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Abstract: A comparison of three pruning algorithms for
feedforward neural networks design is proposed. namely
MOBD  (Modified Optimal  Brain - Damage). TOBD
(Iridiagonal Optunal Brain Damage) and OBD (Optimal
Brain Damage). The application taken mto account is
nonlinear regression and the evaluation criteria are. mean
square error. peak signal-to-noise ratio. total number of
parametets in the final neural structure. weight values.
number of “multiply + add™ operations in the test phase
and required test time
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1. Introduction

As powerful nonlinear signal processing tools,
neural networks have been extensively applied
in pattern recognition, classification, filtering
and estimation, etc. Attempts to optimize the
neural network structures have been made, in
order to avoid overfitting and improve
generalization, to obtain higher convergence
speed and less costly implementations.

There are several techniques for optimizing the
neural architecture [1. 2]. Basically, they are:
empirical methods, methods based on statistical
criteria [1. 2, and others], growing
(constructive) [7—13, and others]. decreasing
(destructive, pruning) [14-20, and others} and
hybrid methods [21-24]. Reviews of the
growing [3-5,] and decreasing [6] techniques
are also available.

Largely discussed during the last few years [6,
14-20, and others]. mainly with applications in
time series prediction, pruning methods lead to
compact networks, which show  good

performance as compared to the starting
architecture or to other structures of greater
size. Though the resulting configuration is
sparsely connected, usually this is not
symmetrical. In hardware implementations, or
even in software simulations, the designer is
sometimes deeply frustrated, due to the lack of
symmetry: the weight storage, the programs
written for digital signal processors, etc., would
benefit from the symmetry of the weight
matrices. Many times in circuit theory,
symmetry and reciprocity —conditions are
imposed on circuits. Tt is clear that a
symmetrical neural network structure would be
useful. This is the reason why, in the following,
we shall make a quantitative comparison of
pruning algorithms with symmetry constraints,
for feedforward neural networks.

2. Theoretical Approach

A survey in pruning algorithms [6] quotes two
broad classes of pruning methods: those which
estimate the sensitivity of the error function to
the removal of an element and secondly,
methods which add terms to the objective
function that rewards the network for choosing
efficient solutions. There is some overlap of
these two groups, since the objective functions
could include sensitivity terms. The destructive
algorithms evaluated in the following, belong to
the former group, including also symmetry
constraints [25-27].

2.1 The Optimal Brain Damage
Algorithm

[n the Optimal Brain Damage Algorithm
(OBD) method, the feedforward neural network
(FANN) is trained and the weight saliencies are
calculated. The weights with the lowest
saliencies are eliminated and finally, the
network is retrained.

The weight's saliency is defined as the change
in the training error when the weight is
eliminated and the remaining weights are
retrained to the new minimum [17, 18].
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Basically, the saliency is approximated by the
second derivative of the cost function w.r.t. the
weight.

The OBD technique was applied to pruning
FANNs in contiguity problems, time series
prediction, etc. {17, 18].

2.2 The Modified Optimal Brain
Damage Algorithm

[25, 26] proposed, instead of a simple
elimination as in standard OBD, a symmetric
pruning of the weights. In the Modified
Optimal Brain Damage Algorithm (MOBD), at
each step, the weight having the lowest saliency
is eliminated, together with its symmetric (as
position in the FANN) “pair”.

MOBD led to sparse weight matrices, which
contained zerc values in symmetrical positions.
The expense of getting symmetrical networks
was an increase in the test error [25, 26].

2.3 The Tridiagonal Optimal Brain
Damage Algorithm

Another solution of symmetric pruning in
feedforward neural networks, the Tridiagonal
Optimal Brain Damage Algorithm (TOBD),
was suggested in {26, 27]. Without loss of
generality, one assumes that the weight matrix
has the weight vectors as columns. After
calculating  the saliencies, the column
containing the minimum saliency values is
determined and a Householder (reflection)
transform is performed on the weight matrix.
The weights are normalised and a retraining
step follows. After several steps, symmetrical
weight values resulted in a tridiagonal matrix.

Details of the algorithm and experimental
results have been presented in [26, 27].

3. Experimental Results

3.1 The Neural Network Architecture
and Learning Algorithm

Let the problem be nonlinear regression and let
the FANN be a M—H-N multilayer perceptron
(M input, H hidden and N output nodes),
trained with the backpropagation algorithm
with momentum. We have chosen A/ =7, H =3,
N=1.

The training data consisted of 2880 samples of
the “chirp” signal (Figure 1), fed into the
network through a 7-sample window, sliding
one step to the right. The desired output value
was the next value following the window (i.e.
the eighth). The training set was learned in
2000 epochs, with a learning rate of 0.01 and a
momentum equal to 0.0001. The mean square
learning error after 2000 epochs, normalised to
the number of patterns was 0.004456.

The test data (Figure 1) consisted of 2880
patterns, different from the training data.

3.2 Evaluation Criteria

The evaluation criteria taken into account are:
mean square error scaled to the number of
patterns (SMSE) in both training and test
phases, peak signal-to-noise ratio (PSNR),
total number of parameters (weight, biases) in
the final neural structure, weight values, the
number of “multiply + add” operations in the
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Figure 1. Training and Test “Chirp” Signals
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test phase and the required test time.

The SMSE cost function is given by (3), where
¥i(&) and d(&) are the actual, and respectively,
the desired output values, with 1 </ < N, for
each input pattern | < & < P. One denotes by
ei(£) the output error (i.e. the difference d(&)
- ¥(&) in node j for the input pattern £ and by
w, the FANN parameters.

C(w):—l—-~ : C(w; &) =

- L3 Shjage-»ef |
NP;_,, Y 2.4 S :
The PSNR in decibels is given by (4), where
hae and d,,,, are the maximum and respectively,
the minimum value of the desired signal.

3.3 Results of the

Evaluation

Quantitative

3.3.1 Learning and Test Errors

The MOBD. TOBD and OBD learning errors,
test errors and PSNR after the pruning steps are

2

a~]

(dmax - d min )

d as
=10 log,, 4
gl)t SMSE 4)

shown in Table 2. The comparison was made
after 500, 1.000, 2,000, 3,000 and 4,000
retraining epochs, corresponding to the pruning

steps shown in Table 1. Both MOBD and
TOBD have higher test errors as compared to
OBD. However, the difference between MOBD
and OBD is not significant, while for TOBD
further retraining is necessary in order to
increase the PSNR.

Learning curves during retraining for MOBD
and OBD are shown in Figures 2 and 3, where
the peaks point to the weight elimination steps.
No significant differences may be noticed for
the two algorithms.

The test errors evaluated with Akaike’s Final
Prediction Error (FPE) criterion are lower for
all the algorithms taken into account than the
errors yielded by the AR(7) and ARMAX(7)
models (Table 3).

3.3.2 Peak Signal-to—Noise Ratio

Peak signal-to-noise ratio decreases as the
number of the FANN parameters changes
(Tables 2, 4). The highest values are given by
the FANN in the OBD algorithm, closely
followed by MOBD. However, PSNR
evaluation after more than 10,000 epochs yields
a higher value as compared to the fully
connected network output (i.e. better
generalization).

Table 1. Number of Retraining Epochs
(NRE) and the Corresponding MOBD,
TOBD and OBD Pruning Step

NRE MOBD TOBD OBD
500 1 1
1000 2 2 4
Step 2000 4 3 6
3000 6 4
4000 "7 d

Table 2. Learning Errors, Test Errors and PSNR for MOBD, TOBD and OBD Algorithms

NE MOBD TOBD OBD
LE TE PSNR LE TE PSNR LE TE PSNR
{dB] [dB] [dB]
500 0.00332 1.05915 67.23 0.00437 1.07333 65.85 0.00332 1.05846 67.65
1000 | 0.00322 1.06813 67.23 0.00370 | 1.07341 62.40 0.00322 | 1.06818 64.95
2000 | 0.00394 1.06648 64.98 0.00307 1.07342 63.42 0.00325 | 0.82931 71.06
3000 | 0.00331 1.07159 64.84 | 0.00290 1.07341 64.63 0.00315 | 0.78907 71.60
4000 | 0.00277 1.06524 66.89 | 0.00308 1.07343 65.79 0.00339 | 0.98223 68.29

NRE = Number of retraining epochs;

LE = Learning error;
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Table 3. Test Errors Estimated With Akaike’s
FPE, for MOBD, TOBD, and OBD Algorithms,
As Compared To AR(7) and ARMAX(7)

3.3.3 Total Number of Parameters in the
Final Neural Network

The total number of network parameters given
by MOBD, TOBD and OBD methods is shown
in Table 5, and it is compared to the fully

Models connected FANN. The lowest number of
parameters is given by the TOBD algorithm,
p followed by MOBD and OBD. The final neural
Method / model Estlmat.ed test structures for MOBD, TOBD and OBD
error, using FPE algorithms are shown in Figure 4.
MOBD 0.0028
TOBD 0.0030
OBb (e, Table 4. The PSNR Values, As the Numb
. - able 4. The alues, As the Number
Fully connected net 0'001}5 of the FANN Parameters (NP) Decreases
ARMAX(7) 0.0150 (Dec. = Decreases, Inc. = Increases)
Method PSNR NP
decreases:
MOBD | Dec. with 1.079 dB | 1.65 times
TOBD | Dec. with 2.200 dB | 3.11 times
OBD | Inc. with 0.290 dB 1.27 times
Re-training during MOBD
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Figure 2. Retraining During MOBD. Peaks Show Weight Elimination Steps
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Figure 3. Retraining During OBD. Peaks Show Weight Elimination Steps

The network structure after OBD The network structure after MOBD

The network structure after TOBD

Figure 4. Neural Network Structures Resulted From OBD, MOBD and TOBD
Dotted Lines Represent Eliminated Connections / Nodes
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Table 5.The Number of Weights, Biases and Stored Parameters
in TOBD, MOBD and OBD Algorithms

Algorithm Weights | Biases | No. of stored
parameters
TOBD 12 3 9
MOBD 14 3 17
OBD 18 4 22
Fully connected network 24 4 28

The FANN resulted from OBD may be further
simplified, using more pruning steps. The
MOBD structure is symmetrical, like the
TORBD net, but in the latter case, only 7 of the
12 parameters have to be stored, as they have
symmetrical values. The second hidden node
was eliminated in all of the three methods.

3.3.4 Weight Values

The input — hidden and hidden — output weight
values resulted from MOBD and OBD, are
shown in Figures 5 and 6. The comparison was
performed for the same number of retraining
epochs. The hidden - output weights at each
step in TOBD and OBD are shown in Figures 7
and 8. One may notice that there are no
significant differences as to the range of values.
However, in TOBD symmetrical connections

3.3.5 Number of “Multiply + Add”
Operations in the Test Phase

The number of “multiply + add™ operations in
the test phase (Table 6) decreases 4.66 times
for TOBD, 2.47 times for MOBD and 1.90
times for OBD structures, as compared to the
number of operations in the fully connected
network.

3.3.6 Required Test Time

Theoretical evaluations of the required test time
[37, 38] and experimental values on an IBM —
PC 486 / 66 MHz computer are included in
Table 6. One denotes by ¢, the time required by
a simple add or multiply operation and by ¢ the
transfer time for 16-bit data.

have been preserved in the structure. 5 0BD, Step 12 5 MOBD, Step 9
5 OBD, Step 12 MOBD, Step 9 %1 % 0
w } W g :::;
£ L z e o L. -2
> 0~ |':\| S |-l o 2 4 o 2 4
= k 11 = 1 Output node Output node
-2 - : ; :
0 5 10 2[; g 10 Figure 6.Comparison Between Hidden — Qutput
Hidden node 1 Hidden node 1 Weight Values Resulted From MOBD and OBD
1 1
[0l o .
% S 4. Conclusions and Future
= = Work
-1|:| 5 10 _Ig 5 10 We have performed a quantitative comparison
Hidden node 2 Hidden node 2 of the MOBD, TOBD and OBD algorithms.
1 1 The first and the second led to symmetrical,
o o M sparsely connected networks, while the third
=00 S g ‘.,_:‘1._ & led to a non — symmetrical sparsely connected
g g network.
-10 g 10 ‘10 5 10 The results show that the structure decreases

dramatically in all cases. The lower mean
square test error was reached in the OBD
case, followed by MOBD and TOBD, but it
corresponds to the highest number of
parameters preserved in the neural structure.

Hidden node 3 Hidden node 3

Figure 5. Comparison Between Input — Hidden
Weight Values Resulted From MOBD and OBD
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Table 6. The number of “Multiply + Add” Operations in the Test Phase and the Required Test

Time

for the FANN Structures Resulted From MOBD, TOBD and OBD Algorithms

Number
Neural network structure
resulted from:

of

“multiply + add”
operations in the

Required test time

test phase Theoretical Experim. [sec]
TOBD 14810 5760 (5 t.+ 7 t) 15
MOBD 27975 5760 (6 1.+ 7 ty) 22
OBD 36205 5760 (7 t,+ 9 tg) 25
Fully connected FANN 69120 5760 (7 t,+ 10 ty) 42

Although the range of the weight values is
basically the same, in the MOBD and TOBD
methods there is no need to store all the final
parameters, as some of them have symmetrical
values.

same hierarchy is maintained for the required
test time.

The comparison performed in this paper leads
to the conclusion that no symmetry may be
introduced in the neural model, without paying
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Figure 7. Hidden - Output Weight Values Resulted From TOBD
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Figure 8. Hidden — Output Node Weight Values, After OBD Steps With Retraining

The number of “multiply + add” operations is
minimum for the FANN given by the TOBD
algorithm, followed by MOBD and OBD. The
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the price of increasing the error, ie.
decreasing the PSNR. Better performances
are likely to obtain if one refines the
approximations in the OBD algorithm.
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Joining this matter of future research, there is

another problem we currently
regarding
sparse

focus  on,
theoretical boundaries in using

weight matrices to approximate the

FANN input — output relationship.
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