of items of production, i.e. all the terminal nodes
in the exploration tree of layout fail, we add a new
machine so that the optimal layout of production
can continue. This procedure is presented below.

1) Choosing a terminal useless node according to
the following priorities:

P,: Taking the node where the number of fails (R -
type or Ry-type) is minimal.

P,: For different nodes, if the numbers of fails are
equal, taking the node whose branch is the
longest.

2) For the selected node, if the fail is Ry-type (a, B
non order -consistent), then we add a new machine
having the same type as that of the last letter (¢ or
B) in the generalization string of this node. If the
fail is R -type (the incompatible letter is @), then
we add a machine « to the set of items.

Adding a new machine permits to continue the
generalization procedure from the selected node.
If no solution of layout is found in this node, we
add another new machine according to the
priorities defined a priori. This procedure repeats
until at least one solution of layout is obtained.

4. Learning Automata

If several useful terminal nodes are found together
from the tree of layout, we do not know in
advance which solution of layout is the best for
making the scheduling successful. It is necessary
to perform an evaluation for each existing solution
to find the one whose probability of successful
scheduling is maximal. Each probability should be
defined as a function of scheduling behaviors of
the corresponding solution of layout.

In this paper, a learning automaton (L.A.) is used
to select the "optimal” solution of layout in the
sense of scheduling admissibility.

L.A. is an adaptive decision-making device
operating on an unknown random environment
and has been used as models of learning system
[14], [15]. The L.A. has a finite set of actions and
each action has a certain probability (unknown to
the automaton) of getting rewarded by the
environment. The aim is to learn to choose the

optimal action (i.e. the action with the highest
probability of being rewarded) through repeated
interaction with the environment. If the learning
algorithm is chosen properly, then the iterative
process of interacting with the environment can be
made result in the optimal action being selected
with the highest probability.

A L.A. Is a stochastic automaton in feedback
connection with a random environment [15] (See
Figure 3). The output of the L.A. (actions) is the
input to the environment and the output of the
environment (responses) is the input to the L.A.

Environment
<A, R, D>

Learning Automaton
<4, 0, R T>

Figure 3. General Scheme of Learning
Automaton

In general, a L.A. is defined by (4, O, R, 7) and
the environment by (4, R, D), where

A={a,, a, ... . a,} is the set of all actions of the
automaton. The action of the automaton at instant
k is denoted by afk) and ark)eAd for k=0, I, 2,
...... Evidently, 4 is the set of outputs of the
automaton and it is also the set of inputs to the
environment.

R is the domain of responses from the
environment. Let frk) denote the response
received by the automaton at instant & where
Prk)eR, vk, fk) is the output of the environment
at instant & and it is also the input to the
automaton.

D={d, d; ... , d,} is the set of reward
probabilities, where

di(k)=E[p(k) | alk)=a;]

[f the d’s are independent of &, the environment is
called stationary. Otherwise, it is nonstationary.
The reward probabilities are unknown to the
automaton,

Q is the state of the automaton defined by
Oky=(P(k). D(k)]
where P(k)={P,(k), P:k), ......, P.(k)],

( ¥k, we have 0<p,(k)<I and Z pky=1)

i=1

is the action probability vector and

[)(k):[c%](k), ...... ,c?,(k)]
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is the vector of estimates of the reward

probabilities at the k-t instant.

T is the learning algorithm or the reinforcement
scheme which is used by the automaton in order to
update its state. At instant &, we get from T’

Ork+ 1)=T(Qrk), a(k). pk))

During the execution of the algorithm, the
automaton selects an action k) from the set of
actions A4 at each instant & The selection of
actions depends on ils current action probability
vector P(k). The selected action afk/ becomes an
input to the environment and the environment
gives the input of the automaton a random
response (k) whose expected value is 4, if
ark)=c. Next, the automaton calculates Ork+/)
using the reinforcement scheme 7.

This procedure s repeated until the optimal action
to the environment is found, i.e.

d,= max /d,/ where a,, is the optimal action.
!

The action «,, has the maximum probability of
being rewarded. It is desired that the action
probability corresponding to a,, (i.e. p,) tends to
unity as the time 4 goes to infinity.

Many criteria have been proposed to evaluate the
performance of learning autoemata. One of them is
g-optimal criterion, which is frequently used. to
evaluate the asymptotic behavior of learning
algorithm of the automata. [t is defined as follows:

Let m be the index of the optimal action. A
learning algorithm is said to be g-optimal if

klim (inf p(k))=1-&

for any €>0, by choosing sufficiently small values
of the internal parameter of the learning algorithm.

For simplicity of notations, we do not distinguish
between the reward probabilities and their
estimates in the following discussion.

5. Evaluation of Solutions of
Layout

5.1 The Reinforcement Scheme of the
L.A.

In this paper, the universe of scheduling solutions
is considered as random environment and each
solution of layout is considered as an action whose
probability is calculated from the evaluation of the
scheduling behaviors. According to this idea, we
give in Figure 4 the scheme of L.A.

period k
selecting
a solution
of lavout

response 3
l L.A.

Figure 4. Learning Automaton in Feedback
Connection with Scheduling

generator of
scheduling solution

h

evaluation

In the L.A., we adopt the Pursuit Algorithm [18]
as a reinforcement scheme. It has been proved to
be e-optimal if the environment is stationary. The
principle of this algorithm is illustrated as follows.

First, we define several notations:

X,(k): total reward obtained for the i-th action until
k-th sampling period.

n(k/: number of times the i-th action is chosen
until k-th sampling period.

Next, we apply the Pursuit Algorithm to the
problem for evaluating the solutions of layout.

At sampling period 0 (k=0), set X,(ki=0, ni(k)=0
and P,k)=1/r for i=1, 2, ..., r. Initialize d(k) by
picking each action for a small number of times
and setting d,(kj to the average reaction obtained.

At sampling period k (£20),

i) a(k)=q, is selected according to the distribution
of the action probabilities P(k).

ii) Obtain at random a solution from the generator
of scheduling solutions. The universe of the
corresponding scheduling solutions is associated
with the current solution of layout a(k).

iii) Calculate the response function fArk) and
update action probabilities P(k) and reward
probabilities D(k), 1.e.

P(l+1)=P(k)+ plesu-Pk))

where ¢, is a r-dimensional vector with j-th
component unity and all others zero, M(k) is the
index of the maximal reward estimate, i.e.
dum=di(k) | j=1, 2, .., r} and g is the internal
parameter (a positive real number) determining

the convergence rate of the algorithm.
Xitk+1)=X,(k)+pk) nitk+1)=ni(k)+1

where / is the number of the solution of layout
applied at period £.

Xi(k+1)=X(k) for j=i
dyk+ 1)=X (k+ 1)/nyk+1) for j=1, 2, .., 1.

n(k+1)=nk) for j=i
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5.2 Evaluation of Scheduling Solutions

The "best” solution of layout is found according to
the distribution of the action probabilities of the
L.A., which vary with the response function (k).
In our algorithm, § is generated by a scheduling
evaluation criterion and defined as a function of
the admissibility state of the corresponding
scheduling solutions.

Assuming that- the current solution of layout
corresponds to the Flowshop (M, M., .., M,) and
to the set of items of production //=(0,, Op ..,
O, | 1sj=n}l Each item J, is characterized by the
earliest starting time 7, and the latest finishing time
d. Each operation O, is characterized by the
processing time on machine M;:

p=pi if J; is processed by M, and
p2;=0 otherwise

Denote ¢, and £, the real starting time and the real
finishing time of the operation O, A necessary
and sufficient condition for successful scheduling
is fn<d, for vje/(l, 2, ... nf For a given
scheduling solution S, £, and f; can be recursively
calculated as follows:

Initiation:
t,=0for Viell 2, ... ,m}and Vie{l 2, ..., n}
Ly = if O, is the first operation on M,
=max {r, f;} if O, is another operation on M,
where O,, is the operation preceded by ¢J),
ty =max{r, .., } if O, is the first operation on M,
=max{r, f;,.1, . jif O, is another operation on M,
where O,; is the operation preceded by O,
fi=tT

=1, otherwise

if J, is processed by M,

The above calculation permits to minimize the left
margins of processing intervals of O,’s for all
machines A, s and all items J; ’s. Under this
calculation, if there exist right free margins of
processing intervals, i.e. the condition f,<d, is
satisfied for j=/, ..., n, then the corresponding
scheduling solution S is admissible.

According to the scheme of L.A., at period £, a
solution of layout is selected at random according
to the distribution of the action probabilities
Pk)=(P (k) Py(k) ... P.(k)) (r is the total number
of existing solutions of layout). By applying the
selected action to the generator of scheduling
solutions, we get S(hi=(S,, ..., Sy, ..., S,J) where S,
is a sequence of operations processed on M, ,
denoted by (O, ... Oy with hefl, ... m} and

g(h)=h. On the machine M,, a necessary condition
of scheduling admissibility is D2t +py,

m
where Dy=d, - Z Ly

i=h+1

In general, the evaluation of a scheduling solution
can be made according to the following three
principles [19]:

1) the condition of admissibility is
satisfied;

2) the free margins
intervals are large enough;

of processing

3) the loads on machines are sufficient.

In this paper, only the two first principles are
taken into account by the evaluation criterion.

The first principle leads to the definition of a

series of integers Ny, Noy ..., Nymm . Each Ny,
corresponds to the operation (), with
N, = {l ]f ‘?i!i+pffr£Dtll
i iO otherwise
Then, the number of operations in S, satisfying the
condition of admissibility is
glh)
C

Eval,(Sp)=——= > Ny

q(h) i=1

where ¢ is a constant on the interval [0, 1]
adjusting the proportion between FEval,(S,) and
EVQ’[_«(S;,).

For the operation O, the left free margin is 0. The
second principie leads to the calculation of the
right free margin Dy-t-py. In order to obtain
appropriate input to the L.A., we evaluate the right
free margin using a continuous function f.).

1 g

Zf(D.,', Hily= py,)

Evaly(Sy= ——
f](h) =1

where ffx) is an ascending continuous function
symmetric with respect to the origin.

fx)
l d

v

Figure 5. Evaluation Function f{x)

The response to the L.A. g is defined as the
general evaluation on all the machines, i.e.
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Bik)=Eval(S)= %Zw,,[fjvaf,(s”) + Eval,(S,)]

~ h=1

w,’s are the weights adjusting the proportion
between the evaluations on different machines
(w,ef0.1] and Zw;=1) and making the value of g
be included in the interval [0, /].

If the value of B is close to /, it means that the
current solution of layout is good in the sense of
scheduling admissibility. In this case, the
probability of getting admissible scheduling
solutions is high. If the value of /7 is close to 0,1t
means that the current layout solution is bad in the
sense of scheduling admissibility. In this case, the
probability of getting admissible solutions is low.

5.3 Generation of Scheduling Solutions

In Figure 4, the solution S=(S; S; ... S,) is
generated at random by the generator of
scheduling solutions. This solution is used to
evaluate the scheduling behaviors of the
corresponding  solution of layout L. If the
precedence constraints between items are not
considered, S should be generated according to a
uniform distribution, i.e. all the combinations of
operations in the searching universe have the same
probabilities. However, due to the multiplicity of
these combinations, the searching universe is too
large to find solutions reflecting the real behaviors
of L. For example, let S” be the unique admissible
solution corresponding to the Flowshop structure
L. The generator can probably generate a series of
S’s far away from S”. In this case, both the value
of the response £ and the action probability of L
decrease. Another solution of layout may be
selected and the admissible solution in the
structure L can never be found.

From the previous analysis, we recognize that it is
necessary to define a strategy for reducing the
searching space of S by assigning different
probabilities to  different combinations of
operations. The reduced space should permit to
generate a small number of scheduling solutions
with high probabilities. These solutions should be
close enough to the admissible solution S”. We
give next this strategy on the machine M.

On the machine M,, the searching space of
scheduling solutions is based on the selected
solutions on the machines M, ..... . M,_;. In this
case, each operation O, is characterized by the
interval /R, D,/ and p, with Ry=max{r, f i}
Let A=[a, a, ] be the scheduling interval with
ap=min{Ry;, | i=1, ..., g} and ay=max{Dy | i=1, ..,
g}. According to the idea of [16], we try to
partition the interval A4 with a separator F.. The
costs (free margin loss cost and overflow cost) of
0,, separated by F, are defined as follows:

1) When R,,<F <Dy, the left free margin loss cost
x1=(F-Ry)/(Dy-Ry) and the left overflow cost
x2=(F-Ry)/py. The right free margin loss cost
vI=(Dy-F)/{Dy-R,) and the right overflow cost
y2=(Dy-F)/pp.

2) When F,<R,, or F;>D,, the interval [Riy Dif is
not separated by F, and x/=x2=y/=y2=0.

For the operation Oy, the probability distribution
of F, can be defined from these costs, i.¢.

PlO,, F) = wxl] + Ex2 when F,e[Ry, (Ry+ Dyp'2]
=wyl + £v2 when F,e[(Ry,+Dy)/2, Dy]
=0 when F efay R,J or F.e[Di, ar]

where w, & (w+E=1) are positive real coefficients.

Under this definition, high probabilities are
assigned to the values of F, corresponding to big
free margin -loss and big overflow. Therefore, the
probability distribution of F, is centered on the
processing interval of O, and the biggest
probability corresponds to F,=(R;+D;)/2. A value
F, can be selected at random according to this
distribution. For different O,’s, we can obtain
different F£’s. which can be arranged in order, i.e.
F<F>< ... <Fyy. This order permits to generate
a scheduling solution S=(Qy, O ...... Oypys). This
solution is relatively close to the admissible
solution §”, because the precedence constraints
between (s are taken into account in F’s.

Remark: If F=F, ;=...=F, the order (O, .0/
can be generated at random according to the
uniform distribution.

We can further reduce the searching universe of S
by imposing the following two constraints:

1) operations whose processing intervals are small
(free margins are small) should be firstly
processed;

2) operations whose earliest starting times are
close to the starting time of M), should be firstly
processed.

For each operation (), we define a real variable

7., taking into account these constraints:

-R
ih +)\'
p.’r p.’l

th - a()

D
Zlhi (] == ;L) lh

where A is a random variable obeying the uniform
distribution in /0, 1].

Having arranged the Z,’s in an ascending order,
we get Z,,<Z5..<Z,, and the scheduling solution
Sp=(0yy Oy ... Oyy). Based on the solutions on the
previous machines, S is generated by the random
variable A and its searching universe is largely
reduced by this strategy.
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6. Simulation

6.1 Convergence of the Algorithm

Theoretically, the algorithm of learning automaton
presented in Section 5.1 converges to the optimal
action with a probability high enough because the
optimal solution of layout exists with respect to
our criterion and then the environment is
stationary. However, in practice. a stop condition
should be given so that the algorithm stops in a
reasonable duration.

In our simulation, this stop condition is defined by
Cvg<eg
where € is the predefined precision threshold and

|« ; :
Cvg= ;Z ¥, the average of the variances of all

=1

probabilities
_ I < S

with V, :;;(P,(i +1)= P, (i), variance of

P,

V, can be calculated with recurrence:

k-1
k

Vitk)= V,(k—/ﬁ;'(é,(kﬂ%P_,(k))?
According to our experiments, under this stop
condition, we get the best action with minimal
probability of error. Noises on P, can be finally
eliminated because ¥, is calculated through &
periods and /4! is an increasing series. If the
action probabilities become stable, Cvg will
rapidly decrease.

6.2 Simulation Results

The proposed algorithm has been applied to
several examples in order to perform an
evaluation for a number of Flowshop structures.
The simulation results of three examples are given
in this Section. Example 1 illustrates the
convergence behavior of the algorithm using
difterent values of p. In Example 2, a modification
of the algorithm of L.A. is given. In Example 3,
two equivalent optimal solutions of layout are
processed.

In our simulation, the parameters of the algorithm
are selected as foilows:

I=3, ¢=05, £=0.002.

Example 1:

Assume that we have two items W,=ab, W,=bha,
with #,=0, d,=10, r,=0, d>=3 and the processing
times on @ and & are p,=2, py=3.

No solution of layout is generated from the
exploration tree. By adding a machine of type a or
a machine of type b, two solutions of layout:
L,=aba and L,=hab, can be obtained. Both the
items and the solutions of layout are symmetric.
However, the L.A. gives different action and
reward probabilities to these two solutions of
layout because of different scheduling parameters
on l;and L,.

For different values of the internal parameter of
the algorithm M, we obtain

i . R "
TR "'ﬁ"'"”" ,ﬁ
09 - '
08 Lo
07 A
06 i
3 DI5ﬂ< Py(k) =
o5 - Pok) |
0. H
0.2 \
0.1 g ‘—*_—ﬂ-—_.
0 . : : : |
1 9 3 i - .
Period k
(a) p=0.5
11 |
e —ar -
0.8 &_—ﬂ‘w i Y

07 KIMWJ
0 61—
S

S g Pa(k)
03 W :
o F****_.__. i
01 *—
0 A O T ;
12345678 910112134158
Period k
(b) 1=0.1
1 :
T
il Pl
. o
06—
<
P o4 ——P{K) |
02 S ® Pylk)
0

Period k
(c) u=0.3

Figure 6. Evolution of Action Probabilities for
Different Values of

It is shown in Figure 6 that the values of the
parameter u determine the convergence rate. In
general, small values of x lead to long duration of
convergence but the convergence is more stable.
And big values of x lead to short duration of
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convergence but some noises may appear during
the convergence. In Example 1, the compromised
value of p is 3. The evolution of the
corresponding Cvg is shown as follows:

00254

Cveg
0,02

006 ’\
001 \‘
N

0.005
M

04
13 57 91 B 5

Period k

Figure 7. Evolution of Cvg (the Averaged
Variance of All Action Probabilities)

Example 2:

Assume that there exist 3 items W,=abc, Ws=ach,
W,=cab. The scheduling parameters are the
following: p,=3, py=2. p,=1 and r,;=1, d,=10,
ra=2, dy=13,r;5=0, d;=10.

From the procedure of layout of production, we
obtain 3 solutions of layout: L,=cabch, L,=cachc
and L;=acabc. With these solutions of layout, a
number of experiments on the proposed algorithm
of L.A. have been done and we show the results of
the three first experiments as follows.

1

09 PR
0.8 W \
07 Fad \
P 4 \
' \
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P oall LN e
03F 'Y g Pytk) =
o242 = Pafk) 1=
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123 45867 89101112 BWYBL BIWIE

Period k

(a) The First Experiment: the Duration of
Convergence=18 Periods
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Periodk

(b) The Second Experiment: the Duration of
Convergence=9 Periods
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P (k)

i
03

02
0.1 ey

Period k

(¢) The Third Experiment: the Duration of
Convergence=9 Periods
Figure 8. Evolution of Action Probabilities for
3 Different Experiments

In Example 2, different experiments lead to
different results. In (a) and (b) of Figure 8 , Pi(k)
tends to / and L; is then selected. However, in (c)
of Figure 8, P,(k) tends to 7 and L, is then
selected. Having done 30 experiments on the
algorithm, we obtain: the solution L; is selected 22
times and the solution L; is selected & times.

These results are not satisfying because some
"false” optimal actions are selected by the
algorithm of L.A. In this example, the best
solution is L; instead of L, (see Section 6.3) but L,
is more selected by the L.A. These results are due
to the bad behavior of the estimates of the reward
probabilities D(k), i.e. some d(k)’s may be
masked by some others until the stop condition of
the algorithm is satisfied.

0.9 4 —m
08
07 -
08
05 -+

117 ——P (k)

D 04

03 ’! I[ g P k)
0.2 ¥
0.1 ¢

']

1 3 5 7 g 1 8 B 7 B9

Period k

Figure 9. Evolution of the Reward Probabilities
D

From Figure 9, we can see that the evolution of
d(k) is very variable and several local maxima
can be obtained from the curve of d>(k). However,
its value is never taken into account in the
updating of the action probabilities P,(k)’s because
the value of ds(k) is always maximal and the value
of ds(k) is then masked by d;(k) until the algorithm
stops.
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To solve this problem, we modify next the
reinforcement scheme of the L.A. defined in
Section 5.1.

The updating of the estimates of the reward
probabilities:

difk+ 1)=X,(k+ 1)/ni(k+1)
period £

dy(k+ 1)=8d,(k) for all j=i

if o is applied at the

where §is the penalty coefficient with 0<d</.

——d (k)
g (k)

1 35 7 g1 BB 17 192

Period k

Figure 10. Evolution of the Reward
Probabilities D(k) After the Modification
(65=0.9)

Under this modification, the maximal estimate of
reward probabilities whose action has not been
selected should be progressively penalised. In this
example, both dyk) and dsfk) are taken into
account in the updating of the action probabilities.
In 30 experiments after this modification, the
correct solution L, was selected 28 times and L,
was selected only 2 times.

This modification has been applied to all the
examples of the simulation. According to our
experiments, the uncertainty of selection of
optimal action can largely be reduced by this
modification.

In practice, the value of & should be appropriately
selected. Great values of ¢ make the convergence
of the algorithm too long and small values of &
could lead to non stability of the algorithm.

Example 3:

Assume that there exist 4 items W,=abaac,
W,=bdcba, W;=adabc, W,=cbac. The scheduling
parameters are: r,=0, d,=16, r,=0, d,=16, r;=0,
d;=16,r,=0,d,=16 and p,=2, pp=3, p.=4, ps=3.

From the procedure of layout of production, we
obtain two  solutions:  L,=abdcabac  and
Ly=abdacbac. In the first experiment, the
algorithm selects L, as optimal action through 2/
periods. The result is given as follows:

—e—P;(k)

g Pa(k)

M1 13 15 7 19 21 23

13 5 7 9

Periodk

Figure 11. Evolution of The Action
Probabilities

Having done a great number of experiments on the
algorithm, we can observe that the number of
selections of L, is almost equal to that of L,. This
is due to the fact that the solutions L, and L, are
equivalent in the sense of scheduling admissibility
(see Section 6.3).

6.3 Validation of the Results

The validation of the simulation results can be
done using the scheduling algorithm presented in
[&]. The objective of this algorithm is to find all
scheduling solutions under the precedence
constraints derived from scheduling parameters.
Its application to the examples of Section 6.2
gives the following results:

Example 1:
Under the Flowshop structure L,=M,M;M;
(M,=a, M,=b and M;=a), W, and W, can be
rewritten as: W,=(Q,;, O;) and W,=(0,, O;).
From the scheduling algorithm, we obtain:
the unique admissible solution: (O;;) on M,
(O3 Op) on M,
(O3) on M;
Under the Flowshop structure L,=M,M;M;
(M]zb, M_;ﬂa and M_gib), we have W/:(O;g (),13)

and W,=(0,, O;;). Two admissible solutions can
be obtained:

Solution I: Solution 2:
(O,,) on M, (O,;) on M,
(O}, O3) on M, (01: O;3) on M,
(O3 on M, (0,3 on M,

The solution of layout L, is better than L, in the
sense of scheduling admissibility, which conforms
to the results of Section 6.2.

Example 2;

Under the Flowshop structure L;=cabch (5
machines), we have W,=(0,;, O;; O,,), W,=(O,;
O, Os5). W=(0;, O3, Ojz3). No admissible
solution can be found.
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Two best scheduling solutions can be obtained:
Solution 1:

M, (Osy) My (05 O3, Oy)

My: (O3 Oy) My (01 029 Ms: (Oy3)

The total overflow Z N,(d, -f)=7

where N,’s have been defined in Section 5.2.

m
The number of non admissible items Z N, =2

=1
where £ is the real finishing time of the item W',
Solution 2: .

M (O My (05205 O33)

Mj: (Og3 O33) My (01 Oz M52 (O23)

The total overflow = 8

The number of non admissible items = /

For L,=cacbc, no admissible solution can be
found. For the best scheduling solutions, we
obtain the same total overflow and the same
number of non admissible items.

For L;=acabc, we have W,=(0,,0,,0,s5), Wy=(0;,
0_32 O;q)._ W_;=(03_7 033 034). One admissible
scheduling solution can be found. We obtain

M (O O3 My (03 O M (Os3)
M4.' (OH O}J O}J) AJJ (O.‘j)
with f,=9<d,=10, fy=14<d,=15 and fi=d;=10

Evidently, L; is the best solution of layout in the
sense of scheduling admissibility, which also
conforms to the results of Section 6.2.

Example 3

For L,=abdcabac (8 machines), we have W,=(0,
O O 04 Oy, Wo=(0: Oy Oy O 05+,
Wi=(0;, 033 O35 Oy OJX). W, =(04; Oy 04~ 0s),

No admissible solution can be found. One of the
best scheduling solutions is :

M;: (0 O3;) My (0201 M (023 Os3)
M (055 0,) Ms: (05 O35) My (O Oz Osg)
M-: (O Os- Or-) My (O Oz Osg)

The total overflow = §

The number of non admissible items = 3

For L_Fabdacbac, we have WI:(()H 0;_7 OH O;'
Oy), Wa=(01s: Oy5 O35 O O57), Wi=(03; U35 Osy
O35 Os), Wi=(04, 0 O Ou)

No admissible solution can be found. One of the
best scheduling solutions is

M (O Oz My (O3 0p) My (O3 Os3)
M (0, Oz Ms: (045 Ogs) My (Oge Oz Osg)
M-: (04 0)- 03-) My (O O Osy)

The total overflow = 8§

The number of non admissible items = 3

Therefore, the solutions of layout L, and L, are
equivalent in the sense of scheduling admissibility,
which also conforms to the results of Section 6.2.

7. Conclusion

The general scheme defined in Section 1 enables
the partitioning of the items of production in a
Jobshop structure into different classes so that the
items belonging to each class should obey a
Flowshop structure and admissible solution be
obtained using a Flowshop scheduling algorithm.

In this paper, we discuss only two problems of this
general scheme: 1) building Flowshop structures
(solutions of layout of production) from a set of
machines and a set of items; 2) evaluating these
Flowshop structures using a learning automaton.

The solutions of layout are evaluated according to
the criterion of scheduling. A L.A. is designed to
find, according to the distribution of the action
probabilities and the reward probabilities, the
optimal solution of layout in the sense of
scheduling admissibility. The selected solution of
layout does not necessarily lead to an admissible
scheduling solution but its probability of getting
admissible scheduling solutions is the highest
among all the solutions of layout. In general, the
heavy calculation of the scheduling procedure can
largely be reduced by this evaluation.

However, this evaluation procedure is significant
only when there exists the unique optimal solution
of layout and the environment of the L.A. is
stationary. In this case, the convergence of the
algorithm has been proved. If there exist several
equivalent optimal solutions of layout, this
evaluation is not significant.

This evaluation procedure can also be applied to
the clustering operation of the scheme of Section
1, i.e. exchanging items between different classes
so that admissible scheduling solution can be
found in each class. In general, a clustering
procedure is based on measures of similarity
between items inside each «class and of
dissimilarity between different classes. In our
problem, these two measures, which cannot be
explicitly defined, depend on the procedure of
layout of Section 3 and the scheduling behaviors.
Therefore, each precise measure of similarity and
dissimilarity should be obtained by running a
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scheduling algorithm, which leads to very heavy
calculation. For simplicity, our evaluation
procedure of solutions of layout could be used to
estimate the measures of similarity and
dissimilarity.

This evaluation procedure can also be used in
other fields for making rough evaluation and for
simplifying the complexity of calculations.
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