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1 Introduction

Optimal robustness problems related to transfer
function uncertainty have become prominent in
the last decade. A basic approach to the prob-
lem can be found in [5],[2],[6], the most general
treatment and current studies review are in [3].
The principal fact is that the robust controller
design by the various uncertainties in the plant
transfer function can be reduced to the synthesis
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on Hy criterion or H.-optimization [4].

There are two basic approaches to such a syn-
thesis, namely, a factorizational approach and
a state-space one. The first is based on the
so-called J -factorization [6], [3] and does not
require any additional restrictions of the inter-
nal system. Nevertheless it does not guaran-
tee the designed controller to be proper, and
numerical procedures (in a multi-input/ multi-
output case especially) are quite complex. The
direct application of a standard approach based
on the two Riccati equations solutions (”two-
Riccati approach”) [1], is impossible, as it will
be shown, because of the failure of regularity
conditions.

An asymptotical modification of the 2-Riccati
approach is proposed in the present paper that
makes standard programs availavle. Recent re-
sults on asymptotical behaviour of H,, and H,
norms [7] are used.

2 Formalization of the Optimal
Stability Margin Problem

Let the transfer function of a plant be given as
rational matrix H(s), that can be presented as

H(s) = M~1(s)N(s), (2.1)
where M(s) and N(s) are also rational (poly-
nomial, in particuler’ matrices. The repre-
sentation 1s known up to uncertainty terms
AM{S),AN(S):

M(s) = Mo(s)~Ap(s), N(s) = No(s)+An(s),

(2.2)
where My(s) and Ny(s) are determined and
compose the basic plant model

Ho(s) = My~ ' No(s),
and the uncertainties are bounded by

IAMGw)l| < [UGw)l, |Ax(Gw)ll < [V (w)].
(2.3)
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The boundary functions U(s) and V(s) are
given, stable and rational.

The structure disturbances representation in
the form of (2.1), (2.2) is sufficiently general
and includes additive and multiplicative distur-
bances as particular cases.

With the help of the Nyquist criterion one can
state the following sufficient condition. By any
uncertainty bounded by (2.3), the plant (2.1)
with the feedback K(s) will be stable if the
closed loop with basic plant is stable and condi-
tion

1 - szp |1So(s) Mo~ (8)U (s);

K(5)So(s) Mo~ V(8)|ls=jw > 0, (2.4)

holds (see [4]). Here Sp(s) is the sensitivity func-
tion:

So(s) = [I - Ho(s)K(s)]™*.  (2.5)

It is natural to call the value of the left side of
inequality (2.4) as a stability margin on struc-
ture disturbances. Design of the feedback K(s)
that maximizes the stability margin is called op-
timization on robustness criterion.

One can easily demonstrate that the problem
is related to a Ho.-norm optimization class and
equal to K(s) design, minimizing the Hoo-norm
of the following transfer function

P(s) = {S(s)Mo™"(s)U (s); K(5)S(s)Mo™"(5)V (5)}

(2:6)

3 Transforming the Disturbance
Attenuation Problem

Let us show the way of solving the robustness
optimization problem via state-space represen-
tation and matrix Riccati equations analysis.

Let basic (undisturbed) plant description be
given in the form

Yy = HU(S)UA
Consider an auxiliary system

7y = H.(syu + Hi(s)§
= Hy(s)u + Hg(s)£ (37)
u= K(s)y.

Choose the transfer functions H,, Hy, H1, Ha(s)
for having
T
T. = 21§
26l { Tu ]

equal to P(s) in (2.6).

To do this it is necessary to make sure that
the following equalities hold

H,K[I - H K] "Ho+ Hy = (I — HoK]"'My™'U
(3.8)
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K[I - HyK) 'Hy = K[I — HoK]"' Mo~V
(3.9)
Let us choose Hy(s) = Ho(s) and Ha(s) =
Mo~ Y(s)V (s). Then the equality (3.8) holds and
to satisfy (3.9) it is sufficient to set

Hy = M;~'U
Hz — %HD)

that can easily be verified by a simple replace-
ment. Therefore the following statement has
been proved:

Theorem 1. The stability margin mazimiza-
tion problem on structure disturbances is equal
to H.o-norm minimization problem of iransfer
function T,¢(s) in the system

o= 58 Ho(s)u+ Mo~ (s)U(s)6; u = K(s)y;
2T = (21, u) (3.10)
y= HU(S)'U + M()_lV(S)f = ggzi z1. (311)

The operator description can be rewritten in
a state-space form by standard procedure. How-
ever, it is more efficient to do it block -by -
block. Provided that transfer functions Ho(s)
and Mo~ 'V (s) are strictly proper, the represen-
tation (3.11) could be written in the state-space
form:

To = Aozo + Baou+ Bi1of; ¥y = Cozo.

If U(s)V ~1(s) is proper then the connection
between y and z; can also have the state-space
form

za = Aaza + Bay;, 21 =Caza+ Day,

where matrices Aa, Ba,Ca, Da can easily be
derived in a view of UU(s), V(s) as scalar.
By joining these representations one gets

= Az + Bou + Bi&

z1 = Cir;  y=Che, (3.12)

where
T = (z0,2a);A = {40 0;BaCl An Y BY =
(B20,0); C1 = {DaC3,Ca}; C2 = {Co, 0}.

If U(s) = V(s) then y = z; and the second
subsystem becomes useless and

A = Ag; By = Bag; By = Big; C2=C1 =Co.

Obviously, the system (3.12) does not satisfy
the conditions of standard procedure of optimal
feedback applying [1] because of the absence of
noise disturbances in observations y. For the
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observability of the pair A, C; the output esti-
mation controller can be designed, these estima-
tions being calculated by the observation deriva-
tion. Generally speaking ,the feedback will turn
out non-proper. The spectral approach leads to
the same result [3].

Therefore, in order to design a proper feed-
back, one should regularize the problem.

4 Regularization Algorithm

Let us change the problem (3.12) by introducing
"weak” noise 7,

Y= Coz + en, (4]3)

where ¢ is a small positive value.

With this the problem takes the standard
form, but the closed-loop transfer function from
outer disturbances vector w’ = (£, 7) to output
vector 27 = (z;, u) will be changed

Tzw(sag) = {Tzf(s)?Tzﬂ(S)} =

SoMo~lU  eVU~YI - So)
( KSoMp~'V K So (180
and the condition of Theorem 1 failed.
Nevertheless, by a sufficiently small €

IT2w (s, )|l = ITeg (s)l| + O(e) (4.15)

and one can use the regularized problem solution
which minimizes T, norm.

Following to [l1] we introduce two matrix
square equations

ATP + PA— P(ByB,F —y72B,B,T)P+

CiTCi =0 (4.16)
AD + DAT — D(e~2C,T Cy — v 2C T ) D+
BB,F =0. (4.17)

Let vp denote the lowest boundary of the vari-
able 7 thereby the solution of (4.16) exists, let
vp(¢) denote the corresponding boundary for
(4.17) and let v,(¢) denote the lowest boundary
of 4 thereby the inequality

12 p{P(1)D(1)} < 1, (4.18)

holds, where p{a} is the spectral radius of a ma-
trix a.

Conszquently, the minimal value of T, (s, ¢)
norm is the following:

v(e) = maz{vp,1n(),7,()},

and the controller ensuring that is described by

u= F(e)z (4.19)
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& = Az + Byy2(¢)B1* P# + Byu+

[I = 7~ 2(e)P(1(e))P(1(€), )] L(e)(C2z — y),
(4.20)
where

F(e) = —B2" P(v(e))
L(e) = ~e~2D(v(e),€)C:" .

A substantial reduction of the complexity of
the procedure is possible if the plant is minimal-
phase.

Theorem 2. Let all zeros of the denomi-
nator of transfer function V(s)My~'(s) belong
to the left half-plane. Then Eli_{r(:)‘m(a) =0 and
lim y(e) = 7.

The correctness of this theorem is directly de-
rived from the results ot [7], where the problem
of ”cheap control” has been considered, being a
duplicate to the ”weak noise” problem. Formal
proof i1s given in the Annex.

Therefore, in order to find the limit stability
margin by the structure disturbances it is suf-
ficient to compute the constant yp from (4.16)
corresponding to the full observation problem.
To design the regularized feedback it is neces-
sary to solve Equation (4.17) by fixed v = vp
and some small .

Most of the characteristics can be given for
the case when U(s) = V(s) and consequently
Gl - C‘g.

Theorem 3. Let boundary funclions of
U(s),V(s) coincide. Then

7p(e) = Of¢)

and stability margin is given by

¥(0) = maz{7yp,7,(0)}.

Moreover if conditions of Theorem 2 hold, then

7(0) = vp.

D(vp,€) is the analyuical function of e!/*,
where k is the difference between the degree of
nominator and denominatar of the transfer func-
tion Mg~ *(s5)V (s), therefore it is not necessary
to calculate it and the suboptimal feedback is
given by

uw=—P(yp)B:T %

z = (A+yp 2B1B1" )2+ Boute~ ! Bi(Cag—y).

The proof is based on the results of [7] and is
given in the Appendix. Note that in this case
the feedback turns out to be regular.
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5 Computational Aspects

According to the describea regularization algo-
rithm one has to calculate the lower boundaries
of vp,vp(€) thereby solutions of (4.16), (4.17)
exist. A standard procedure from MATLAB Ro-
bust Toolbox is available.

Computational experiments show neverthe-
less that the solutions accuracy turns out to be
doubtful when matrix entities are substantially
different. That is exactly the case we have in
(4.17) by small €.

Therefore we have used a computationally
stabler iterative procedure for Riccati equations
solving, as that developed by V.Y.Katkovnik
and M.A.Pasumansky. Some benchmark prob-
lems have been solved with it. It is worth noting
that the case of unstable nominal plant needs
special preliminary treatments. Otherwise for-
mally applying MATLAB program on transter-
ring the state-space description (tfm2ss.m) may
yield incorrect results.

Numerical experiments confirmed the results
of asymptotical analysis.
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APPENDIX

Proof of Theorem 2 Let us compare Equation
(4.17) with

AT X+ X A-X(e~2By BT 428 B, )X +C,TCy = 0,

that was studied in [7]. Obviously, they coincide
up to notification exchange

A— AT, B, = CT; B -7,
As shown in [7] ,
lim yx () = 0,
if
det{Cl(sI = A)_le}

has its zeros in left half-plane only. Using the
notification exchange, one reaches the conclu-
sion that for the dual problem the mentioned
condition is rewritten as

det{B;T(sI-AT)"1CyT} = det{Ca(sI-A)"' By} =
det{My™(s5)V (s)}.

One should take into account that according to
(3.10), (3.12)

Co(sI — A)™'By = Ha(s) = My~ (s)V(s).

The first part of Theorem derives from the
mentioned duality.
The second part is true if

p{P(vp)D(yp,c)} < 7p%,

but by € — 0 the left part vanishes, therefore it
holds.

Proof of Theorem 3
By C| = C2 Equation (4:17) turns into

AD+DAT —(e"?—y~%)DC,TC,D+B, B, T = 0.

Under conditions of controllability of A, B,
and observability of A, C) the solution exists by

el iy >,

From the latter yp(2) < vp is derived, and from
this the first part of Theorem follows.
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If conditions of Theorem 2 hold then oue can Substituting this asymptotical performance in
use Theorem 3 from [7]. We see that D(vp,¢) Equation we get
fits the equation o m G
eV [AD+DAT) e~ -8 —e2yp—-2DC, TC, D+
AD+DAT —e"%(1-¢%4p~*)DC,TC1D4 B, B;,T = 0. ,
B B," =0.

Let us compare it with the dual equation Thiprsslsetion: of psiniterms,given:

BT T — 21-1/k) T
ATX + XA -e2XByB,TX +CTC, = 0. DGy CiD=¢ [BiB1™ +o(u)],

Obviously these eauations coincide with noti- Whtls
ﬁ‘can_lon exchange and ap jx?sigpiﬁcant (by small L= —~2D(vp,€)CyT = —e~2eY¥D(p)Cy 7T,
€) lifference of the muluplier in round brackets
from 1. then

Therefore, according to the mentioned Theo- _ .
rem _ LLT = 33D TC,D = s'zBlBlT+o(p),

D(TP!E) = ,U.D([J), H= El/k)
that means

where D(u) is analytical along g and k is the
difference between the degree of nominator and L= Bie™! by ¢=0.
denominator of the transfer function

Cao(sI — A)~1By = My~ (s)V (s).
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