Scheduling Real-time Graphics Geometry Operations
in Multicomputer Systems

Felicia lonescu
Simultec S.A
Platforma Magurele
P.0.B. 24, Bucharest
ROMANIA

Abstract: Proper exploitation of the potential power of
parallel computers requires an efficient selution 1o tasks-to-
processors scheduling problem. This paper discusses the
scheduling problem ol real-time graphics geometry
operations 1o be executed on a multicomputer system.
Assuming a run-time scheduling approach. a pre-scheduling
operation will be defined as a cluster partitioning of
processes with a view at minimising the parallel execution
time on a virtual architecture with unbounded number of
processors. Such partitioning compensates for the finding of
a mapping that minimises a cost function in a large
configuration space, defined as p" configurations (where p
is the number of processors and v is the number of
processes), with a problem of dynamically mapping a
reduced number of clusters onto processors.

A weighted program dependence graph is used for
representing the program for the scheduling problem and a
heuristic clustering algorithm reduces the granularity of the
program. preserving the whole embedded parallelism. For
load balancing of the processors. dynamic mapping of
clusters onto physical processors in the network s
implemented as a receiver initiated distribution of
computing work

Keywords: Real-time image synthesis, Multiple Instruction

Stream, Multiple Data Stream Architecture, program.

dependence graph. cluster partitioning, dynamic mapping.
scheduling, parallel overhead.

Dr. Felicia lonescu received the Applied Electronics
degree and Ph.D degree in Microelectronics trom the
Department of Electionics and Telecommunications, the
Polytechnical Institute of Bucharest, Romania. She is now
R&D Manager at Rescarch Insttute for Simulators.
“Simultec S A7, Romania, and is dealing with parallel
processing. real -time image generation and development
software for visual database generation.

1. Introduction

Synthetic images are obtained by a sequence of
graphics operations executed on object models,
structured and stored in a graphical database.
For each object, the image synthesis system
performs two sequences of operations [9], i.e..

e graphics geomelry operations which
consist in coordinate transformation of all
vertices from object coordinates into view
coordinates, clipping transformation of each
surface into a 6-plane bounding box
describing what region is visible to the
viewer, the perspective division for all
vertices of clipped surfaces, that takes a
perspective view of the resulting object, and
compresses the 3D object into a 2D
coordinate space for viewing on the screen.

e rendering operations which consist in a
scan-conversion transformation that
computes all pixels that belong to object
2D screen coordinate surfaces and their
color, writing the resulting values on the
Image memory.

This large scale, complex problem of image
synthesis can be solved by combining a number
of processors and memory blocks in a network
environment. The architecture class of the
projected parallel computer is a MIMD
distributed memory network with message
passing communications between nodes. This
network is structured into two functional
subnetworks: a geometry subsystem which
performs graphics geometry operations, and
produces a set of graphics primitives, and a
rendering subsystem which performs rendering
operations of these graphics primitives. These
subsystemns are connected by a flow network, for
transfer messages containing graphics
primitives.

This structure allows good exploitation of
different types of parallelism at each stage of
processing [6].

In a rendering subsystem, operations provide the
data parallelism characteristics: many data items
(pixels of the image) are liable to identical
processing, which allows a perfect domain
decomposition into processes which require
little or no communication at all with one
another. This leads to a SPMD (Single Program,
Multiple Data) operational mode: each
processor executes the same program
asynchronously, on its own subdomain of data [7].

In the geometry subsystem, graphics geometry
operations can be described as a number of
asynchronous processes, which are scheduled
into processors of the network. Scheduling
algorithms are more complex for multicomputer
systems than for uniprocessor systems, since the
scheduling algorithm must not only indicate an
ordering of processes, but also it must
determine a specific processor to be used. A
number of researchers succeeded to prove that
finding an optimal schedule for a set of real-time
tasks in a multicomputer system is NP-complete.
Therefore, research efforts have been directed to

Studies in Informatics and Control, Vol 6, No. 2, June 1997 153

the development of suitable heuristic scheduling
algorithms capable of finding a suboptimal
solution in reasonable time [1], [2], [3L,[10], [11].

This paper presents a hybrid scheduling
strategy for real-time graphics geometry
operations in a distributed memory network as a
two -step approach: a static cluster partitioning
of the processes described by a program
dependence graph, and a dynamic mapping of
clusters onto physical processors of the network,
with a view at obtaining a minimum parallel
execution time.

2. Strategy for Scheduling
Graphics Geometry Operations

The implementation program of graphics
geometry operations into an image synthesis
system is a complex one, where a large number
of processes which can be executed in parallel
by different processors of the network, is
identified. In order to benefit from this
parallelism, processes should be scheduled over
as many processors as possible. However, the
overhead of communications among distributed
processes may outweigh the increased
performance reached thanks to the use of
multiple processors. Therefore, scheduling
strategies need determine the best trade-off
between parallelism and overhead.

The geometry subsystem is a parallel computer
with distributed memory and message passing,
and is represented as a graph R = (P, E),
where:

P={pil0 <i<p,p=|Pl};

E= {eu:(PanNpi«pj eP }
P is the set of nodes, each node representing a
processor in the network.

E 1s the set of communication links between
processors.

The parallel program which implements
graphics geometry operations is represented by
means of a directed acyclic graph, the program
dependence graph (PDG), which is a popular
and general representation of control and data
dependences in a parallel program. A PDG node
represents a process in program, i.e. a basic
computation block; a directed edge in a PDG
represents control or data dependence. PDGs
represent the ideal program parallelism, and are
useful for solving a wvariety of problems,
including optimisation, vectorisation, detection
and management of parallelism. Therefore, PDG
is a natural option for program representation in
the scheduling problem.

If physical communication costs on the parallel
computer links can be quantified then, by using
them in conjunction with the PDG, a weighted
PDG can be defined to represent the program as
a set of processes with known (or estimated)
computation time for every node, and explicit
dependences expressed by weighted edges in the
graph. Formally, a weighted PDG is a tuple G =
(V,D,T,C), where:

V={v |0 j<v,yv=|V]]
D={dij=(viv;)| vi,v; € V};
T={t0g i< v}

C={cij |0 ij <v}.

V is the set of nodes, each node representing a
process in the program.

D is the set of directed communication edges
between processes. A directed edge d;;= (v,v))
expresses the dependence between processes v;
and v; , which can be either control dependence
or data dependence. Control dependence of a
process vj towards process v; means that the
execution of the process v; can start only after
the termination of the process v;. Data
dependence of a process v; towards process v,
means that at least one output variable of the
process v; is input variable for the process v,
(Bernstein’s conditions). Two processes can be
executed in parallel if there exist no control or
data dependences between them, and, given this,
the execution yields the same results, regardless
of whether they are executed sequentially in any
order or in parallel.

T is the set of node computation costs. The
value €T is the computation cost for node
vie V.

C is the set of edge communication costs. The
value ¢;; € C is the communication cost
incurred along the edge d;; € D, which is zero
if both nodes are mapped in the same processor.

With this formulation, a schedule is defined by a
processor assignment mapping of the nodes of G
onto the p processors of network R, and by the
starting time of all nodes.

The degree of parallelism in a PDG, also called
width of the PDG, is the size of the maximal set
of independent processes. The fength of a path
is the summation of all node computation and
edge communication costs in the path. The
critical path is the path with the longest length
in the PDG. Given a parallel program that is
characterised by a weighted PDG, the
scheduling of the processes to processors can
be done either statically (before program

174 Studies in Informatics and Control, Vol. 6, No. 2. June 1997

execution), or dynamically, in an adaptive
manner (as the parallel program is executed).

Static approach is more attractive, as the
scheduling computation needs only be
performed once. but this approach can only be
used only if the parallel program is static, i.e.
the processes are executed on a regular data
structure and the nodes and edges weights can
be accurately estimated a priori. This is not the
case with graphics geometry operations which
start with the database traversal for finding
visible graphical objects. The database traversal
dynamically generates an irregular search
space, depending on the current viewpoint [5].
Therefore, a dynamic scheduling approach must
be considered for graphics geometry operations.

For a weighted PDG a cost function can be
formulated to evaluate a particular mapping of
the processes onto the processors. The
scheduling problem can thus be formulated as a
problem of finding a mapping that minimises
this mathematical cost function, and, indeed
many researches were devoted to this aspect.
The primary problem with most of the
approaches based on explicit minimisation of a
cost function is its exponentially large
configuration space of possible mapping that
must be selectively searched in trying to
optimise the function. The flat and
unstructured view of the scheduling as a
mapping of each process onto a processor leads
to an unmanageable large search space. If the
program dependence graph has v nodes and the
parallel computer has p processors, the space of
possible mappings has p" configurations.

We have proposed a hybrid approach to
scheduling strategy that combines a static
partitioning of the program dependence graph
with a dynamic mapping. This results in a two-
step approach of the scheduling problem:

(1) The first step is a static partitioning of the
PDG into clusters: pairs of processes which
require much communication are grouped
together and mapped on the same processor
in order to reduce the communication costs.
Thus the process-to-processor mapping
problem may be viewed instead as a
problem of formatting clusters of processes
with high intra-cluster communication and
low inter-cluster communication, and of
allocating these clusters to processors in a
way that results in low inter-processor
communication costs. The view of mapping
in terms of formatting clusters of closely
coupled processes helps reduce
significantly the space of mapping that is
selectively searched for a satisfactory
solution. The clustering problem can be

formulated as a problem of finding the
minimum of a cost function.

(2) The second step is a dynamic mapping of
clusters onto physical processors which
allows workload balancing and results in
low parallel overhead.

Cluster partitioning of a PDG is going to
determine a mapping of nodes of G onto m
clusters {Ko, Ky, ...Ky,.; } aiming at minimising
a cost function, which, for real time image
synthesis, is the parallel execution time, on an
unbounded number of processors. This is known
as min-max criterion for clustering,

min { maxT(v))}
M 0<j<s

where IT is the set of all possible cluster
partitioning on an unbounded number of
processors and T(v;) is the computation time of
node j. The clustering that scores the minimum
parallel execution time is called optimum
clustering. '

A clustering is called nonlinear if at least one
cluster contains two independent processes,
otherwise it is called linear. Linear clustering
fully exploits the natural parallelism of a given
PDG, while nonlinear clustering sequentializes
independent processes to reduce parallelism.

The property of linear clustering as to preserve
the whole parallelism of a given PDG, makes it
a suitable approach for the first step of the
proposed scheduling strategy. The PDG is
statically partitioned into linear clusters and, if
the execution of the PGD using linear clustering
reaches the optimal time, then the granularity of
the PDG is appropriate for the given
architecture; otherwise it is to fine and a
scheduling algorithm needs execute independent
processes together in the same processor, using
a nonlinear clustering strategy.

Dynamic mapping of clusters onto physical
processors for workload balancing represents a
nonlinear clustering and the goal of these two
steps, i. e. static linear clustering and dynamic
nonlinear clustering, is the minimisation of
parallel execution time.

3. Program Dependence Graph
of Graphics Geometry
Operations

At this step the database traversal operation is
considered as a single process, and all other
graphics geometry operations are analysed for
determining the program dependence graph.

Studies in Informatics and Control, Vol. 6, No. 2, June 1997 175

Database Traversal process (DT) has a number s
of successors - processes which extract visible
objects for the given viewpoint, (EO,, EO,,
...EQy). The dependence between DT process
and EOQ,, EO,, ...EO, processes can be control
dependence or data dependence according to the
modality of storing the database in the network.
If the database is stored in a single node of the
network, then EO,, EO,, ..EOQ processes must
walit for a set of data which describes the object
to be generated. This will result in large
communication needs and serious limitation of
the performances by increased communication
costs. Therefore a replicated database solution
has been adopted: in every node of the network

g
5

jors]

DOOOOEC
OO0

B>

&
o
3

m
m
=

TV process - which applies a coordinate
transformation for all vertices of an object from
object coordinates to view coordinates, using a
4x4 matrix stack.

LV process - process to light vertices to
improve the viewing of surface contours and
shapes. The color is applied to each vertex as a
function of the vertex position, the surface
normal direction, the lighting model, the lights
and the characteristics of the surface.

CL process - is a clipping process to a 6-plane
bounding box describing what region is visible
to the viewer. The vertices of the clipped
surfaces ‘go through a perspective division that

s

Figure 1. Program Dependence Graph of Graphics Geometry Operations (G)

there is stored the whole database and, in this
case the dependence between DT process and
extracting processes is a control dependence
with a lower level of communication.

Every extracting process (EO,, EO,, ..EOy) is
followed by a sequence of processes which
allows image generation of the object. These
processes are:

provides a perspective view of the resulting
object, and compresses the 3D object into a 2D
coordinate space for viewing on the screen.

SD process - a surface decomposition process
in the screen coordinate space which splits every
surface with four or more vertices into multiple
independent triangular pieces. The triangles -
which are graphics primitives- are then handled

176 Studies in Informatics and Control, Vol. 6. No. 2. June 1997

identically through the remaining graphics
operations.

RP process - is the final stage of calculation in
the geometry subsystem and determines a
number of rendering parameters of the triangles.
These parameters are used by the rendering
subsystem for scan-conversion graphics
primitives. The output of RP processes is a set
of data describing graphics primitives and this
set is sent as a message to the rendering
network.

For graphics geometry operations the program
dependence graph G , presented in Figure 1,
consists in a number of (6*s + 1) nodes,
connected by communication directed edges,
where s is the number of visible objects for the
given viewpoint.

For weighting this PDG. nodes and edges
weights are to be computed. based on the
computational capacity of nodes and the
communication capacity of edges and on the
following assumptions:

(1) The computation costs of the nodes
depend on the node process.

(2) The physical network contains
identical processors, so the

computation costs of PDG nodes do
not change when a process is
mapped in different nodes of the
network.

(3) Edge communication costs increase
linearly with the length of the
message transferred between nodes.

In Figure | there are presented communication
costs for every edge in PDG.

4. A Linear Clustering
Algorithm

The first step of the proposed scheduling
strategy of graphics geometry operations in a
multicomputer system is a static linear cluster
partitioning. The clustering algorithm consists in
a number of steps, and each step tries to refine
the previous clustering. Linear clustering of
graph G is presented in Figure 2.

The initial step assumes that each process in
PDG is a separate cluster. Each following step
tries to merge two clusters by zercing the edge
that connects them. Zeroing an edge means that
two end nodes of this edge are mapped into the

Figure 2. Linear Clustering in Graph G

Studies in Informatics and Control, Vol. 6. No. 2. June 1997 177

same cluster and thus the communication costs
become zero. Let Tp, be the parallel execution
time after the completion of step i , estimated
according to the assumption that all processes in
a cluster are executed on the same processor.
Tpo is the length of the critical path including
communication costs and computation costs in
the initial graph where no edge has been zeroed.

For the clustering algorithm is used Gerasoulis’s
heuristics [4], ** if the parallel execution time at
step 1, Tp; , does not increase by zeroing the
highest edge cost, then zero this edge”. For this
algorithm, the edges are first sorted by their
costs, in a decreasing order. The algorithm
performs maximum d steps (d = |D[), and, at
each step, it tries to zero the selected edge, if the
parallel execution time does not increase and the
resulted cluster is linear.

For the PDG in Figure 1, at the first step each
process is considered as a separate cluster, and
the edges are sorted in a decreasing order by
their communication costs. Let :

>
€ 2.8 =& 2 Ey... 2, bethis order.

In the following s clustering steps, edges o, o,
, ... 0 are zeroed and, for every step, the parallel
execution time is reduced. Clustering continues
by zeroing edges BB, B €15 B wiits
and in this way a linear clusters graph G, = {K,
H } is obtained. as presented in Figure 3, where:

K=1{Ky K .. K,i, s the set of
linear clusters;

H= {h, hy ... hy} , is the set of
dependence edges between linear clusters.

The cluster K, contains a database traversal
process (DT), and each of the remaining s
clusters, (K, K,) contains all the processes
needed for generating graphics primitives for a
visible object. These clusters can be executed in
a virtual architecture with an unbounded number
of processcis,

Figure 3. Linear Clusters Graph (Gy)

S. Dynamic Mapping of
Clusters Onto Physical
Processors

Given a linear clusters graph Gy , mapped onto a
virtual network with an unbounded number of
processors. the second step of scheduling can be
defined as a mapping of every linear cluster onto
a physical processor of the real network, with a
view at workload balancing .

The network architecture was defined as a
graph R = (P, E). Mapping linear clusters onto
p = |P| processors is a function: MK —P,
where M(K;) defines a processor q in which the
cluster K; 1s mapped. For mapping a number s of
clusters onto p processors (and, most probably,
s > p), a set of clusters CS,, must be defined for
each processor q (0 < q < p), where :

CS:=4 1) MU)= g} =001.2..p-1.

Each set CS is the set of linear clusters mapped
onto processor q and represents a nonlinear
cluster in PDG.

To determine these sets and, also the starting
time of each linear cluster mapped onto a
processor, a dynamic mapping of clusters to
processors is used, every cluster representing a
computing activity which is assigned to a
processor in such a manner that every processor
stays idle as little as possible.

If the number s of linear clusters, which
represents s computing activities, is smaller than
the number p of processors, then (p-s)
processors will remain idle, which results in an
inefficiency of the network. In this situation, the
network parallelism is inefficiently exploited by
the program parallelism, because the granularity
of the program is coarser than the granularity of
the network. "The granularity of the linear
clusters graph which allows a load balancing of
the processors must provide a value s > p. For
this, if the network granularity is defined (given
a number p of processors), then the granularity
of the program must be revised by changing the
(increasing) number and the (decreasing)
dimensions of objects in the database.

Database traversal process (DT) for extracting
visible objects, assumed as a single process at
the first step (linear clustering), can be assigned
as a cluster in a single processor of the network,
which results in a centralised database traversal,
or in a decomposition of the number of
processes and in the distribution of these
processes to all processors of the network, that
is a distributed database traversal.

178 Studies in Informatics and Control, Vel 6, No. 2, June 1997

A centralised database traversal can be viewed
as a better approach, since it maintains global
information about the state of the network and
uses it for load balancing in dynamic mapping
of computing activity. But this gathering of
information in a single node can be prohibitive
for large networks, due to the occurrence of
multiple access requests, which causes
communication delays. A distributed database
rraversal does away with this bottleneck, but
adds overhead duc to the communication
between processors which perform this
operation.

For load balancing of the network, a receiver
initicted disiribution of computing work [8] is
implemented. Every processor can be in one of
the two states:

e idle, when it has no work;
e qctive, when it performs some work.

The program starts with a single processor, say
processor Py, executing the database traversal,
all the remaining processors being idle.

In a centralised database traversal, only
processor Py performs this operation. Every idle
processor sends a message to the processor Po,
as a work request, and waits for an answer from
P, . as a message containing a handle to an
object in the database. Then, the receiver
processor becomes active, and executes a linear
cluster of processes, for extracting the
corresponding object from its replicated
database, and for generating graphics primitives
of the object.

This process continues untii all visible objects in
the database are distributed by processor Py to
(p-1) processors of the network, and it
represents a dynamic mapping of linear clusters
onto physical processors which defines the
scheduling of the graphics geometry operations.
The starting time of execution of each linear
cluster in a processor is dynamically determined
by the moment in which a receiver processor
receives an object handle from processor Py .

The distributed database traversal begins with
assigning the whole database search space to a
single processor, Py; all the other processors
have their search space nuil. As in the
centralised database traversal, each processor
can be idle, when it has no work, or active. when
it does some work.

An idle processor selects a donor processor and
sends a work request to it . If the idle processor
receives some work (part of the database search
space) from the donor processor, it becomes
active. If it receives a reject message (because
the donor has no work), it selects another

Studies in informatics and Control, Vol. 6, No

processor and sends a work request to that
donor.

An active processor, which has a part of the
database search space, extracts all visible
objects defined in this.space and initiates, for
each object, the execution of a linear cluster of
processes for generating graphics primitives.

In the distributed database traversal, the
scheduling strategy provides a dynamic
mapping of linear clusters onto physical
processors and also a dynamic distribution of
the database search space, which results in a
global load balancing of the processors.

Dynamic mapping of clusters onto physical
processors contributes an overhead function,
due to communication for work requests and
work distribution. This overhead function,
computed for different network topologies, is
smaller for a centralised database traversal, if
the computational costs of the database traversal
process (Ty) are lower than the amount of work
performed by every othef processor, i.e. Ty < W
/ p, where W is the total amount of work, and p
is the number of processors.

This condition defines a maximum number p. of
processors in a geometry network for which the
centralised database traversal can be efficiently
used. For numbers of processors greater than p,
no higher parallel speed-up can be obtained by
increasing the number of processors, because
the parallel execution time is upper bounded by
the computational costs of the database traversal
process (Ty), and, in this case, only a distributed
database traversal can ensure the scalability of
the network.

6. Conclusions

We have presented the problem of scheduling
real-time graphics geometry operations in an
image synthesis system implemented as a
multicomputer with distributed memory and
message passing between nodes. We have
presented a network model and a program
representation as a weighted program
dependence graph (PDG), for facilitating the
scheduling work. Our approach to the
scheduling problem consists in two steps: the
first step is a static cluster partitioning of the
PDG, with a heuristic clustering algorithm; the
second step is a dynamic mapping of clusters
onto processors, for obtaining a computing
workload balancing. The dynamic mapping
always distributes linear clusters which generate
the graphics primitives of an object. The search
space of the database traversal operation can
also be dynamically distributed among multiple

2. June 1997 179

processors of the network, which results in a
scalable image synthesis system.

REFERENCES

[9%]

180

BACCELLI, F. and LIU, Z. , On the
Execution of Parallel Programs On
Multiprocessors Systems - A Queueing
Theory Approach, JOURNAL OF THE
ASSOCIATION FOR COMPUTING
MACHINERY, Vol.37, No. 2, April 1990.

BACCELLI, F., LIU, Z. and TOWSLEY,
D., Scheduling of Parallel Processing

With and Without Real-Time
Constraints, JOURNAL OF THE
ASSOCIATION FOR COMPUTING

MACHINERY, Vol.40, No. 5, November
1993.

BURCHARD, J., LIEBENHERR, Y.O.H.
and SON, S.H., New Strategies for
Assigning Real-Time Tasks To
Multiprocessor System. IEEE
TRANSACTIONS ON COMPUTERS,
Vol. 44, No. 12, December 1995.

GERASOULIS, A. and YANG, T., On the
Granularity and Clustering of Directed
Acyelic Task Graphs, IEEE
TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, Vol.4, No. 6,
June 1993,

10.

1l

IONESCU, F. and ALEXA, S., PC-Based
Software System for Visual Data Base
Creation, International Training Equipment
Conference and Exhibition Proceedings, the
Hague, 1996.

IONESCU, F.. Global Optimisation for
Parallelism and Locality in An Image
Synthesis Parallel System, International
Semiconductor Conference - CAS - Sinaia,
1996.

[ONESCU, F., Mapping Image Rendering
Operations Onto Parallel Processors,
International Semiconductor. Conference -
CAS - Sinaia, 1996.

KUMAR, V., GRAMA, A., GUPTA, A.and
KARYPS, G.. Introduction To Parallel
Computing, The
BENJAMIN/CUMMINGS PUBLISHING
COMPANY, Inc, Redwood City, 1994.

MAGNENAT- THALMAN, N. and
THALMAN, D., Image Synthesis. Theory
and Practice, SPRINGER-VERLAG |
Tokyo 1987.

SADAYAPPAN, P., ERCAL, F. and
RAMANUIJAM, J., Cluster Partitioning
Approaches To Mapping Parallel
Programs Onto A Hypercube,
PARALLEL COMPUTING , No.13, 1990.

SONEOKA, T. and IBARAKI, T,
Logically Instantaneous Message
Passing, in Asynchronous Distributed
Systems, IEEE TRANSACTIONS ON
COMPUTERS, Vol. 43, No. 5, May 1994,

Studies in Informatics and Control, Vol. 6, No. 2, June 1997

