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Abstract: In this paper a neural network ap-
proach to the factory dynamics modelling problem
is discussed. A recurrent high-order neural net-
work structure (RHONN) is employed to identify
the manufacturing cell dynamics, which is supposed
to be unknown. . The model is constructed in such a
way that enables the design of a controller which will
force the model and thus the original cell to display
the required behaviour. Buffer states as well as con-
trol input signals are transformed into continuous
ones so as to be conformant with the RHONN as-
sumptions. A case study demonstrates the approx-
imation capabilities of the proposed architecture.
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1 Introduction

The manufacturing cell dynamics modeling
prablem can be stated as follows :
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Factory Dynamics Modeling Prob-
lem: Find a mathematical model that will de-
scribe the unknown factory dynamics with a pre-
scribed degree of accuracy; in other words the
error between the actual dynamics and that of
the proposed model should lie within a “small”
neighborhood of zero. The dimension of the
above mentioned neighborhood is a design re-
quirement which will strongly affect the behav-
ior of a future developed control law.

Models for factory dynamics usually fall under
one of the categories below

e Discrete Event Dynamical Systems (DEDS)

e Discrete Time Dynamical Systems (DTDS)

The basic property of the DEDS model is that
the events occur at discrete but unknown times.
The above which is very useful in describing
some processes, cannot take into consideration
the so called “fast dynamics”, which is the
system dynamics when viewed microscopically,
and cannot be excluded since it affects directly
the quality of the output product or sometimes
leads to non-optimal energy consumption, just
to name a few. On the other hand, DTDS [1]
evolve at fixed discrete times with sampling pe-
riod T'. The “fast dynamics” can be more easily
introduced, and the connection to the existing
control theory becomes more obvious. However,
such approaches suffer from the “dimensional-
ity” drawback, that is a huge number of state
variables is required even for a small manufac-
turing cell.

From the above discussion it becomes ap-
parent that a more generalized model (GM) is
needed in order to better analyze different kinds
of processes that exist in the real world. On line
learning is the main property these GM’s should
exhibit in order to become more efficient and to
provide high degree of autonomy, where what
we mean by autonomy is “the power and ability
for self governance in the performance of control
functions” [2]. The above considerations lead to
more complicated models which are more diffi-
cult to analyze, but they are neat and uniform
and possibly describe the factory dynamics with
minimal error.

Since we.are concerned with the problem of
regulating manufacturing cells e.g forcing the
output of such a dynamical system to reach
some desired constant value [3], and assume that
we have no a priori information about the dy-
namics governing the cell, all existing techniques
do not apply. Hence, the objective will be to
approximate the unknown nonlinear dynamical
system by neural networks [4][5]{6](7] and once
a model is obtained, to use it, to develop adap-
tive laws for on line adjustment of the weights
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of these networks, such that the stability of the
overall system is guaranteed and furthermore,
the control objective is asymptotically achieved.
Therefore, in this way the problem is trans-
formed into a nonlinear adaptive control prob-
lem, where the uncertainty in the system is due
to some unknown parameters and to the exis-
tence of a modeling error term, which always
appears in such identification procedures.

In order that a neural network architecture is
able to approximate in some sense the behavior
of a dynamical system such as a manufacturing
cell, it is clear that it should contain some form
of dynamics, or put differently, feedback connec-
tions [8]. In the neural network literature, such
networks are known as recurrent neural het
works [9], originally designed for pattern recog-
nition applications. A special category of recur-
rent neural networks, namely Recurrent High
Order Neural Networks (RHONNSs), possess a
linear in the weights property, thus making the
issues of proving stability and convergence fea-
sible and their incorporation into a control loop
promising. A mathematical analysis of the ap-
proximation capabilities of a generalized type of
RHONNS is presented in [10].

This paper focusses on the state-space ap-
proach to continuous-time recurrent (dynamic)
neural networks for the purpose of nonlinear
control and identification. The inherent dynam-
ics of recurrent networks seems perfectly suited
for control problems, although involving fairly
complex analysis [11].

The remaining of the paper is organized as
follows: continuous state and control input sig-
nals are defined in Section 2, while the proposed
model is presented in Section 3. In Section
4 adaptive laws are derived, and stability and
convergence properties are explored and estab-
lished. Finally, in Section 5 an implementation
example is given and results are discussed.

2 Continuous Signals Definitions

RHONNs structure requires that time
evolves continuously. Additionally, state and
control input signals are continuous functions
of time. However manufacturing cell dynam-
ics is commonly described by models which are
based on the assumption that time evolves in
steps (DTDS or DEDS), causing any event such
as a machine start or an object production be
brought at integer numbers of time steps. Ma-
chine commands are usually encoded as series of
ones and zeros (where one may be interpreted as
a command to start operation), and moreover,
buffer states are a subset of the integers.

In order to have a successful relation between
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these two different strategies, we assume that an
equivalent machine-operation frequency is used
as control input to the system. This equiva-
lent frequency is defined as the inverse of the
time between two successive machine-starts. As
shown in Figure 1, we can translate the abso-
lute times in a piece-wise constant function of
the frequency, and obtain an u(t) diagram.

Obviously, using this definition the frequency
ranges between zero and a fixed finite value. The
lower bound is equal to zero, which corresponds
to an infinite period of time e.g the time un-
til the machine operates again is infinite and
thus it will never work again. By forcing the
controller to send a zero-value frequency input
to a machine, we can model a machine break-
down, or express the fact that a machine has
reached the production requirements, and thus
completed the prespecified work.

The upper bound corresponds to a minimum
period of time. This can be measured by as-
suming that the machine works continuously. In
such a case the period of time is equal to the
machine production time, and the frequency is
equal to its inverse. However, since there is al-
ways some idle time between two consecutive
part productions, the frequency input is never
expected to reach this upper bound.
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Figure 1: Equivalent Frequency Control
Input Definition
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If we define the states to represeni buffer
levels, they will be discontinuous functions ex-
pected to vary by one unit each time a new prod-
uct is accumulated or taken out respectively,
from the corresponding buffer. However, if we
consider any part as a fluid which is.to be pro-
cessed by a machine at a constant rate, then
the corresponding input (output) buffers will de-
crease (increase) lineariy, as shown in Figure 2.
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Figure 2: Continuous Buffer State Defini-
tion

The slope of this decrease is such that the
buffer reaches its next integer level at a time
interval equal to the one required by the ma-
chine to complete the specific operation. Such
an assumption is implementable, since machine-
starts can be on line detected and operation
times are supposed to be known.

Although, using tic above definitions time
discontinuities seem to smooth out, control in-
put is still a discontinuous function of time, since
frequencies are piecewise constant. It is clear
that such discontinuities render both input and
state signals highly nonlinear, and thus very
difficult for the neural network to learn. This
problem can be overcome by applying some im-
plementable smoothing functions, provided that
there is an 1-1 mapping between the original sig-
nal and the smoothed one.

Since the control signal is piecewise contin-
uous, changing from value z, to a value z;, a
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smart way to smooth values is to use two con-
secutive parabolas, one ranging between z, and
Zatoe while the other ranges between Tafie
and z;. Parabolas derivatives should be zero at
z, and z, respectively, while at their intersec-
tion they share a common derivative value. The
unknown coefficients can easily be calculated
and produce the required shape . Although
such a smoothing function produces a delay so
as to be implementable (the smoothed value
is based on current or previous values only),
it can be adjusted to be “narrow” enough so
that the deviation from the original signal is ne-
glectable. A sigmoid function ranging between
z, and zp, with a steep slope could be used in-
stead. However, such a technique suffers from
derivative discontinuities at common points be-
tween the original signal and the smoothing sig-
moidal function. Both situations are showh in
Figure 3.
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Figure 3: Frequency Control Input
Smoothing

3 The Manufacturing Cell Dy-
namic Model
Consider the sample configuration shown in
Figure 4, and assume that only machine A is
working.
Since the buffer level increase rate is pro-
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portional to the input machine frequency, any
change due to work done by the preceding ma-
chine A is governed by the equation

zs = f()ua (3.1)

1’_.

‘2._. 3

Figure 4: Sample Configuration

The unknown f(.) function depends on buffer
z3. However, to relax a future control law we
can add some restrictions to the state equations.
Such a restriction is that buffer 3 should remain
unchanged in case either buffer 1 or buffer 2 are
empty. This can be accomplished by assuming
that f(.) is written as the product

f() = fi(z1) f2(z2) fa(z3) (3.2)

where fi(.) and fo(.) are functions which cross
the origin, that is f1(0) = 0 and f2(0) = 0.
Obviously if either of z; or z; are equal to zero,
the whole derivative term also becomes equal to
zero . A possible selection for the fi(.) and fa(.)
functions could be the sigmoids which cross zero,
defined by

k

=13 A

se(x)

where

k
A= ——
2

Due to the well known approximation capa-
bilities of static High Order Neural Networks
(HONNs) [12] we can assume that the unknown
function fs(z3) can be approximated to any de-
sired degree of accuracy as the weighted sum of
some high order sigmoids of z;, that is

Ve >0 Tk, L= {d,da,...,di}:

k
Vi | fa(za(t) = D was® (za(t)| <€ (33)
n=1

where d; € N, s(z) the sigmoid function and
w; are the unknown adjustable weights to be de-
termined. Under this assumption the unknown
function equivalent form becomes

k
fa(za) = Zwssd‘(.’ca) =WTISi(za) (3.4)
i=1
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There is no way to determine either integer
k or the set £. However practical applications
have shown that the larger the numpber of high
order terms, the smallest the approximation er-
ror obtained.

Now assume that machine B is the only to
work. The decrease of buffer z3 1s due to control
input ug, and thus can be described by

z3 = f(up) (3.5)

Once more, HONN approximation capabili-
ties are employed and the unknown function is
approximated by

23 = W] Sa2(ug) (3.6)

where vector Wy also contains unknown ad-
justable weights.

Consider the general case where a buffer z;
is connected to machines u;, and u,y;, and as-
sume that machine u;, operation depends on
the preceding buffers z;,,z,, ..., z;,. Based on
the above observations the generalized dynamic
equation becomes

P

.’i!,' = WIT“ H Sc(l‘,'j) Sl(zg)u;n+WE*52(uout)

Jj=1

or in a more compact form

i‘,‘ —= W?*Sl(i‘)uiﬂ + WHT'SQ(UOW) (87)

Notice that the dynamic equation of a buffer
should be designed in such a way that in case no
commands are sent, the & term should vanish,
that is the buffer level should remain unchanged.
This includes the possibility of a machine break-
down. Such a property is inherent in the above
model, since no machine-start commands denote
a zero-frequency, and obviously the ; term van-
ishes.

The most interesting and promising part of
this approach is that it leads to the construc-
tion of an adaptive system, that is self adjusted
in any change to the cell desired performance.
Moreover, it can easily take into account the fact
that there is possibly a machine breakdown. It
is obvious that a controller based on the above
model needs no redesign whenever system be-
haviour changes, and thus can be implemented
in real time situations.

The proposed model not only satisfies the
above requirements, but also can be extended
to including as many high order terms as re-
quired for approximating the manufacturing cell
dynamics to any degree of accuracy.
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4 Identifier Structure and Adapt-
ive Laws

In order to identify the above model, an iden-
tifier of a similar structure is required. The iden-
tifier selected is governed by the equation

& = W S1(2)uin + WT Sa(tout) + am& — amz

(4.1)

where a,, is a strictly negative design con-

stant, which directly affects the convergence

speed as to be shown. W, and W, are the es-

timates of weight vectors W} and W; respec-
tively.

Observe that. the sigmoid functions vector
S1(z) contains the unknown plant states instead
of those of the identifier, thus rendering the iden-
tifier model a series-parallel one. If some stable
adaptive laws can be derived so as to force iden-
tification exror e = & — z go to zero, the last
two terms of the identifier equation vanish, thus
making the identifier.equivalent to the original
manufacturing cell model. The fact that a suf-
ficient set of high-order connections has been
found, is assumed, so as to consider the zero
modelling error case.

To derive weight adjusting adaptive laws the
Lyapunov synthesis method is employed [13].
Define the identification error as

e=F—2z (4.2)

and subtract equations () and () to obtain the
error equation

é = ame + Wi S1(2)tin + Wa Sa(ttour) (4.3)

where
W=w-w*
and subscript ¢ has been omitted for the sake of
simplicity.
Next, consider the Lyapunov function candi-
date

_1. 1 i 15T 1 5T
V= 3¢+ Etr{Wlwl 1+ %tr{W2W2 }
(4.4)
where 7; and 9, are positive gain constants.
By differentiating with respect to time, along
the trajectories of the error equation, we obtain
the Lyapunov derivative function

; ) 1 A w 1 2
V=eé+ T—tr{WIWlT} + ;—tr{WgWQT}
1 2

which, after substituting the error derivative can
be written as
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V = ame? + eWT S1(2)uin + eWT S2(tout)
T e 1 P
+ Tlw{wl Wi+ —trnf) - (45)
1

By splitting products of vectors into elements
the derivative of the Lyapunov candidate can be
written in the following form

V = ame2+eu,-n Z Slj(f)ﬁ1j+e Z 82; (uw,)iﬁgj

J 7
+ z lbljli)lj + Z l;ljgjagj (46)
j i

Obviously, by selecting the update laws to be

wy; = wl_-,’ = _718‘91,‘(5)“”& (47)

and .
1525 = T-';JZJ' = *72632,‘(uaut) (48)

the derivative of the Lyapunov function becomes
V=ane? <0

which holds since a, is strictly negative. More-
over, the Lyapunov function is chosen to be a
quadratic one, and thus positive definite and de-
screscent. Hence, according to Lyapunov’s the-
orem, e = 0, W; = 0, W, = 0 is an equilibrium
point.

To proceed on the Lyapunov function deriva-
tive is integrated over the time domain

fm Vdt = V(00) ~ V(0) = am ]m etdt (4.9)
0 0

Since the Lyapunov function is non-negative and
decreasing, it is also bounded, e.g.

V(0) > V() > 0= V(0) — V(c0) < 00

= V(00) = V(0) € Loo

The above result combined with (.) leads to
e E-[.z_. Moreover, ~sinfze the Frobenius forms
tr{W, W]} and tr{W,W{} are non-negative

VEEOG:$E2E£00=:’36»COO

and consequently, using the identification error
definition (.) we conclude that # € L, since
buffer levels z; are supposed to be bounded. Fi-
nally, from the error derivative equation (.) we
obtain é € L, since all quantities in the right-
hand are also bounded. Now since ¢,é € L
and e € L, applying Barbalat’s Lemma [14] we
obtain that

lim e(t) = 0 (4.10)
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The boundness of the weight estimates can
easily be proved since

VELwtr{WWT}ELoo > WELs

However, although the control input is bounded
and e — 0 which means that

Wy = Wy = —ves(E)u = 1 € Lo

‘L'Elzj = ‘L:f)zj = —‘res(u) = 'L%Jgj € Leo

we cannot guarantee that 1 also converges to
some value.

The above results hold under the assumption
that the appropriate integer k and a set £ have
been found. However since such information
cannot be known a priori and some other used
instead, the error is expected to approach zero
as close as possible. The error magnitude upper
bound depends on the similarity of the used pa-
rameters k and £ to the original ones. Similarly
weight estimates are expected to vary within a
region instead of converging to specific values.
However, since the control of the manufacturing
cell is the main objective, there is no need for
the network weights to stabilize at certain con-
stant values, even some different from the opti-
mal ones, which are unknown. Instead, the error
minimization is required. That means, that the
identification phase is used for two main pur-
poses. The first one concerns whether there are
enough neuron connections to allow the error
to be minimized within a desired degree of ac-
curacy, that is, check if the network structure
renders it capable of approximating the manu-
facturing cell. The second purpose is to find, if
possible, some good initial weight values which,
although not optimal, will be used through the
control phase.

5 Implementation
5.1 Cell Configuration

The above developed model has been imple-
mented in a case study, shown in Figure 5. In
this certain example the candidate manufactur-
ing cell consists of five machines denoted by let-
ters A, B, C, D and E. 10 different products are
used in this example, namely

e four raw materials denoted by ry up to r4

e five semi-finished products numbered from
1tob

e one finished product, denoted as buffer 6.

In the following Table, the operation time re-
quired by each machine is presented. Observe

Studies in Informatics and Control. Vol.6, No.1. March 1997



If four high order terms are to be included in
51(.) and S3(.) vectors, the dynamic equation
for the first buffer is written in the following
form

1
&
rl.‘. A ) r4 C ___.?__
r20_. Ly

{ wl; 3 T 4 3(.’81) 3
& 2
2y =« EI: . 232;1; > uaq+
1 A
( wiy ) L (=)
{ wl; A T 4 Sc(uc) A
wl; 33(“0)
E @ 4 wys I R Sg(ﬂc) ; (5.1)
8 L . si(uc) y,

Figure 5: The Case Study

that the selected times do not correspond to a
real plant, since they lead to product accumula-
tion in some semi-finished product buffers. How-
ever, such a behaviour is recommended, since it
forces the neural network identifier to learn a
behaviour, more complex than a simple signal
which toggles between one and zero.

Table 1: Production Times

Machine | Time required per part production
1 5
2 6
3 5
4 4
5 3

Each product corresponds to a specific buffer.
Under this assumption there are 10 buffers.
Note that the raw-material buffers are assumed
to be of infinite capacity, and thus their dynam-
ics 1s ignored, and there are no dynamical equa-
tions for them.

5.2 Dynamical Equations Construction

In the following table the manufacturing in-
terconnection is presented. Based on that infor-
mation the dynamic equations are constructed.

Table 2: Manufacturing Cell
Interconnection Data

Buffer No. | Preceding | Succeeding | Feeding
machine machine buffers
1 A C rl
2 A D rl
3 B D r2, r3
4 C E 4, 1
5 D E 2,3
6 E 4,5
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where the ¢ subscript denotes the use of cen-
tered sigmoid functions.
The identifier equation for the same buffer is

N T
wiy 8(31)

~ 2
A w12 8 (Il)
I = =
1 Wia 33(21) ug+
1;)14 84(21)
- T
wWis sg(uc)
Wis sc(uc) %
+amZ; —amz; (5.2
W17 sg(uC) ml mLl ( )
18 st(uc)

Dynamic equations for the rest buffers are
constructed in a similar way. All non-
centered sigmoids share the same parameters
k=3,1=1,A =0, while the centered sigmoids
parameters are set to k = 5,/ = 1,1 = ~2.5.
The a,, constants have been set equal to —50,
and the adaptive laws gains have been set to the
value of 25. '

5.3 Results

In the following Figure, the feasible but ran-
domly selected machine-command schedule is
presented. Each line represents the schedule
for the corresponding machine, where the raised
values denote a machine-start command. The
corresponding frequencies have been calculated
and presented in Figure 7. Observe the last fre-
quency values, which are not equal to zero, since
the present schedule is only a small part of the
original one used for the network training.

Buffers states evolution as well as the identi.
fier states with the error term multiplied by a
factor of 500, are presented in Figure 8. These
states were calculated by our own simulator, and
correspond to the control input schedule defined
above. Obsérve that products are accumulated
in buffers 3 and 6, thus making the signal to be
learned more complex.
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Figure 6: Machine-Start Control Input
Schedule

It is obvious that buffers state identification
error 1s bounded by a constant value envelope,
from both top and below. This value in any case
did not exceed 0.0005, although only 8 weights
per equation were used.

The error magnitude is not expected to reach
zero, even if a large-time schedule is used as
training function. This 1s due to the capabil-
ities of this certain high order connection se-
lected. Using the derived adaptive laws, the er-
ror reaches the minimum value it can get. In
order to increase the accuracy of the model,
higher order terms should be introduced in the
dynamical equations. However, such an exten-
sion is not always desired, since it always leads
to an error reduction, but also excites an oscilla-
tory behaviour when used at a very large scale.

6 Conclusions

A neural network identifier structure for identi-
fying manufacturing cell dynamics is presented.
The proposed equations are non-linear, but still
possess a linear-in-the-weights property. Hence
stable adaptive laws can be derived, which guar-
antee convergence and stability properties. The
emerging non-linearities do not seem to be a
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Figure 7: Frequency Control Input Sched-
ule

problem since the controller, which is to be de-
signed later, does not require that the model
is linear. Instead, a non-linear controller is ex-
pected to be more flexible and capable of ab-
sorbing any possible disturbances.

The results in Figures 8 and 9 show that the
proposed model seems to be satisfactory enough
to describe a complex dynamic system, such as
manufacturing cells. Finally, the current model
presents two important properties. First, it can
always be improved by adding new high order
terms, in order to increase accuracy. Second, it
is self adjusted in environmental changes, that
is, not only does it need no training whenever a
specific machine is no more capable of produc-
ing new parts, but also in case the production
requirements are altered: These two properties
are of great importance, since the whole idea is
based on the assumption that the control policy
will be decided on-line.
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